反比例教案
作为一名人民教师,就有可能用到教案,教案是保证教学取得成功、提高教学质量的基本条件。那么你有了解过教案吗?下面是小编收集整理的反比例教案,希望能够帮助到大家。
反比例教案1
教学内容:
P47~48,例7、正、反比例的比较。
教学目的:
进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的'变化规律,能正确运用。
教学过程:
一、复习
判断下面两种理成不成比例,成什么比例,为什么?
(1)单价一定,数量和总价。
(2)路程一定,速度和时间。
(3)正方形的边长和它的面积。
(4)工作时间一定,工作效率和工作总量。
二、新授。
1、揭示课题
2、学习例7
(1)认识:“千米/时”的读法意义。
(2)出示书中的问题要求学生逐一回答。
(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的关系式?
(4)填空:用下面的形式分别表示两个表的内容。
当()一定时,()和()成()比例关系。
还有什么样的依存关系?
(5)教师作评讲并。
(6)用图表示例7中的两种量的关系。
指导学生描点、连线
观察:在表里路程和时间成什么比例?表示正比例关系的是一条什么线?A点表示什么?B点呢?
在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?
用同样的方法观察右表。
3、正、反比例的特点(异同点)
由学生比、说
三、巩固练习
1、练一练第1、2题
2、P49第1题。
四、课堂:
正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?
五、作业
P49第2题(1)(4)(5)(6)(9)
六、课后作业
1、P49第2题(2)(3)(7)(8)(10)
2、收集生活中正、反比例关系的量并分析。
反比例教案2
教学内容:教材第56页复习第4~l0题。
教学要求:
1.使学生加深认识正比例关系和反比例关系的意义,进一步掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。
2.使学生进一步掌握正、反比例应用题的解题思路和解题方法,提高解答正、反比例应用题的能力。
教学重点:加深认识正比例关系和反比例关系的意义。
教学难点:提高解答正、反比例应用题的能力。
教学过程():
一、揭示课题
在“比例”这一单元里,除了认识了比例的意义和性质外,还学习了成正、反比例量的有关知识。这节课,我们复习正、反比例。(板书课题)通过复习,一要加深对成正比例关系和成反比例关系量的认识,提高两种相关联量成正比例还是反比例关系的判断能力;二要进一步认识正、反比例的应用题,加深理解正、反比例应用题的`解题思路和方法,提高用比例知识解答应用题的能力。
二、复习正、反比例的意义
1.做复习第4题。
让学生看第4题,思考各成什么比例。指名学生口答,说明理由。
2.整理正、反比例的意义。
提问:刚才是根据正、反比例的意义判断的。现在,谁来说一说正、反比例的意义各是什么?
根据正比例和反比例的意义,正比例和反比例有什么相同和不同的地方?(板书正比例和反比例的相同点和不同点)判断正、反比例的关键是什么?
3.做复习第5题。
小黑板出示,指名学生口答,并说明理由。说明:根据实际问题里相关联量所成的正比例或反比例关系,可以用比例知识解答相应的应用题。
三、复习正、反比例应用题
1.整理解题思路。
(1)做复习第6题。
让学生读题,思考各成什么比例的应用题。指名学生说明各是什么应用题,为什么。指名两人板演,其余学生做在练习本上。集体订正,让学生说明根据什么列式的。
(2)提问:解答正、反比例应用题要怎样想?在解题方法上有什么不同的地方?
2.综合练习。
(1)做复习第8题。
让学生读题。提问:“药粉和水的比是1:500”你是怎样想的?(引导学生看出药粉和水的份数以及1:500表示比值一定等)这两道题成什么比例,为什么?让学生做在练习本上。指名学生口答等式,老师板书。再让学生说说怎样想的,根据什么列式的。追问:这道题还可以怎样做?(让学生思考按比的意义,应用分数知识或归一方法,口答算式)
(2)做复习第l0题。
要求学生思考有哪些方法解答第一个问题.指名一人板演,其余学生做在练习本上。要求列出不同解法的式子。集体订正,说说各是怎样想的。
四、课堂小结
这节课复习了哪些内容?谁来说一说这节课你掌握了哪些知识或方法?
五、课堂作业
复习第7、9题,第10题第二个问题。
反比例教案3
教学内容
教科书第14~16页的例4~例6以及相应的“做一做”,练习三的第4~7题.
教学目的
1.使学生通过具体问题认识成反比例的量,理解反比例的意义,能判断两种量是否成反比例关系,能找出生活中成反比例量的实例,并进行交流.
2.引导学生运用前面学习成正比例的量的学习方法学习反比例,从中感受学习方法的普遍适用性,培养学生的观察能力、推理能力、归纳能力和灵活运用知识的能力.
教具、学具准备
视频展示台.
教学过程
一、复习引入
1.怎样判断两种量是不是成正比例?
2.写出正比例关系式.
3.判断下面每题中的两种量是不是成正比例,并说明理由.
(1)每本练习本的张数一定,装订练习本纸的总张数和装订的本数.
(2)每天播种的公顷数一定,播种的总公顷数与播种的天数.
(3)工作总量一定,工作效率和工作时间.
4.回想一下,我们怎样学习成正比例的量.
引导学生归纳研究成正比例的量的学习步骤和方法是:先把两种量的变化情况列成表,再观察、讨论表中的变化规律,归纳变化规律,并用关系式表示.学生回答时,教师随学生的回答板书:
列表──观察──讨论──归纳──用关系式表示
二、导入新课
教师:这节课我们用同样的学习方法来研究比例的另外一个规律。
三、进行新课
1.教学例4.
教师:同学们刚才在解答准备题时,知道“工作总量一定,工作效率和工作时间”不成正比例关系,那么,工作效率和工作时间成不成比例?如果成比例,又成什么比例呢?为了弄清这些问题,我们可以用前面掌握的学习方法,先列个表来分析.
在视频展示台上出示例4:华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表:
工效(个) 10 20 30 40 50 60 …
时间(时) 60 30 20 15 12 10 …
教师:请同学们观察这个表,先独立思考后再讨论、交流、回答以下问题:(在视频展示台上展示.)
(1)表中有哪两种量?
(2)这两种量是怎样变化的?
(3)还可以从表中发现哪些规律?
学生讨论后,先抽问第1问和第2问.引导学生说出表中有工作效率和工作时间这两种量,这两种量的变化规律是,工作效率不断扩大,所需的工作时间反而不断地缩小.
教师:为什么会有这种变化规律呢?
引导学生结合生活实例,说因为工作总量一定,每小时做的工作越多,所用的.时间越少.例如要种8棵树,如果每小时种1棵,要8小时;每小时种4棵,只要2小时;如果每小时种8棵呢,只要1小时就够了.
教师:尽管一个量在扩大,另一个量反而缩小,但是每小时加工的个数是随所需的加工时间的变化而变化的,所以,每小时加工的个数与所需的加工时间仍然是相关联的两种量.你们还发现些什么规律吗?
学生任意说表中的规律.如每小时加工数从10扩大到40个,扩大4倍,所需的加工时间反而从60小时缩短到15小时,缩小了4倍;每小时加工数从60个缩小到30个,缩小了2倍,所需的加工时间反而从10小时扩大到20小时,扩大了2倍.
教师:还能发现哪些规律呢?比如说用每竖列的两个数相乘,看看它们的乘积是否相等,想想这个乘积表示什么?
引导学生找出每竖列的两个数的乘积相等的规律.如:
10×60=600,20×30=600,40×15=600,…
这个600实际上就是这批零件的总数.
教师:能写出关系式吗?
引导学生写出:每小时加工数×加工时间=零件总数(一定)
2.教学例5.
教师:再来研究一个问题.
在视频展示台上出示例5:用600张纸装订成同样的练习本,每本的张数和装订的本数有什么关系呢?请同学们先填写下表:
每本的张数 15 20 25 30 40 60 …
装订的本数 40 …
教师:同学们先填写好表中的数据后,再用前面的分析方法,独立分析表中的数量关系,然后同桌进行交流.
学生分析后指导学生归纳:
(1)表中每本的张数和装订的本数是相关联的两种量,装订的本数随着每本的张数的变化而变化;
(2)每本的张数扩大,装订的本数反而缩小;每本的张数缩小,装订的本数反而扩大;
(3)它们之间的关系可以写成:每本的张数×装订的本数=纸的总张数(一定).
教师:我们上面研究了两个问题,下面我们一起来归纳这两个问题的一些共同特点.
引导学生归纳出这两个问题中都有两种相关联的量,一种量扩大,另一种量反而缩小,这两种量中相对应的两个数的积一定.
教师:凡是符合以上规律的两种量,我们就把它叫做成反比例的量.(板书课题)它们之间的关系就是反比例关系.和正比例一样,成反比例的量也可以用式子来表示.如果用x和y表示两种相关联的量,用k表示它们的乘积(一定),怎样用式子来表示反比例的关系式呢?
引导学生归纳出:x×y=k(一定).
教师:请同学们相互说一说生活中还有哪些是成反比例的量?
学生先相互说,然后再说给全班同学听.
3.教学例6.
教师:请同学们用上面所学的知识判断一下,在播种中如果播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?为什么?
学生先独立分析,然后再交流讨论,最后抽学生汇报.引导学生分析出每天播种的公顷数和要用的天数是两种相关联的量,它们与总公顷数有“每天播种的公顷数×天数=总公顷数”的关系,由于总公顷数一定,所以每天播种的公顷数和要用的天数成反比例.
指导学生完成第16页“做一做”.
四、巩固练习
指导学生完成练习三第4~7题.
五、课堂小结
教师:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?
学生小结后教师再对全课知识进行归纳,学有余力的学生,可以在教师的指导下讨论完成练习三的第8*题.
板书设计
成反比例的量学习的基本步骤和方法:列表──观察──讨论──归纳──用关系式表示. 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.
X×Y=K(一定)
例4: 例5:每小时加工数×加工时间=零件
每本的张数×装订的本数=纸的 总数(一定) 总张数(一定)
反比例教案4
三维目标
一、知识与技能
1.能灵活列反比例函数表达式解决一些实际问题.
2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.
二、过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.
2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
三、情感态度与价值观
1.积极参与交流,并积极发表意见.
2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.
教学重点
掌握从物理问题中建构反比例函数模型.
教学难点
从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.
教具准备
多媒体课件.
教学过程
一、创设问题情境,引入新课
活动1
问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.
在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.
(1)求I与R之间的函数关系式;
(2)当电流I=0.5时,求电阻R的值.
设计意图:
运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.
师生行为:
可由学生独立思考,领会反比例函数在物理学中的综合应用.
教师应给“学困生”一点物理学知识的引导.
师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值.
生:(1)解:设I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 当I=0.5时,R=10I=100.5 =20(欧姆).
师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?
生:这是古希腊科学家阿基米德的名言.
师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;
阻力×阻力臂=动力×动力臂(如下图)
下面我们就来看一例子.
二、讲授新课
活动2
小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.
(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?
(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?
设计意图:
物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.
师生行为:
先由学生根据“杠杆定律”解决上述问题.
教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.
教师在此活动中应重点关注:
①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;
②学生能否面对困难,认真思考,寻找解题的途径;
③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.
师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.
生:解:(1)根据“杠杆定律” 有
Fl=1200×0.5.得F =600l
当l=1.5时,F=6001.5 =400.
因此,撬动石头至少需要400牛顿的力.
(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有
Fl=600,
l=600F .
当F=400×12 =200时,
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.
生:也可用不等式来解,如下:
Fl=600,F=600l .
而F≤400×12 =200时.
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.
生:还可由函数图象,利用反比例函数的性质求出.
师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:
用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?
生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)
根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力.
师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.
活动3
问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?
设计意图:
在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.
师生行为:
由学生先独立思考,然后小组内讨论完成.
教师应给予“学困生”以一定的帮助.
生:解:(1)∵y与x -0.4成反比例,
∴设y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y与x之间的函数关系为y=15x-2
(2)根据题意,本年度电力部门的纯收入为
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)
答:本年度的纯收人为0.6亿元,
师生共析:
(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;
(2)纯收入=总收入-总成本.
三、巩固提高
活动4
一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值.
设计意图:
进一步体现物理和反比例函数的关系.
师生行为
由学生独立完成,教师讲评.
师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系.
生:V和ρ的反比例函数关系为:V=990ρ .
生:当ρ=1.1kg/m3根据V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3.
四、课时小结
活动5
你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得.
设计意图:
这种形式的'小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.
师生行为:
学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流.
教师组织学生小结.
反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.
板书设计
17.2 实际问题与反比例函数(三)
1.
2.用反比例函数的知识解释:在我们使 用撬棍时,为什么动 力臂越长越省力?
设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理,
Fl=k 即F=kl (k>0且k为常数).
由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小.
活动与探究
学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.
(1)绿化带面积是多少?你能写出这一函数表达式吗?
(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?
x(m) 10 20 30 40
y(m)
过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.
结果:(1)绿化带面积为10×40=400(m2)
设该反比例函数的表达式为y=kx ,
∵图象经过点A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函数表达式为y=400x .
(2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403 ,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。
反比例教案5
教学目标
1.结合丰富的实例,认识反比例。
2.能根据反比例的意义,判断两个相关联的量是不是成反比例。
3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。
教学重点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学难点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程
一、复习
1.什么是正比例的量?
2.判断下面各题中的两种量是否成正比例?为什么?
(1)工作效率一定,工作时间和工作总量。
(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。
(3)正方形的边长和它的面积。
二、导入新课
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。
三、进行新课
1.情境(一)
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
2.情境(二)
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。
同桌交流,用自己的语言表达。
写出关系式:速度时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定。
3.情境(三)
把杯数和每杯果汁量的.表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。
写出关系式:每杯果汁量杯数=果汗总量(一定)
以上两个情境中有什么共同点?
4.反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
反比例教案6
教学内容:教科书94页“练习与实践”的第7~10题。
教学目标:
1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。
2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。
教学重点:
使学生加深认识比例的意义和基本性质。
教学难点:
能判断两个比能能不能组成比例,能比较熟练地解比例。
教学准备:多媒体
教学过程:
一、与反思
今天我们一起来复习正比例和反比例相关知识。
怎样判断两种量是否成正比例或反比例关系?
学生交流
二、练习与实践
1.完成“练习与实践”第7题
让学生先独立完成,再点评。
2.完成“练习与实践”第8题
引导学生列举几组对应的数值
再分析每组中两个数的关系,再判断。
3.完成“练习与实践”第9题
第1小题让学生根据图中标出的`点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)
第2小题让学生在教材的方格图上描点、连线,
引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。
体会数形结合在解决问题方面的价值。
4.完成“练习与实践”第10题
什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)
怎样求图上距离?怎样求实际距离
学生量出的图上距离。
利用的线段比例尺,求出相应的实际距离
三、
通过学习你有什么收获?
学生交流
四、作业
完成《练习与测试》相关作业。
板书设计
关于正比例和反比例的复习
反比例教案7
教学内容:
《反比例的意义》是六年制小学数学(北师版)第十二册第二单元中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
教学目标:
1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。进一步培养学生观察、学析、综合和概括等能力。初步渗透函数思想。
2、过程与方法:为学生营造一个经历知识产生过程的情境。
3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。
教学重点:理解反比例的意义。
教学难点:两种相关联的量的变化规律。
教学准备:学生准备:复习正比例关系,预习本节内容。
教师准备:投影片3张,每张有例题一个。
教学过程设计:
一、谈话引入,激发兴趣。
1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。下面请回想一下,我们是怎样学习成正比例的量的?这节课我们用同样的学习方法来研究比例的另外一个规律。
2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。
二、创设情景引新:
(出示:十二个小方块)
师:同学们,这十二个小方块有几种排法?
(生答后,老师板书下表的排列过程)
每行个数1234612
行数1264321
师:请你观察上表中每行个数与行数成正比例关系吗?为什么?
生:……
师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。
(出示课题:反比例的意义)
三、合作自学探知
1、学习例4。
(1)出示例4。
师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。
A、表中有哪两种量?
B、怎样随着每小时加工的数量变化?
c、每两个相对应的数的乘积各是多少?
学生讨论……
生反馈:……
师:能不能举出三个例子
生:1020=6002030=6003020=600……
师:这里的600是什么数量?你能说出这里的数量关系式吗?
生:……
[板书出示:每小时加工数加工时间=零件总数(一定)]
2、自学例5:
(1)出示例5:
师:先请同学们按要求在书上填空,并说说是怎样算的?根据什么?
生:……
师:模仿例4的方法,提出三个问题自己学习例5(出示三个问题)
生:……
3、讨论准备题:
(1)请你根据例4的方法,四人小组内说一说。
(2)请你举例说明表中每行个数与行数是什么关系?为什么?
四、比较感知特征
综合例4、例5、准备题的共同点师:比较一下例4、例5和准备题,请同学们在小组中讨论一下,互相说说这三个题目有什么共同的特征?
生:……
五、引导概括意义
1、概括反比例意义。
学生在说相同点时老师边引导边说明。当学生说出三个特征后,教师板书这三个特征。
师:请同学们根据我们上节课学的正比例的意义猜测一下,符合三个特征的二个量叫做成什么量?相互这间成什么关系?
生:……
师:请阅读课本第十六页,同桌互相说说怎样的两个量成反比例关系。
学生互相练习……
师:哪位同学来告诉大家,两种量如果成反比例必须符合哪三个条件?
生:……
师:例4、例5和准备题中的两种量成不成反比例?为什么?
生:……(学生回答后,老师及时纠正)
师:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?
生:……[板书出示y=k(一定)]
2、教学例6。
(1)课件出示例6。
(学生读题、思考)
师:怎样判断两种量成不成反比例?
师:哪位同学说说,每天播种的公顷数和要用的天数是不是成反比例?为什么?
生:因为每天播种的公顷数要用的天数=播种的总公顷数(一定),所以每天播种的公顷数和要用的天数是成反比例的'量。
六、小结:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?
[案例分析]:
通过联系生活实际,学习成反比例的量,体会数学与生活的紧密联系。不对研究的过程做详细的引导和说明,只提供研究的素材和数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程,获得学习成功的体验。通过引导学生观察、分析、比较、归纳,形成良好的思维习惯和思维品质。同时加深学生对数量关系的认识,渗透函数思想,为中学的数学学习做好知识准备。学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
反比例教案8
教学目标:
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
教学重点:
引导学生理解反比例的意义。
教学难点:
利用反比例的意义,正确判断两种量是否成反比例。
教学过程:
一、复习铺垫
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
二、自主探究
(一)教学例1
1.出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?
教师板书:零件总数
每小时加工数×加工时间=零件总数
3.小结
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
(二)教学例2
1.出示例2,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的'两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1.请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
3.如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?
教师板书:xy=k(一定)
三、课堂小结
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
四、课堂练习
完成教材43页做一做
五、课后作业
练习七6、7、8、9题。
六、板书设计
成反比例的量xy=k(一定)
每小时加工数×加工时间=零件总数(一定)
每本页数×装订本数=纸的总页数(一定)
反比例教案9
学习目标
结合丰富的实例,认识反比例。能根据反比例的意义,判断两个相关联的量是不是成反比例。利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。
学习重点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
过程与方法
教师活动
一、复习
1、什么是正比例的量?
2、判断下面各题中的两种量是否成正比例?为什么?
(1)工作效率一定,工作时间和工作总量。
(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。
(3)正方形的边长和它的面积。
二、导入新课
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的.变化规律。
三、进行新课
情境(一)
认识加法表中和是12的直线及乘法表中积是12的曲线。
情境(二)
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考
同桌交流,用自己的语言表达写出关系式:速度×时间=路程(一定)观察思考并用自己的语言描述变化关系乘积(路程)一定
情境(三)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?化关系
写出关系式:每杯果汁量×杯数=果汗总量(一定)
5、以上两个情境中有什么共同点?
反比例意义
引导小结:
活动四:想一想
P26页第1、2、3题
关系式:X×Y=K(一定)
课后反思:
学生活动
学生自由回答,相互补充。
学生观察,弄清题意。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
独立观察,思考同桌交流,用自己的语言表达写出关系式:速度×时间=路程(一定)观察思考并用自己的语言描述变化关系乘积(路程)一定。
你有什么发现?用自己的语言描述变
都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这
两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
板书设计
教学反思
反比例教案10
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:
认识反比例关系的意义。
教学难点:
掌握成反比例量的变化规律及其特征。
教学过程:
一、铺垫孕伏:
1.正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)
二、自主探究:
1.教学例1。
出示例1某运输公司要运一批300吨的货物。让学生计算并完成填表任务。
每天运的数量(吨) 10 20 30 40 50
所需的天数 30 15 10 7.5
在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的.方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答 讨论结果得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是300。提问:这里的300是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)
2.教学例2
出示例2
请同学们按照刚才学习例1的方法,自己学习例2,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积不变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?
3.概括反比例的意义。
(1)综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。
4.具体认识。
(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例2里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3) 判断。
现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,那它们就是成反比例的量,相互之间的关系就是反比例关系。
反比例教案11
教学设计思路
由对现实问题的讨论抽象出反比例函数的概念,通过对问题的解决进一步明确:1.反比例函数的意义;2.反比例函数的概念;3.反比例函数的一般形式。
教学目标
知识与技能
1.从现实情境和已有的知识、经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,表述反比例函数的概念。
过程与方法
1.经历对两个变量之间相依关系的讨论,培养辩证唯物主义观点。
2.经历抽象反比例函数概念的过程,发展抽象思维能力,提高数学化意识。
情感态度与价值观
1.认识到数学知识是有联系的,逐步感受数学内容的系统性;
2.通过分组讨论,培养合作交流意识和探索精神。
教学重点和难点
理解和领会反比例函数的概念。
教学难点
领悟反比例函数的概念。
教学方法
启发引导、分组讨论
课时安排
1课时
教学媒体
课件
教学过程设计
复习引入
1.什么叫一次函数?一次函数的'一般形式是怎样的?什么叫正比例函数?它与算术中的正比例有怎样的关系?
2.在上一学段,我们研究了现实生活中成反比例的两个量
反比例教案12
教学目标:
1、借助正比例的意义理解反比例的意义,能根据反比例的意义正确判断两种量是否成反比例。
2、在小组合作学习过程中,掌握合作学习技能,体验合作学习的快乐。
教学过程:
一、创设情境,明确问题
同学们,昨天老师去幼儿园接小朋友,看见幼儿园的老师正在给小朋友们分饼干,想知道他们是怎么分的吗?我们一起去看一看:
人数(人) | 1 | 2 | 3 | 4 | 5 |
块数(块) | 3 | 6 | 9 | 12 | 15 |
每人分的块数(块) | 3 | 3 | 3 | 3 | 3 |
仔细观察,从这个表中,你知道了什么?你知道表中的哪两种量成正比例吗?(说明理由)
说一说成正比例的两个量的变化规律。
师小明的妈妈要去银行换一些零钱,请你帮忙算一算,各换多少张:
面值(元) | 1 | 2 | 5 | 10 | 20 |
张数(张) | 20 | ||||
总钱数(元) |
二、探索新知,寻求规律
1、独立思考:出示表格,让学生自己观察,提出问题并解决问题。
2、小组合作,交流探讨问题。
要求:认真听取别人的意见,详细说明自己的观点,如果有不懂的地方要虚心求助,最重要的是要控制好自己的言行,小组长要协调好本组的合作过程。
3、汇报交流,发现规律。
4、教师小结,明确概念,呈现课题。
5、在理解概念的基础上增加记忆。
三、理解应用,巩固新知。
1、给车棚的地面铺上水泥砖,每块水泥砖的面积与所需数量如下:
没块水泥砖的面积(平方厘米) | 500 | 400 | 300 |
数量(块) | 600 | 750 | 1000 |
每块水泥砖的面积与所需数量是否成反比例?为什么?
2、下表中x和y两个量成反比例,请把表格填写完整。
x | 2 | 40 | |||
y | 5 | 0.1 |
3、判断下面每题中的两种量是否成反比例,并说明理由。
(1)全班的人数一定,每组的人数和组数。
(2)圆柱的体积一定,圆柱的'底面积和高。
(3)书的总页数一定,已经看的页数和未看的页数。
(4)圆柱的侧面积一定,它的底面周长和高。
(5)、六(1)班学生的出席人数与缺席人数。
4、下面各题中的两种量是不是成比例?如果成比 例,成什么比例?
(1)、订阅《小学生天地》的份数和总钱数。
(2)、小新跳高的高度与他的身高。
(3)、平行四边形的面积一定,底和高。
(4)、正方行的边长与它的周长。
(5)、三角形的面积一定,底和高。
5、生活中还有哪些成反比例关系的量?
四、课堂总结,拓展延伸
1、这节课学会了什么知识?反比例的意义是什么?
2、这节课你与小组同学合作的怎么样?以后应该怎么做?
反比例教案13
教学内容:
教材第106、107页例1,例2。
教学要求:
1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。
2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。
教学重点:
认识正、反比例应用题的特点。
教学难点:
掌握用比例知识解答应用题的解题思路。
教学过程:
一、铺垫孕伏:
1.判断下面的量各成什么比例。
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
让学生先分别说出数量关系式,再判断。
2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。
指名学生口答,老师板书。
3.引入新课。
从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)
二、自主探究:
1.教学例1。
(1)出示例1,让学生读题。
提问:以前我们是怎样解答的?(板书算式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量?
(2)说明:这道题还可以用比例知识解答。
提问:题里再买几个同样的篮球说明什么一定?数量之间有怎样的关系式,两种相关联的量成什么比例关系?题里两次篮球个数与总价对应数值各是多少?这两次对应数值的什么相等?你能根据对应数值的比值相等,列出等式来解答吗?请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的?先求单一量的应用题现在用什么比例关系解答的?
(3)小结:
提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。
2.教学改编题。
出示改变的问题,让学生说一说题意。请同学们按照例1的.方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。
3.教学例2。
(1)出示例2,学生读题。
提问:以前我们是怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:效率时间=总量)这道题里哪个数量是不变的量?
(2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
(3)提问:按过去的方法是先求什么再解答的?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。
4.小结解题思路。
请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)
三、巩固练习
1.做练一练。
指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。
2.做练习十三第1题。
先自己判断,小组交流,再集体订正。
四、课堂小结
这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?
五、布置作业
完成练习十三第2~6题的解答。
反比例教案14
教学目标:
1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;
2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;
3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:感受反比例的变化,概括反比例的意义;
教学难点:正确判断两种相关联的量是否成反比例;
教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)
每次拿的支数
10
5
4
2
1
拿的次数
总支数
教学过程:
一、复习
1、什么叫做“成正比例的量”?
2、判断两种量是否成正比例关键是什么?
3、练习:课本表中的两种量是不是成正比例?为什么?
二、小组协作概括“成反比例的量”的意义
(一)活动一
师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。看哪个组完成的又快又好!
1、学生汇报观察记录单的.填写结果。
2、引导观察:在填、拿的过程中,你发现了什么?
3、师:你能根据表格,写出这三个量的关系式吗?
4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。
5、揭示反比例的意义(阅读课本,明确反比例关系)
6、如果用x、y表示两种相关联的量,用k表示积,反比例关系式怎样表示?
(二)活动二:(例3)
1、课件出示例3,指名读题,学生独立完成
2、总结归纳出正比例和反比例的相同点和不同点
三、强化练习发展提高
1判定两个量是否成反比例,主要看它们的()是否一定。
2全班人数一定,每组的人数和组数。
()和()是相关联的量。
每组的人数×组数=全班人数(一定)
所以()和()是成反比例的量。
3判断下面每题中的两种量是不是成反比例,并说明理由。
糖果的总数一定,每袋糖果的粒数和装的袋数。
煤的总量一定,每天的烧煤量和能够烧的天数。
生产电视机的总台数一定,每天生产的台数和所用的天数。
长方形的面积一定,它的长和宽。
4机动练习:
想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?
四、全课总结
1、你能不能结合日常生活举一些反比例的例子。
2、今天这节课,你有什么收获?还有什么遗憾?
反比例教案15
教学目标:
知识与技能:
1.结合丰富的实例,认识反比例。
2.能根据反比例的意义,判断两个相关联的量是不是反比例。
过程与方法:
通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。
情感态度价值观:
培养学生自主、合作学习、探索新知的能力,激发学习数学的热情。感受反比例关系在生活中的广泛应用。初步渗透函数思想。
教学重点:
认识反比例,根据反比例意义判断两个相关联的量是否成反比例。
教学难点:
认识反比例,根据反比例意义判断两个相关联的量是否成反比例。
教具准备:
电脑课件
教学过程:
一、复习引入
1、计算
2、判断下面各题中的两种量是否成正比例?为什么?
(1)文具盒的单价一定,买文具盒的个数和总价。
(2)一堆货物一定,运走的量和剩下的量。
(3)汽车行驶的速度一定,行驶的路程和时间。
3、说说什么是正比例。
师:大家对正比例知识理解掌握得非常好,接下来我们就该学习什么了?
二、出示学习目标
1.能根据反比例的意义,判断两个相关联的量是不是反比例。
2.通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。
3.培养学生探索研究的能力,感受反比例关系在生活中的广泛应用。
三、指导自学
师:给你们讲个小故事:
有一个贪婪的财主,拿了一匹上好的布料准备做一顶帽子,到了裁缝店,觉得这样好的布料做一顶帽子似乎浪费了,于是问裁缝:“这匹布可以做两顶帽子吗?”裁缝看了看财主一眼,说:“可以。”财主见他回答得那么爽快,心想,这裁缝肯定是从中占了些什么便宜,于是又问,“那做3顶帽子吗?”裁缝依然很爽快地说:“行!”这时,财主更加疑惑了,嘀咕着:“多好的一匹布啊,那我做4顶可以吗”“行!”裁缝仍然很快地回答。经过一翻的较量后,财主最后问:“那我想做10顶帽子可以吗?”裁缝迟疑了一会,然后打量着财主,慢慢的说:“可以的。”这时财主才放下心来,心想:这匹布料如果只做一顶帽子,那就便宜裁缝了。瞧!这不让我说到10顶了吧。我还真聪明!嘿嘿??
过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的帽子小得只能戴在手指头上了!
学习提示: 独立思考?
1、“为什么同一匹布,裁缝说做1顶帽子,2顶帽子,10顶都可以呢?”
2、故事中相关的数量关系式是什么?哪两个是变化的量,怎样变?另一个是什么量?有什么特点?
合作学习小组讨论上述的问题。看书合作学习
1、把25页例
2、例3的表格补充完整。
2、每个表格中有哪些变量?有不变的量吗?分别是什么?变化有什么规律?相关的数量关系式是什么?
3、三个数量关系式有相同点吗?是什么?你能把这种变化规律用一个含有字母的关系式来表示吗?
4、你知道什么是反比例吗?
四、学生自学
五、检查自学效果
让学生说说自学要求中的内容。
师归纳:两种相关联的'量,一种量随着另一种量的变化而变化,在变化过程中两种量的积一定,那么这两种量成反比例。
六、引导更正,指导运用
你们还找出类似这样关系的量来吗?”
学生:要走一段路,速度越慢(快),用的时间就越多(少)运一堆货物,每次运的越多(少),运的次数就越小(多)百米赛跑,路程100米不变,速度和时间是反比例; 排队做操,总人数不变,排队的行数和每行的人数是反比例; 长方体的体积一定,底面积和高是反比例。
七、当堂训练 基础练习
1、填空
两种 _____ 的量,一种量随着另一种量变化,如果这两种量中相对应的两个数的______,这两种量叫做成反比例的量,它们的关系叫做_______关系。
2、判断下面每题中的两种量是不是成反比例,并说明理由。
(1)煤的总量一定,每天的烧煤量和能够烧的天数。
(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
(3)生产电视机的总台数一定,每天生产的台数和所用的天数。
(4)圆柱体的体积一定,底面积和高。
(5)小林做10道数学题,已做的题和没有做的题。
(6)长方形的长一定,面积和宽。
(7)平行四边形面积一定,底和高。提高练习
1、一长方形的周长为20厘米,若长是9厘米,则宽是1厘米。请你填写下表,并判断这个长方形在周长不变的情况下,长和宽是否成反比例,并说明理由。长/cm
四、小结
通过这节课的学习,你有什么收获?
这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。板书:反比例
相关联,一个量变化,另一个量也随着变化积一定
xy=k(一定)
【反比例教案】相关文章:
数学反比例教案11-02
反比例的意义教案09-14
《反比例》教学反思05-23
《反比例》教学反思06-09
小学六年级反比例教案02-22
反比例函数教学反思04-11
反比例意义教学反思02-10
《反比例意义》教学反思12-10
《反比例的意义》教学反思10-09