高中数学教案

时间:2024-09-30 03:00:58 教案 我要投稿

高中数学教案

  作为一位杰出的老师,常常要写一份优秀的教案,教案是备课向课堂教学转化的关节点。那么教案应该怎么写才合适呢?下面是小编收集整理的高中数学教案,仅供参考,大家一起来看看吧。

高中数学教案

高中数学教案1

  教学准备

  教学目标

  熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

  掌握两角和与差的'正、余弦公式,能用公式解决相关问题。

  教学重难点

  熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。

  教学过程

  复习

  两角差的余弦公式

  用- B代替B看看有什么结果?

高中数学教案2

  教学目的

  掌握圆的标准方程,并能解决与之有关的问题

  教学重点

  圆的标准方程及有关运用

  教学难点

  标准方程的灵活运用

  教学过程:

  一、导入新课,探究标准方程

  二、掌握知识,巩固练习

  练习⒈说出下列圆的方程

  ⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

  ⒉指出下列圆的圆心和半径

  ⑴(x-2)2+(y+3)2=3

  ⑵x2+y2=2

  ⑶x2+y2-6x+4y+12=0

  ⒊判断3x-4y-10=0和x2+y2=4的位置关系

  ⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

  三、引伸提高,讲解例题

  例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

  练习1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

  2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

  例2:某圆拱桥的.跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

  例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

  四、小结练习P771,2,3,4

  五、作业P811,2,3,4

高中数学教案3

  教学目标:

  1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进

  学生全面认识数学的科学价值、应用价值和文化价值。

  2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。

  教学重点:

  如何建立实际问题的目标函数是教学的重点与难点。

  教学过程:

  一、问题情境

  问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?

  问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?

  问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?

  二、新课引入

  导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。

  1。几何方面的应用(面积和体积等的最值)。

  2。物理方面的应用(功和功率等最值)。

  3。经济学方面的应用(利润方面最值)。

  三、知识建构

  例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?

  说明1解应用题一般有四个要点步骤:设——列——解——答。

  说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极

  值及端点值比较即可。

  例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才

  能使所用的材料最省?

  变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?

  说明1这种在定义域内仅有一个极值的函数称单峰函数。

  说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:

  S1列:列出函数关系式。

  S2求:求函数的导数。

  S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。

  例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为

  多大时,才能使电功率最大?最大电功率是多少?

  说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。

  例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。

  例5在经济学中,生产单位产品的`成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。

  (1)设,生产多少单位产品时,边际成本最低?

  (2)设,产品的单价,怎样的定价可使利润最大?

  四、课堂练习

  1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。

  2。在半径为R的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。

  3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?

  4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。

  五、回顾反思

  (1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。

  (2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。

  (3)相当多有关最值的实际问题用导数方法解决较简单。

  六、课外作业

  课本第38页第1,2,3,4题。

高中数学教案4

  1. 幽默风趣的你,平时在班里话语不多,也不张扬,但是,你在无意中的表现仍然赢得了很好的人际关系,学习上你认真刻苦,也能及时的完成作业,但是我觉得你总是没把全部的心思用在学习上,不然以你的聪明,应该保持在前三名才对啊,加油吧,也许关注学习成绩对你才是更有意义的事!

  2. 身为纪律委员的你,认真负责,以身作则,生活上的你平易近人,与同学关系融洽,学习上你勤奋刻苦,尤其在英语的学习上,显示出了你的语言天赋,我觉得,假如你能把这份自信和兴趣用到其他的学科学习中,也一定会收获很多的!加油吧!

  3. 你能严格遵守校规,上课认真听讲,作业完成认真,乐于助人,愿意帮助同学,大扫除时你不怕苦,不怕累,但是英语方面还不够给力,所以,如果再投入一点,定会取得更好的结果,而且你还是一个愿意动脑筋的好学生,如果继续保持下去定会取得骄人的成绩!

  4. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高,平时善于多动笔认真作好笔记,多开动脑筋,相信你一定能在下学期更得更大的进步! 你学习认真刻苦,也能善于思考,更十分活泼,并能严格遵守班级和宿舍纪律,上课你能认真听讲,做作业时你十分专注,常常愿意花功夫钻研难题,与同学相处也十分融洽,但若能在认真做作业的同时,将速度提上去,我相信你会做得更好。要多讲究学习方法,不能靠熬夜来完成学习任务,提高学习效率,老师相信你一定能通过自己的努力取得更好的成绩!

  5. 虽然你个头小,但每次你领读时的那股认真劲儿,令老师暗暗称赞。你尊敬老师,和同学能和睦相处。甜美可爱的你,经过不断的'努力,你会更出色的!

  6. 你是个活泼可爱的孩子,课堂上,你非常投入地学习着,朗读课文时数你最有感情。中午你还主动给老师捶背,真是个会关心人的孩子,老师谢谢你。你十分喜爱读课外书,不过课上可不能偷看啊!愿书成为你的好朋友。

  7. 学习中你能严格要求自己,这是你永不落败的秘诀。老师希望你能借助良好的学习方法,抓紧一切时间,笑在最后的一定是你!

  8. 许丽君——你思想上进,踏实稳重,诚实谦虚,尊敬老师。黑板报中有你倾注的心血,集体荣誉簿里有你的功劳。但学习的主动精神不够,竞争意识不强,也很少看到你向老师请教,成绩进步不明显。请相信:世上没有比脚更长的路,也没有比心更高的山!望今后大胆进取,多思多问,发挥你的聪明才智,进一步激发活力,提高学习效率,持之以恒,美好的明天属于你!

  9. 每天你都背着书包高高兴兴地来上学,学到了不少的知识,可惜只能记住很少的一部分。希望你改进学习方法,提高学习效率,在下学期有更大的进步!

  10. 你言语不多,但待人诚恳、礼貌,作风踏实,品学兼优,热爱班级,关爱同学,勤奋好学,思维敏捷,成绩优秀。愿你扎实各科基础,坚持不懈,!一定能考上重点! 优秀的男生肯定是逗人喜欢的,老师希望你能一如既往的优秀,把这种优秀保持在你人生的每一阶段中。你的人生就是辉煌如意的!

高中数学教案5

  1.教学目标

  (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(x―a)2 (y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的`方程写出圆心和半径

  (1) ; (2) .

  ii.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

高中数学教案6

  教学目标:

  1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.

  2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.

  教学重点:

  复数的几何意义,复数加减法的几何意义.

  教学难点:

  复数加减法的几何意义.

  教学过程:

  一 、问题情境

  我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

  二、学生活动

  问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?

  问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?

  问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的',我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

  问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

  三、建构数学

  1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.

  2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

  3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.

  6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.

  四、数学应用

  例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.

  练习 课本P123练习第3,4题(口答).

  思考

  1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?

  2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?

  3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.

  4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.

  例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.

  例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.

  思考 任意两个复数都可以比较大小吗?

  例4 设z∈C,满足下列条件的点Z的集合是什么图形?

  (1)│z│=2;(2)2<│z│<3.

  变式:课本P124习题3.3第6题.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.复数的几何意义.

  2.复数加减法的几何意义.

  3.数形结合的思想方法.

高中数学教案7

  教学目标

  (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题。

  (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念。

  (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点。

  (4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法。

  (5)进一步理解数形结合的思想方法。

  教学建议

  教材分析

  (1)知识结构

  曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质。曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序。前者回答什么是曲线方程,后者解决如何求出曲线方程。至于用曲线方程研究曲线性质则更在其后,本节不予研究。因此,本节涉及曲线方程概念和求曲线方程两大基本问题。

  (2)重点、难点分析

  ①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想。

  ②本节的难点是曲线方程的概念和求曲线方程的方法。

  教法建议

  (1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系。曲线与方程对应关系的基础是点与坐标的对应关系。注意强调曲线方程的完备性和纯粹性。

  (2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备。

  (3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。

  (4)从集合与对应的.观点可以看得更清楚:

  设 表示曲线 上适合某种条件的点 的集合;

  表示二元方程的解对应的点的坐标的集合。

  可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

  (5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。

  这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即

  文字语言中的几何条件 数学符号语言中的等式 数学符号语言中含动点坐标 , 的代数方程 简化了的 , 的代数方程

  由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”

  (6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。

高中数学教案8

  一、教学目标

  【知识与技能】

  在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

  【过程与方法】

  通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

  【情感态度与价值观】

  渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

  二、教学重难点

  【重点】

  掌握圆的一般方程,以及用待定系数法求圆的一般方程。

  【难点】

  二元二次方程与圆的一般方程及标准圆方程的`关系。

  三、教学过程

  (一)复习旧知,引出课题

  1、复习圆的标准方程,圆心、半径。

  2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

高中数学教案9

  猴子搬香蕉

  一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里?

  解答:

  100只香蕉分两次,一次运50只,走1米,再回去搬另外50只,这样走了1米的时候,前50只吃掉了两只,后50只吃掉了1只,剩下48+49只;两米的时候剩下46+48只;...到16米的时候剩下(50-2×16)+(50-16)=18+34只;17米的时候剩下16+33只,共49只;然后把剩下的这49只一次运回去,要走剩下的33米,每米吃一个,到家还有16个香蕉。

  河岸的距离

  两艘轮船在同一时刻驶离河的两岸,一艘从A驶往B,另一艘从B开往A,其中一艘开得比另一艘快些,因此它们在距离较近的岸500公里处相遇。到达预定地点后,每艘船要停留15分钟,以便让乘客上下船,然后它们又返航。这两艘渡轮在距另一岸100公里处重新相遇。试问河有多宽?

  解答:

  当两艘渡轮在x点相遇时,它们距A岸500公里,此时它们走过的距离总和等于河的宽度。当它们双方抵达对岸时,走过的总长度

  等于河宽的两倍。在返航中,它们在z点相遇,这时两船走过的距离之和等于河宽的三倍,所以每一艘渡轮现在所走的距离应该等于它们第一次相遇时所走的距离的三倍。在两船第一次相遇时,有一艘渡轮走了500公里,所以当它到达z点时,已经走了三倍的距离,即1500公里,这个距离比河的宽度多100公里。所以,河的宽度为1400公里。每艘渡轮的上、下客时间对答案毫无影响。

  变量交换

  不使用任何其他变量,交换a,b变量的值?

  分析与解答

  a = a+b

  b = a-b

  a= a-b

  步行时间

  某公司的办公大楼在市中心,而公司总裁温斯顿的家在郊区一个小镇的附近。他每次下班以后都是乘同一次市郊火车回小镇。小镇车站离家还有一段距离,他的私人司机总是在同一时刻从家里开出轿车,去小镇车站接总裁回家。由于火车与轿车都十分准时,因此,火车与轿车每次都是在同一时刻到站。

  有一次,司机比以往迟了半个小时出发。温斯顿到站后,找不到

  他的车子,又怕回去晚了遭老婆骂,便急匆匆沿着公路步行往家里走,途中遇到他的轿车正风驰电掣而来,立即招手示意停车,跳上车子后也顾不上骂司机,命其马上掉头往回开。回到家中,果不出所料,他老婆大发雷霆:“又到哪儿鬼混去啦!你比以往足足晚回了22分钟??”。温斯顿步行了多长时间?

  解答:

  假如温斯顿一直在车站等候,那么由于司机比以往晚了半小时出发,因此,也将晚半小时到达车站。也就是说,温斯顿将在车站空等半小时,等他的轿车到达后坐车回家,从而他将比以往晚半小时到家。而现在温斯顿只比平常晚22分钟到家,这缩短下来的8分钟是如果总裁在火车站死等的话,司机本来要花在从现在遇到温斯顿总裁的地点到火车站再回到这个地点上的时间。这意味着,如果司机开车从现在遇到总裁的地点赶到火车站,单程所花的时间将为4分钟。因此,如果温斯顿等在火车站,再过4分钟,他的轿车也到了。也就是说,他如果等在火车站,那么他也已经等了30-4=26分钟了。但是惧内的温斯顿总裁毕竟没有等,他心急火燎地赶路,把这26分钟全都花在步行上了。

  因此,温斯顿步行了26分钟。

  付清欠款

  有四个人借钱的数目分别是这样的:阿伊库向贝尔借了10美元;

  贝尔向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊库借了40美元。碰巧四个人都在场,决定结个账,请问最少只需要动用多少美金就可以将所有欠款一次付清?

  解答:

  贝尔、查理、迪克各自拿出10美元给阿伊库就可解决问题了。这样的话只动用了30美元。最笨的办法就是用100美元来一一付清。

  贝尔必须拿出10美元的欠额,查理和迪克也一样;而阿伊库则要收回借出的`30美元。再复杂的问题只要有条理地分析就会很简单。养成经常性地归纳整理、摸索实质的好习惯。

  一美元纸币

  注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值。

  一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。当这三位男士同时站起来付帐的时候,出现了以下的情况:

  (1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。

  (2)这四人中没有一人能够兑开任何一枚硬币。

  (3)一个叫卢的男士要付的账单款额最大,一位叫莫的男士要

  付的帐单款额其次,一个叫内德的男士要付的账单款额最小。

  (4)每个男士无论怎样用手中所持的硬币付账,女店主都无法找清零钱。

  (5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己的账单而无需找零。

  (6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先所持的硬币没有一枚面值相同。

  (7)随着事情的进一步发展,又出现如下的情况:

  (8)在付清了账单而且有两位男士离开以后,留下的男士又买了一些糖果。这位男士本来可以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部硬币都找给了他。

  现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美元的纸币付了糖果钱?

  解答:

  对题意的以下两点这样理解:

  (2)中不能换开任何一个硬币,指的是如果任何一个人不能有2个5分,否则他能换1个10分硬币。

  (6)中指如果A,B换过,并且A,C换过,这就是两次交换。

高中数学教案10

  【课题名称】

  《等差数列》的导入

  【授课年级】

  高中二年级

  【教学重点】

  理解等差数列的概念,能够运用等差数列的定义判断一个数列是否为等差数列。

  【教学难点】

  等差数列的性质、等差数列“等差”特点的理解,

  【教具准备】多媒体课件、投影仪

  【三维目标】

  ㈠知识目标:

  了解公差的概念,明确一个等差数列的限定条件,能根据定义判断一个等差数列是否是一个等差数列;

  ㈡能力目标:

  通过寻找等差数列的共同特征,培养学生的观察力以及归纳推理的能力;

  ㈢情感目标:

  通过对等差数列概念的归纳概括,培养学生的观察、分析资料的能力。

  【教学过程】

  导入新课

  师:上两节课我们已经学习了数列的定义以及给出表示数列的几种方法—列举法、通项法,递推公式、图像法。这些方法分别从不同的'角度反映了数列的特点。下面我们观察以下的几个数列的例子:

  (1)我们经常这样数数,从0开始,每个5个数可以得到数列:0,5,10,15,20,()

  (2)2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目工设置了7个级别,其中较轻的4个级别体重组成的数列(单位:kg)为48,53,58,63,()试问第五个级别体重多少?

  (3)为了保证优质鱼类有良好的生活环境,水库管理员定期放水清库以清除水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一个数列:18,15.5,13,10.5,8,(),则第六个数应为多少?

  (4)10072,10144,10216,(),10360

  请同学们回答以上的四个问题

  生:第一个数列的第6项为25,第二个数列的第5个数为68,第三个数列的第6个数为5.5,第四个数列的第4个数为10288。

  师:我来问一下,你是依据什么得到了这几个数的呢?请以第二个数列为例说明一下。

  生:第二个数列的后一项总比前一项多5,依据这个规律我就得到了这个数列的第5个数为68.

  师:说的很好!同学们再仔细地观察一下以上的四个数列,看看以上的四个数列是否有什么共同特征?请注意,是共同特征。

  生1:相邻的两项的差都等于同一个常数。

  师:很好!那作差是否有顺序?是否可以颠倒?

  生2:作差的顺序是后项减去前项,不能颠倒!

  师:正如生1的总结,这四个数列有共同的特征:从第二项起,每一项与它的前一项的差都等于同一个常数(即等差)。我们叫这样的数列为等差数列。这就是我们这节课要研究的内容。

  推进新课

  等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差,公差常用字母d表示。从刚才的分析,同学们应该注意公差d一定是由后项减前项。

  师:有哪个同学知道定义中的关键字是什么?

  生2:“从第二项起”和“同一个常数”

高中数学教案11

  1. 你能遵守学校的规章制度,按时上学,按时完成作业,书写比较端正,课堂上你也坐得比较端正。如果在学习上能够更加主动一些,寻找适合自己的学习

  2. 你尊敬老师、团结同学、热爱劳动、关心集体,所以大家都喜欢你。能严格遵守学校的各项规章制度。学习不够刻苦,有畏难情绪。学习方法有待改进,掌握知识不够牢固,思维能力要进一步培养和提高。学习成绩比上学期有一定的进步。平时能积极参加体育锻炼和有益的文娱活动。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。

  3. 你性格活泼开朗,总是带着甜甜的笑容,你能与同学友爱相处,待人有礼,能虚心接受老师的教导。大多数的时候你都能遵守纪律,偶尔会犯一些小错误。有时上课不够留心,还有些小动作,你能想办法控制自己吗?一开学老师就发现你的作业干净又整齐,你的字清秀又漂亮。但学习成绩不容乐观,需努力提高学习成绩。希望能从根本上认识到自己的不足,在课堂上能认真听讲,开动脑筋,遇到问题敢于请教。

  4. 你热情大方,为人豪爽,身上透露出女生少有的`霸气,作为班干部,你会提醒同学们及时安静,对学习态度端正,及时完成作业,但是少了点耐心,试着把心沉下来,上课集中注意力,跟着老师的思路走,一步一个脚印,一定能走出你自己绚丽的人生!

  5. 学习态度端正,效率高,合理分配时间,学习生活两不误,善良热情,热爱生活,乐于助人,与周围同学相处关系融洽。能严格遵守学校的各项规章制度。上课能专心听讲,认真做好笔记,课后能按时完成作业。记忆力好,自学能力较强。希望你能更主动地学习,多思,多问,多练,大胆向老师和同学请教,注意采用科学的学习方法,提高学习效率,一定能取得满意的成绩!

  6. 作为本班的班长,你对待班级工作能够认真负责,积极配合老师和班委工作,集体荣誉感很强,人际关系很好,待人真诚,热心帮助人,老师十分欣赏你的善良和聪明,希望在以后能够积极发挥自己的所长,带领全班不仅在班级管理上有进步,而且能在学习上也能成为全班的领头雁,在下学期能取得更大的进步!

  7. 身为班委的你,对工作认真负责,以身作则,性格和善,与同学关系融洽,积极参加各项活动,不太张扬的你显得稳重和踏实,在学习上,你认真听课,及时完成各科作业,但是我总觉得你的学习还不够主动,没有形成自己的一套方法,若从被动的学习中解脱出来,应该稳定在班级前五名啊!加油!

  8. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高。只要有恒心,有毅力,老师相信你会在各方面取得长足进步!

  9. 你为人热情大方,能和同学友好相处。你为人正直诚恳,尊敬老师,关心班集体,待人有礼,能认真听从老师的教导,自觉遵守学校的各项规章制度,抵制各种不良思想。有集体荣誉感,乐于为集体做事。学习刻苦,成绩有所提高。上课能专心听讲,思维活跃,积极回答问题,积极思考,认真做好笔记。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。

  10. 记得和你说过,你是个太聪明的孩子,你反应敏捷,活泼灵动。但是做学问是需要静下心来老老实实去钻研的,容不得卖弄小聪明和半点顽皮话。要知道,学如逆水行舟,不进则退;心似平原野马,易放难收!望你下学期重新抖擞精神早日进入状态,不辜负关爱你的人对你的殷殷期盼。

高中数学教案12

  高中数学趣味竞赛题(共10题)

  1 、撒谎的有几人

  5个高中生有,她们面对学校的新闻采访说了如下的话:

  爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”

  玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”

  千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?

  2、她们到底是谁

  有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。

  穿黑色衣服的女子说:“我不是天使。” 穿蓝色衣服的女子说:“我不是人。” 穿白色衣服的女子说:“我不是恶魔。”那么,这三人到底分别是谁呢?

  3、半只小猫

  听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。

  “一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。” “半只?”“是啊,然后,邻居家的老奶奶无论如何都要,所以就把剩下的`一半和另外半只给了她。这就是只剩下1只小猫的原因。那么你想想看,一共生了几只小猫呢?

  4、被虫子吃掉的算式

  一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。

  那么,请问原来的算式是什么样子的呢?

  5、巧动火柴

  用16根火柴摆成5个正方形。请移动2根火柴,

  使

  正形变成4。

  6、折过来的角

  把正三角形的纸如图那样折过来时,角?的度数是多少度?

  7、星形角之和

  求星形尖端的角度之和。

  8、啊!双胞胎?

  丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。

  结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?

  9、赠送和降价哪个更好?

  1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好?

  10、折成15度

  用折纸做成45度很简单是吧。那么,请折成15度,你会吗?

高中数学教案13

  教学目标:

  1。理解并掌握瞬时速度的定义;

  2。会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;

  3。理解瞬时速度的实际背景,培养学生解决实际问题的能力。

  教学重点:

  会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度。

  教学难点:

  理解瞬时速度和瞬时加速度的定义。

  教学过程:

  一、问题情境

  1。问题情境。

  平均速度:物体的运动位移与所用时间的.比称为平均速度。

  问题一平均速度反映物体在某一段时间段内运动的快慢程度。那么如何刻画物体在某一时刻运动的快慢程度?

  问题二跳水运动员从10m高跳台腾空到入水的过程中,不同时刻的速度是不同的。假设t秒后运动员相对于水面的高度为h(t)=-4.9t2+6.5t+10,试确定t=2s时运动员的速度.

  2。探究活动:

  (1)计算运动员在2s到2.1s(t∈)内的平均速度。

  (2)计算运动员在2s到(2+?t)s(t∈)内的平均速度。

  (3)如何计算运动员在更短时间内的平均速度。

  探究结论:

  时间区间

  t

  平均速度

  0.1

  -13.59

  0.01

  -13.149

  0.001

  -13.1049

  0.0001

  -13.10049

  0.00001

  -13.100049

  0.000001

  -13.1000049

  当?t?0时,?-13.1,

  该常数可作为运动员在2s时的瞬时速度。

  即t=2s时,高度对于时间的瞬时变化率。

  二、建构数学

  1。平均速度。

  设物体作直线运动所经过的路程为,以为起始时刻,物体在?t时间内的平均速度为。

  可作为物体在时刻的速度的近似值,?t越小,近似的程度就越好。所以当?t?0时,极限就是物体在时刻的瞬时速度。

  三、数学运用

  例1物体作自由落体运动,运动方程为,其中位移单位是m,时

  间单位是s,,求:

  (1)物体在时间区间s上的平均速度;

  (2)物体在时间区间上的平均速度;

  (3)物体在t=2s时的瞬时速度。

  分析

  解

  (1)将?t=0.1代入上式,得:=2.05g=20.5m/s。

  (2)将?t=0.01代入上式,得:=2.005g=20.05m/s。

  (3)当?t?0,2+?t?2,从而平均速度的极限为:

  例2设一辆轿车在公路上作直线运动,假设时的速度为,

  求当时轿车的瞬时加速度。

  解

  ∴当?t无限趋于0时,无限趋于,即=。

  练习

  课本P12—1,2。

  四、回顾小结

  问题1本节课你学到了什么?

  1理解瞬时速度和瞬时加速度的定义;

  2实际应用问题中瞬时速度和瞬时加速度的求解;

  问题2解决瞬时速度和瞬时加速度问题需要注意什么?

  注意当?t?0时,瞬时速度和瞬时加速度的极限值。

  问题3本节课体现了哪些数学思想方法?

  2极限的思想方法。

  3特殊到一般、从具体到抽象的推理方法。

  五、课外作业

高中数学教案14

  教学准备

  1.教学目标

  1、知识与技能:

  函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

  赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

  2、过程与方法:

  (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解构成函数的要素;

  (3)会求一些简单函数的定义域和值域;

  (4)能够正确使用“区间”的符号表示函数的定义域;

  3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.

  教学重点/难点

  重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

  难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

  教学用具

  多媒体

  4.标签

  函数及其表示

  教学过程

  (一)创设情景,揭示课题

  1、复习初中所学函数的概念,强调函数的模型化思想;

  2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的.思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.

  3、分析、归纳以上三个实例,它们有什么共同点;

  4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

  5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  (二)研探新知

  1、函数的有关概念

  (1)函数的概念:

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

  记作:y=f(x),x∈A.

  其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

  注意:

  ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  (2)构成函数的三要素是什么?

  定义域、对应关系和值域

  (3)区间的概念

  ①区间的分类:开区间、闭区间、半开半闭区间;

  ②无穷区间;

  ③区间的数轴表示.

  (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

  通过三个已知的函数:y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.

  师:归纳总结

  (三)质疑答辩,排难解惑,发展思维。

  1、如何求函数的定义域

  例1:已知函数f(x)=+

  (1)求函数的定义域;

  (2)求f(-3),f()的值;

  (3)当a>0时,求f(a),f(a-1)的值.

  分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

  例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.

  分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引导学生小结几类函数的定义域:

  (1)如果f(x)是整式,那么函数的定义域是实数集R.

  2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.

  (3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.

  (4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)

  (5)满足实际问题有意义.

  巩固练习:课本P19第1

  2、如何判断两个函数是否为同一函数

  例3、下列函数中哪个与函数y=x相等?

  分析:

  1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

  2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

  解:

  课本P18例2

  (四)归纳小结

  ①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.

  (五)设置问题,留下悬念

  1、课本P24习题1.2(A组)第1—7题(B组)第1题

  2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.

  课堂小结

高中数学教案15

  一、什么是教学案例

  教学案例是真实而又典型且含有问题的事件。简单地说,一个教学案例就是一个包含有疑难问题的实际情境的描述,是一个教学实践过程中的故事,描述的是教学过程中“意料之外,情理之中的事”。

  这可以从以下几个层次来理解:

  教学案例是事件:教学案例是对教学过程中的一个实际情境的描述。它讲述的是一个故事,叙述的是这个教学故事的产生、发展的历程,它是对教学现象的动态性的把握。

  教学案例是含有问题的事件:事件只是案例的基本素材,并不是所有的教学事件都可以成为案例。能够成为案例的事件,必须包含有问题或疑难情境在内,并且也可能包含有解决问题的方法在内。正因为这一点,案例才成为一种独特的研究成果的表现形式。

  案例是真实而又典型的事件:案例必须是有典型意义的,它必须能给读者带来一定的启示和体会。案例与故事之间的根本区别是:故事是可以杜撰的,而案例是不能杜撰和抄袭的,它所反映的是真是发生的事件,是教学事件的真实再现。是对“当前”课堂中真实发生的实践情景的描述。它不能用“摇摆椅子上杜撰的事实来替代”,也不能从抽象的、概括化的理论中演绎的事实来替代。

  二、如何进行教学案例研究

  教学案例是教师教学行为真实、典型的记录,也是教师教学理念和教学思想的真实体现。因此它是教育教学研究的宝贵资源,也是教师之间交流的重要媒介。进行教学案例的研究是教师不断反思、改进自己教学的一种方法,能促使教师更为深刻地认识到自己工作中的重点和难点。这个过程就是教师自我教育和成长的过程。

  那么如何进行教学案例研究呢?一般情况下,案例研究的程序基本有以下两个环节:案例研究的准备及实施、案例研究报告的撰写与反思。

  (一)案例研究的准备与实施

  1.研究主题的选择

  案例研究都要有研究的重点和主题,这个主题常与教学改革的核心理念、常见的疑难问题和困惑事件相关,一般来说可以从教学的各个方面确定研究的主题,如从教师教学行为确定主题——教学材料的选择、教学中的提问、教学媒体的使用、教学评价语言、课堂教学调控行为等;也可以从学生的学习方式确定主题——探究性学习、问题解决学习、合作学习、实践性活动等。另外从学科特点、教学内容等都可以确定研究的主题。

  研究者要了解当前教学的大背景,教改的大方向,要熟悉相关的《课程标准》和有针对性地作一些理论准备。还要通过有关的调查,搜集详尽的材料(如阅读教师的教学设计,进行访谈等),同时初步确定案例研究的方向、研究任务,即初步确定案例的内容是关于教学策略、学生行为或是教学技能的研究。

  一般来说,案例研究主题的确定往往需要思考下面一些问题:即研究的事件是否对于自我发现更有潜力?选择的事件对学生是否有较大的情感影响(心灵是否受到震撼)?关键事件再现了前人(或自己)过去成功的行为吗?事件呈现的是一个你不能确定怎样解决的问题?事件需要你做出困难的选择吗?事件使得你必须以一种感觉不熟悉的方式或是仍在思考的方式回答吗?事件暗示一个与道德或道义上相关的问题吗?研究的主题如果反映以上的一些内容,那么这样的案例研究在自我学习、内省和深层次理解方面就可能更加富有成效。

  高中数学教学案例研究的主题内容主要集中在三方面:(1)学科特点的体现:如数学思想方法的教学、数学思维品质的培养、本质属性的抽象、数学结论的推广等;(2)学生数学学习规律的'探究:如数学学习习惯、解决问题的思维方式、独立思考与合作学习等;(3)教师专业知识的提升:如数学板书与电子屏幕的展示对学生思维的影响、数学语言的训练对人们思维的影响、数学知识模式化教学的优劣等。

  2.案例研究的基本方法

  (1)课堂观察。观察方法是指研究者按照一定的目的和计划,在课堂教学活动的自然状态下,用自己的感官和辅助工具对研究对象进行观察研究的一种方法。它可以是教师自己对教学对象——学生,在课堂活动中的片断进行观察,也可以由其他教师来实施观察,这两种观察的目的都是为了掌握课堂教学中的第一手资料。课堂观察方法不限于用肉眼观察、耳听手记,还可利用各种工具如照相、录音、摄像等作为辅助观察的手段,以提高观察的效果。对观察的资料,可以逐字逐句整理成课堂教学实录、教学程序表、提问技巧水平检核表、提问行为类型频次表、课堂教学时间分配表等,以便以后继续分析案例提供翔实的原始材料。

  (2)访谈与调查。对一些课堂教学不能观察到的师生内心活动,如教师教学的目的、教学程序的意图、教学手段的运用以及教学达标的成效等一些需要进一步了解的问题,可以通过与执教教师的交谈以及和学生的座谈,以丰富和充实课堂教学观察的材料;对学生在课堂教学活动中回答问题的心理状态、解题思路等问题,也可以在课后做一些问卷调查;对学生达标的成度、效度,也可以作一些测试调查。从这些访谈、调查的材料中,再分析课堂教学的现象,不难发现造成各种课堂现象与教师教学行为之间的因果关系,然后再具体寻找在哪个教学环节中出现问题,从中提炼出解决问题的对策。

  (3)文献分析。文献分析是通过查阅文献资料,从过去和现在的有关研究成果中受到启发,从中找到课堂教学现象的理论依据,从而增强案例分析的说服力。当然,对广大第一线教师而言,这里所运用的文献分析方法,并不是为了论证新教育理论,也不是去归纳教育的宏观现象,而是通过有关教育理论文献的查阅,去进一步解读课堂教学的活动,挖掘案例中的教育思想。如在数学教学中,我们常常通过学生的动手操作来获得有关的数学概念、法则与公式,那么,为什么要这样做呢?就可以带着问题,查阅、分析有关文献资料,从学习中提高研究者自身的理论水平。

  (二)案例研究报告的撰写

  1.常见的案例报告格式

  撰写教学案例,结构可以灵活多样,并非要千篇一律、一个模式,而是可以有不同的表现形式,如“案例背景——案例描述——案例分析”、“案例过程——案例反思”、“课例——问题——分析”、“主题与背景——情景描述——问题讨论——诠释与研究”等。当前,国内外课堂教学案例编写的格式有多种多样。但不管何种编写格式,它们都有两个共同的特点:一是对案例的客观描述;二是对案例中所述问题、关键教学事件等的分析。

  下面介绍两种常用的案例编写的格式:

  (1)“描述+分析”式

  此格式的特点是将整个案例分为两大部分,前半部分主要为描述课堂教学活动的情景,后半部分主要针对情景中的一个问题进行理论分析并获得结论。案例的描述一般是把课堂教学活动中的某一片断像讲故事一样原原本本地、具体生动地描绘出来。描述的形式可以是一串问答式的课堂对话,也可以概括式地叙述,主要是提供一个或一连串课堂教学疑难的问题,并把教育理论、教育思想隐藏在描述之中。案例的分析部分是针对描述的情景发表个人或多人的感受,同时加以理论的分析与说明。分析方法可以是对描述中提出的一个问题,从几个方面加以分析:也可以是对描述中的几个问题,集中从一个方面加以分析。分析的目的是要从描述的情景中提炼问题的本质,讲述理论的解释,明确正确的方法,最终获得对关键教学事件的正确把握。

  (2)“背景+描述+问题+诠释”式

  此格式是一种要求比较高的编写格式,而且,它在实际教学中的作用也更大。通常它将整个案例分为四个部分:

  A.主题与背景

  主题是关键教学事件中所反映的案例主要观点,也是整篇案例的核心思想。背景主要叙述案例发生的地点、时间、人物的一些基本情况。当然,这部分的内容不宜很长,只需提纲挈领叙述清楚即可。

  B.情景描述

  与“描述+分析”式中的描述相同,主要突出主题所反映的课堂教学活动。

  C.问题讨论

  这是根据主题要求与情景描述,进行的分析、归纳、总结与提炼,包括学科知识的要点、教学法和情景特点以及案例的说明与注意事项。这部分内容主要是为案例教学服务的,目的是提高教师的认识水平与学生主动学习的能力。不同的教学观念,不同的教学手段,所提出的问题也不同。对案例中所提出的主题以及情景描述中提出的问题阐述自己的见解。

  D.诠释与研究

  这部分主要是用教育理论对案例情景作多角度的解读。它包括对课堂教学行为的技术资料、课堂教学实录以及教学活动背后的故事等作理论上的分析。例如,在课堂教学中,我们常看到这样的现象,课堂教学的效果高于预期的目标,反之教师期望的目标学生没有达到或有所偏离,教学内容呈现的先后与学生理解的程度、教学方法运用与学生内在动机的激发等环节存在着矛盾,这些事件的背后,必然隐含着丰富的教育思想。所以,通过诠释,挖掘这些事件背后的内在思想,揭示其教育规律就显得十分的必要。

  2.案例报告撰写的关键

  (1)掌握四个原则。要写好教学案例,除了平时多积累素材,学习他人的案例作品以提高写作技巧外,还应把握以下四点:

  A.主题性原则:要有捕捉关键教学事件的意识,以此确定案例研究的主题。为此要注意了解新的课程改革的动向、把握适合时代要求的数学教育方式、明确学生数学学习的难点和重点,寻找数学教师专业发展的途径与规律。报告围绕主题进行情景描述和获得解决问题的策略。这种描述不是简单的教学活动实录,要反映事件发生的过程,重点描述反映关键教学事件的变化和戏剧化的情境,犹如记叙文写作,突出主题,详写重点,雕刻高潮。

  案例鲜明的主题通常关系到教学的核心理念、常见问题、处理方法等等,可以说,主题就是案例的灵魂。而主题的最佳表现形式就是文题直接体现主题。因此,设计主题就要有新意、有时代感,通俗地说就是与众不同,要有独特见解、独家发现。来源于实践的教学案例并非都有同等价值,关键要看撰写者对实践的发展与理论的升华程度,包括对题目的推敲。如有的教学案例重点描述了有戏剧性的情节,用了“细节决定成败”的题目,给人耳目一新,一下子揪住了读者的心。再如,一些有创意的题目《“导之有方”方能“导之有效”》、《跳出数学教数学》、《在数学的疑难处悟成长》、《捕捉资源因势利导》等等,让人一看题目就有阅读的欲望。实践证明,在写作案例时,选择有感悟、有新意的内容,在明确主题,恰当拟题后再动笔,才能写出高质量的案例。

  B.理论性原则:解决问题的策略中应当蕴含一定的教育基本原理和教育思想。实际是将自己对教育理念以及教育基本原理的理解渗透于描述的字里行间,比如学生做了什么,参与程度,投入程度如何,教师如何引导点拨,师生心理、行为变化情况等,无不体现教师的教学思想和教育基本原理。

  C.叙事性原则:案例报告的书写方式是叙事式,它不同于论述式。叙事方式必须以课堂教学生动的事实为主要情节,可以夹叙夹议,也可以选择情景片段,可以是一节课中的情景,也可以是围绕一个主题的几节课的情景片段。

  D.学科性原则:数学案例报告一定要体现学科的特征,要有较深刻的理性思考,要反映数学的基本思想与方法,要符合课程标准,满足教材内容的呈现方法,积极培养良好的思维习惯。就是撰写者的教育思想和教育理念在教学实践中具体体现。

  (2)用好四种表述。教学案例的表述方法很多,可以归纳为以下四种方法:

  A.故事式陈述法:就是教学全程或某一精彩教学片段实录,包括教师和学生的一言一行。陈述时,根据操作程序作一点“简评”,最后作“总评”。

  B.以案说理:对教学过程进行陈述时,舍去与文题不相关或不重要的部分,并强化与主题相关的重要情节,尤其是引发高潮的关键行为,然后有较长篇幅的理性思考。

  C.图表展示法:用图表进行统计的形式体现撰写者的教育思想,给人以一目了然的感觉,帮助读者迅速了解撰写者的写作意图,是常用的一种案例撰写方法。比如,描述学生的参与人数,投入程度,解决问题的质量等多个问题,都可以在一张或数张图表上用百分比或个(次)数进行统计。在每一张图表后,应有一段“分析”或“结论”,将撰写者的教学理念进行理性阐述,亦可在图表展示后,总的提出自己对案例的分析和建议。

  D.分析讨论法:在撰写时,应汲取分析讨论中最精彩的部分做深入、细致的全面记录,最后撰写者还必须对讨论情况做一分析,或提出一些值得今后进一步思考的问题。

  3.优秀案例的特征

  (1)时代性:一个好的案例描述的是现实生活场景——案例的叙述要把事件置于一个时空框架之中,应该以关注今天所面临的疑难问题为着眼点,至少应该是近年发生的事情,展示的整个事实材料应该与整个时代及教学背景相照应,这样的案例读者更愿意接触。一个好的案例可以使读者有身临其境的感觉,并对案例所涉及的人产生移情作用。

  (2)真实性:一个好的案例应该包括从案例所反映的对象那里引述的材料——案例写作必须持一种客观的态度,因此可引述一些口头的或书面的、正式的或非正式的材料,如对话、笔记、信函等,以增强案例的真实感和可读性。重要的事实性材料应注明资料来源。

  (3)适用性:一个好的案例需要针对面临的疑难问题提出解决办法——案例不能只是提出问题,它必须提出解决问题的主要思路、具体措施,并包含着解决问题的详细过程,这应该是案例写作的重点。如果一个问题可以提出多种解决办法的话,那么最为适宜的方案,就应该是与特定的背景材料相关最密切的那一个。如果有包治百病、普遍适用的解决问题的办法,那么案例这种形式就不必要存在了。

  (4)反思性:一个好的案例需要有对已经做出的解决问题的决策的评价——评价是为了给新的决策提供参考点。可在案例的开头或结尾写下案例作者对自己解决问题策略的评论,以点明案例的基本论点及其价值。

  三、案例研究过程中需注意的问题

  1.选材面过窄。从内容上看,多数案例是关于课堂教学甚至局限于一节课的研究,往往不能说明问题,或者在一节课中,也只会从简单的对话分析问题,做不到全方位、多角度。这说明教师对教学情境的丰富性、复杂性和联系性认识不够。

  2.缺乏典型性。有的案例对教学实践没有挖掘与反思,随意摘取一些教学片段泛泛而谈、人云亦云,没有实用价值。不能够通过对某一事件现象的分析、处理、诠释,达到举一反三的效果,这样的案例对他人没什么借鉴作用。

  3.主题不明确。主要体现为:

  (1)主题涣散。有的案例象记流水帐,没有根据需要进行恰当的取舍,看不出作者要反映、探讨什么问题,缺乏指导性、创新性和参考性。

  (2)定题过于随意。有的案例直接用案例研究依据的文题为题目,如《“三角函数”教学案例》、《“抛物线”教学案例》等,题目不鲜明、不形象,影响读者的选读和案例的传播。

  4.结构不合理。案例作为一种文体,有它自己的写作结构,只有优化案例的结构,才能增强案例的可读性和指导性。如写成一般的教学设计,一般包括“备课思路、教学目标、教学重点、教学方法、课前准备、教学内容、教学过程”等内容;写成教学实录,把一堂课从头到尾详尽地记录下来,再写上作者的看法;重记录轻分析,过程描述多,评析少等等。没有创新,平淡无趣,看不出案例研究和反映的问题。

  5.描述与分析脱节。有的案例描述与分析矛盾,让人不知所云;有时反映的是一种观点,分析阐明的是另一种观点,虽然不矛盾,但联系不紧密;有的分析中热衷于抄录教育理论的一些条条,脱离案例描述的事件而空谈理论,显得空泛无物。

【高中数学教案】相关文章:

高中数学教案05-20

高中数学教案范文06-29

高中数学教案直线的方程12-28

高中数学教案15篇08-31

高中数学教案范例[15篇]06-19

高中数学教案(锦集15篇)10-26

小学数学教案06-14

小学数学教案【经典】08-01

小学数学教案[精选]08-04