二次函数教案15篇
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有助于顺利而有效地开展教学活动。我们应该怎么写教案呢?以下是小编收集整理的二次函数教案,仅供参考,大家一起来看看吧。
二次函数教案1
教学目标:
1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。
2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。
3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。
教学重点:二次函数y=ax2的图象的作法和性质
教学难点:建立二次函数表达式与图象之间的联系
教学方法:自主探索,数形结合
教学建议:
利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。
教学过程:
一 、认知准备:
1.正比例函数、一次函数、反比例函数的图象分别是什么?
2.画函数图象的方法和步骤是什么?(学生口答)
你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。
二 、 新授:
(一)动手实践:作二次函数 y=x2和y=-x2的图象
(同桌二人,南边作二次函数 y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)
(二)对照黑板图象 议一议:(先由学生独立思考,再小组交流)
1.你能描述该图象的形状吗?
2.该图象与x轴有公共点吗?如果有公共点坐标是什么?
3. 当x0时,随着x的增大,y如何变化?当x0时呢?
4.当x取什么值时,y值最小?最小值是什么?你是如何知道的'?
5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。
(三) 学生交流:
1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)
2.二次函数 y=x2 和y=-x2的图象有哪些相同点和不同点?
3.教师出示同一直角坐标系中的 两个函数y=x2 和y=-x2 图象,根据图象回答:
(1)二次函数 y=x2和y=-x2 的图象关于哪条直线对称?
(2)两个图象关于哪个点对称?
(3)由 y=x2 的图象如何得到 y=-x2 的图象?
(四) 动手做一做:
1.作出函数y=2 x2 和 y= -2 x2的图象
(同桌二人,南边作二次函数 y= -2 x2的图象,北边作二次函数y=2 x2的图象,两名学生黑板完成)
2.对照黑板图象,数形结合,研讨性质:
(1)你能说出二次函数y=2 x2具有哪些性质吗?
(2)你能说出二次函数 y= -2 x2具有哪些性质吗?
(3)你能发现二次函数y=a x2的图象有什么性质吗?
(学生分小组活动,交流各自的发现)
3.师生归纳总结二次函数y=a x2的图象及性质:
(1)二次函数y=a x2的图象是一条抛物线
(2)性质
a:开口方向:a0,抛物线开口向上,a〈 0,抛物线开口向下[
b:顶点坐标是(0,0)
c:对称轴是y轴
d:最值 :a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0
e:增减性:a0时,在对称轴的左侧(X0),y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(X0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。
4.应用:(1)说出二次函数y=1/3 x2 和 y= -5 x2 有哪些性质
(2)说出二次函数y=4 x2 和 y= -1/4 x2有哪些相同点和不同点?
三、小结:
通过本节课学习,你有哪些收获?(学生小结)
1.会画二次函数y=a x2的图象,知道它的图象是一条抛物线
2.知道二次函数y=a x2的性质:
a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下
b:顶点坐标是(0,0)
c:对称轴是y轴
d:最值 :a0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0
e:增减性:a0时,在对称轴的左侧(X0=,y随x的增大而减小,在对称轴的右侧(x0),y随x的增大而增大,a〈0时,在对称轴的左侧(X0),y随x的增大而增大,在对称轴的右侧(x0),y随x的增大而减小。
二次函数教案2
【教学目标】
1、知识与技能:
(1)体会函数与方程之间的联系,初步体会利用函数图象研究方程问题的方法;
(2)理解二次函数图象与x轴(横轴)交点的个数与一元二次方程的根的个数之间的关系,理解方程有两个不等的.实根、两个相等的实根和没有实根的函数图象特征; (3)理解一元二次方程的根就是二次函数与y=h(h是实数)图象交点的横坐标。 2、过程与方法:
(1)由一次函数与一元一次方程根的联系类比探求二次函数与一元二次方程之间的联系; (2)经历类比、观察、发现、归纳的探索过程,体会函数与方程相互转化的数学思想和数形结合的数学思想。 3、情感、态度与价值观:
培养学生类比与猜想、不完全归纳、认识到事物之间的联系与转化、体验探究的乐趣和学会用辨证的观点看问题的思维品质。
【重点与难点】
重点:经历“类比--观察--发现--归纳”而得出二次函数与一元二次方程的关系的探索过程。 难点:准确理解二次函数与一元二次方程的关系。
【教法与学法】
教法(=):命题课,采用“发现式学习”的方式,注重“最近发展区”,寻根问源,以旧知识为基础创设问题情境,引导学生经历“类比—猜想—观察—发现—归纳—应用”的探究过程。 学法:探究式学习。
【课前准备】
多媒体、PPT课件。
【教学过程】
附:板书设计:
二次函数教案3
一、教材分析
1、教材的地位及作用
函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。本节内容的教学,在函数的教学中有着承上启下的作用。它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。
2、教学目标
(1)掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。
(2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。
(3)让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
3、教学的重、难点
重点:二次函数的概念和解析式。
难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。
4、学情分析
①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。
②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与能力。
③初三学生程度参差不齐,两极分化已形成。
二、教法学法分析
1、教法(关键词:情境、探究、分层)基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法为主进行教学。让学生在开放的情境中,在教师的引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。
2、学法(关键词:类比、自主、合作)根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。在各个环节中引导学生类比迁移,对照学习。以自主探索为主,学会合作交流,在师生互动、生生互动中让每个学生动口,动手,动脑,培养学生学习的主动性和积极性,使学生由“学会”变“会学”和“乐学”。
3、教学手段
采用多媒体教学,直观呈现抛物线和谐、对称的美,激发学生的学习兴趣,参与热情,增大教学容量,提高教学效率。
三、教学过程
完整的数学学习过程是一个不断探索、发现、验证的过程,根据新课标要求,根据“以人为本,以学定教”的教学理念,结合学生实际,制订以下教学流程:
(一)、创设情境,温故引新
以提问的形式复习一元二次方程的`一般形式,一次函数,反比例函数的定义,然后让学生欣赏一组优美的有关抛物线的图案,创设情境:
(1)你们喜欢打篮球吗?
(2)你们知道:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?
从而引出课题《二次函数》,导入新课
(二)、合作学习,探索新知
为了更贴近生活,我先设计了两个和实际生活有关的练习题。鼓励学生积极发言,充分调动学生的主动性。然后出示课本上的两个问题,在这个环节中,我让学生在教师的引导下,先独立思考,再以小组为单位交流成果,以培养学生自主探索、合作探究的能力。四个解析式都列出来后。让学生通过观察与思考,这些解析式有什么共同特征,启发学生用自己的语言总结,从而得出二次函数的概念,并且提高了学生的语言表达能力。
学生在学习二次函数的概念时要求学生既要知道表示二次函数的解析式中字母的意义,还要能根据给出的函数解析式判断一个函数是不是二次函数
(三)、当堂训练,巩固提高
由于学生层次不一,练习的设计充分考虑到学生的个体差异,满足不同层次学生的学习需求,实现有“差异的”发展。让每一个学生都感受成功的喜悦。我设计了3道练习题,其难易程度逐步提高,第一道题面对所有的学生,学生可以根据二次函数的概念直接判断,但需要强调该化简的必须化简后才可以判断。第二道题让学生逆向思维,根据条件自己写二次函数,从而加深了对二次函数概念的理解。最后一道题综合性较强,可以提高他们的综合素质。
(四)、小结归纳,拓展转化
让学生用自己的语言谈谈自己的收获,可以将这一节的知识条理化,进一步掌握二次函数的概念。
(五)、布置作业,学以致用
作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。同时,选做题具有总结性,可引导学生研究二次函数,一次函数,正比例函数的联系.
二次函数教案4
本节课在二次函数y=ax2和y=ax2+c的图象的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先是从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性.
在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反思[
等探索活动,使学生达到对抛物线自身特点的认识和对二次函数性质的理解.并能利用它的性质解决问题.
2.4二次函数y=ax2+bx+c的图象(一)
教学目标
(一)教学知识点[
1.能够作出函数y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系.理解a,h,k对二次函数图象的影响.
2.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.
(二)能力训练要求
1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解.
2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力.
(三)情感与价值观要求
1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.
2.让学生学会与人合作,并能与他人交流思维的过程和结果.
教学重点
1.经历探索二次函数y=ax2+bx+c的图象的作法和性质的过程.
2.能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.
3.能够正确说出y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.
教学难点
能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系,理解a、h、k对二次函数图象的影响.
教学方法
探索比较总结法.
教具准备
投影片四张
第一张:(记作2.4.1 A)
第二张:(记作2.4.1 B)
第三张:(记作2.4.1 C)
第四张:(记作2.4.1 D)
教学过程
Ⅰ.创设问题情境、引入新课
[师]我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对称图形,对称轴都是y轴,有最大值或最小值.顶点都是原点.还知道y=ax2+c的图象是函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题.
Ⅱ.新课讲解
一、比较函数y=3x2与y=3(X-1)2的图象的性质.
投影片:(2.4 A)
(1)完成下表,并比较3x2和3(x-1)2的值,
它们之间有什么关系?
X -3 -2 -1 0 1 2 3 4
3x2
3(x-1)2
(2)在下图中作出二次函数y=3(x-1)2的图象.你是怎样作的?
(3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x值的增大而减小?
[师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结.
[生](1)第二行从左到右依次填:27.12,3,0,3, 12,27,48;第三行从左到右依次填48,27,12,3,0,3, 12,27.
(2)用描点法作出y=3(x-1)2的图象,如上图.
(3)二次函数)y=3(x-1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).
(4)当x1时,函数y=3(x-1)2的值随x值的增大而增大,x1时,y=3(x-1)2的值随x值的增大而减小.
[师]能否用移动的观点说明函数y=3x2与y=3(x-1)2的图象之间的关系呢?
[生]y=3(x-1)2的图象可以看成是函数)y=3x2的图象整体向右平移得到的.
[师]能像上节课那样比较它们图象的性质吗?
[生]相同点:
a.图象都中抛物线,且形状相同,开口方向相同.
b. 都是轴对称图形.
c.都有最小值,最小值都为0.
d.在对称轴左侧,y都随x的增大而减小.在对称轴右侧,y都随x的增大而增大.
不同点:
a.对称轴不同,y=3x2的对称轴是y轴y=3(x-1)2的对称轴是x=1.
b. 它们的位置不问.[来源:Www.zk5u.com]
c. 它们的顶点坐标不同. y=3x2的顶点坐标为(0,0),y=3(x-1)2的顶点坐标为(1,0),
联系:
把函数y=3x2的图象向右移动一个单位,则得到函数y=3(x-1)2的图像.
二、做一做
投影片:(2.4.1 B)
在同一直角坐标系中作出函数y=3(x-1)2和y=3(x-1)2+2的图象.并比较它们图象的性质.
[生]图象如下
它们的图象的性质比较如下:
相同点:
a.图象都是抛物线,且形状相同,开口方向相同.
b. 都足轴对称图形,对称轴都为x=1.
c. 在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.
不同点:
a.它们的顶点不同,最值也不同.y=3(x-1)2的顶点坐标为(1.0),最小值为0.y=3(x-1)2+2的顶点坐标为(1,2),最小值为2.
b. 它们的位置不同.
联系:
把函数y=3(x-1)2的图象向上平移2个单位,就得到了函数y=3(x-1)2+2的图象.
三、总结函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象之间的关系.
[师]通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗?
[生]可以.
二次函数y=3x2,y=3(x-1)2,y=3(x-1)2+2的图象都是抛物线.并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数y=3x2的图象向右平移1个单位,就得到函数y=3(x-1)2的图象;再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.
[师]大家还记得y=3x2与y=3x2-1的图象之间的关系吗?
[生]记得,把函数y=3x2向下平移1个平位,就得到函数y=3x2-1的图象.
[师]你能系统总结一下吗?
[生]将函数y=3x2的图象向下移动1个单位,就得到了函数y=3x2-1的图象,向上移动1个单位,就得到函数y=3x2+1的图象;将y=3x2的图象向右平移动1个单位,就得到函数y=3(x-1)2的图象:向左移动1个单位,就得到函数y=3(x+1)2的图象;由函数y=3x2向右平移1个单位、再向上平移2个单位,就得到函数y=3(x-1)2+2的图象.
[师]下面我们就一般形式来进行总结.
投影片:(2.4.1 C)
一般地,平移二次函数y=ax2的图象便可得到二次函数为y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的图象.
(1)将y=ax2的图象上下移动便可得到函数y=ax2+c的图象,当c0时,向上移动,当c0时,向下移动.
(2)将函数y=ax2的图象左右移动便可得到函数y=a(x-h)2的图象,当h0时,向右移动,当h0时,向左移动.
(3)将函数y=ax2的图象既上下移,又左右移,便可得到函数y=a(x-h)+k的图象.
因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k的值有关.
下面大家经过讨论之后,填写下表:
y=a(x-h)2+k 开口方向 对称轴 顶点坐标
a0
a0
四、议一议
投影片:(2,4.1 D)
(1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?
(3)对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?
[师]在不画图象的情况下,你能回答上面的问题吗?
[生](1)二次函数y=3(x+1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x+1)2的'图象的对称轴是直线x=-1,顶点坐标是(-1,0).只要将y=3x2的图象向左平移1个单位,就可以得到y=3(x+1)2的图象.
(2)二次函数y=-3(x-2)2+4的图象与y=-3x2的图象形状相同,只是位置不同,将函数y=-3x2的图象向右平移2个单位,就得到y=-3(x-2)2的图象,再向上平移4个单位,就得到y=-3(x-2)2+4的图象y=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4).
(3)对于二次函数y=3(x+1)2和y=3(x+1)2+4,它们的对称轴都是x=-1,当x-1时,y的值随x值的增大而减小;当x-1时,y的值随x值的增大而增大.
Ⅲ.课堂练习
随堂练习
Ⅳ.课时小结
本节课进一步探究了函数y=3x2与y=3(x-1)2,y=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论.
Ⅴ.课后作业
习题2.4
Ⅵ.活动与探究
二次函数y= (x+2)2-1与y= (x-1)2+2的图象是由函数y= x2的图象怎样移动得到的?它们之间是通过怎样移动得到的?
解:y= (x+2)2-1的图象是由y= x2的图象向左平移2个单位,再向下平移1个单位得到的,y= (x-1)2+2的图象是由y= x2的图象向右平移1个单位,再向上平移2个单位得到的.
y= (x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到y= (x-1)2+2的图象.
y= (x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到y= (x+2)2-1的图象.
板书设计
4.2.1 二次函数y=ax2+bx+c的图象(一) 一、1. 比较函数y=3x2与y=3(x-1)2的
图象和性质(投影片2.4.1 A)
2.做一做(投影片2.4.1 B)
3.总结函数y=3x2,y=3(x-1)2y= 3(x-1)2+2的图象之间的关系(投影片2.4.1 C)
4.议一议(投影片2.4.1 D)
二、课堂练习
1.随堂练习
2.补充练习
三、课时小结
四、课后作业
备课资料
参考练习
在同一直角坐标系内作出函数y=- x2,y=- x2-1,y=- (x+1)2-1的图象,并讨论它们的性质与位置关系.
解:图象略
它们都是抛物线,且开口方向都向下;对称轴分别为y轴y轴,直线x=-1;顶点坐标分别为(0,0),(0,-1),(-1,-1).
y=- x2的图象向下移动1个单位得到y=- x2-1 的图象;y=- x2的图象向左移动1个单位,向下移动1个单位,得到y=- (x+1)2-1的图象.
二次函数教案5
教学目标:
1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;
2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;
3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
教学重点:二次函数的意义;会画二次函数图象。
教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。
教学过程设计:
一. 创设情景、建模引入
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式
答:S=πR2. ①
2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系
答:S=L(30-L)=30L-L2 ②
分析:①②两个关系式中S与R、L之间是否存在函数关系?
S是否是R、L的一次函数?
由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。(板书课题)
二. 归纳抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,
那么,y叫做x的`二次函数.
注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.
练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)
(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)
由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)
三. 尝试模仿、巩固提高
让我们先从最简单的二次函数y=ax2入手展开研究
1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?
请同学们画出函数y=x2的图象。
(学生分别画图,教师巡视了解情况。)
二次函数教案6
【知识与技能】
1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.
2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.
【过程与方法】
经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.
【情感态度】
体会数学与实际生活的'密切联系,学会与他人合作交流,培养合作意识.
【教学重点】
二次函数的概念.
【教学难点】
在实际问题中,会写简单变量之间的二次函数关系式教学过程.
一、情境导入,初步认识
1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(2)与相邻于围墙面的每一面墙的长度x()的关系式是S=-2x2+100x,(0 2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有. 二、思考探究,获取新知 二次函数的概念及一般形式 在上述学生回答后,教师给出二次函数的定义:一般地,形如=ax2+bx+c(a, b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项. 注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出. 目标: 1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y=ax2的关系式。 2. 使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。 3.让学生体验二次函数的函数关系式的应用,提高学生用数学意识。 重点难点: 重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是的重点。 难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。 教学过程: 一、创设问题情境 如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢? 分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。 如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为: y=ax2 (a<0) (1) 因为y轴垂直平分AB,并交AB于点C,所以CB=AB2 =2(cm),又CO=0.8m,所以点B的坐标为(2,-0.8)。 因为点B在抛物线上,将它的坐标代人(1),得 -0.8=a×22 所以a=-0.2 因此,所求函数关系式是y=-0.2x2。 请同学们根据这个函数关系式,画出模板的轮廓线。 二、引申拓展 问题1:能不能以A点为原点,AB所在直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系? 让学生了解建立直角坐标系的方法不是唯一的,以A点为原点,AB所在的直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系也是可行的。 问题2,若以A点为原点,AB所在直线为x轴,过点A的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗? 分析:按此方法建立直角坐标系,则A点坐标为(0,0),B点坐标为(4,0),OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,O点坐标为(2;0.8)。即把问题转化为:已知抛物线过(0,0)、(4,0);(2,0.8)三点,求这个二次函数的关系式。 二次函数的.一般形式是y=ax2+bx+c,求这个二次函数的关系式,跟以前学过求一次函数的关系式一样,关键是确定o、6、c,已知三点在抛物线上,所以它的坐标必须适合所求的函数关系式;可列出三个方程,解此方程组,求出三个待定系数。 解:设所求的二次函数关系式为y=ax2+bx+c。 因为OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,拱高OC=0.8m, 所以O点坐标为(2,0.8),A点坐标为(0,0),B点坐标为(4,0)。 由已知,函数的图象过(0,0),可得c=0,又由于其图象过(2,0.8)、(4,0),可得到4a+2b=0.816+4b=0 解这个方程组,得a=-15b=45 所以,所求的二次函数的关系式为y=-15x2+45x。 问题3:根据这个函数关系式,画出模板的轮廓线,其图象是否与前面所画图象相同? 问题4:比较两种建立直角坐标系的方式,你认为哪种建立直角坐标系方式能使解决问题来得更简便?为什么? (第一种建立直角坐标系能使解决问题来得更简便,这是因为所设函数关系式待定系数少,所求出的函数关系式简单,相应地作图象也容易) 请同学们阅渎P18例7。 三、课堂练习: P18练习1.(1)、(3)2。 四、综合运用 例1.如图所示,求二次函数的关系式。 分析:观察图象可知,A点坐标是(8,0),C点坐标为(0,4)。从图中可知对称轴是直线x=3,由于抛物线是关于对称轴的轴对称图形,所以此抛物线在x轴上的另一交点B的坐标是(-2,0),问题转化为已知三点求函数关系式。 解:观察图象可知,A、C两点的坐标分别是(8,0)、(0,4),对称轴是直线x=3。因为对称轴是直线x=3,所以B点坐标为(-2,0)。 设所求二次函数为y=ax2+bx+c,由已知,这个图象经过点(0,4),可以得到c=4,又由于其图象过(8,0)、(-2,0)两点,可以得到64a+8b=-44a-2b=-4 解这个方程组,得a=-14b=32 所以,所求二次函数的关系式是y=-14x2+32x+4 练习: 一条抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。 五、小结: 二次函数的关系式有几种形式,函数的关系式y=ax2+bx+c就是其中一种常见的形式。二次函数关系式的确定,关键在于求出三个待定系数a、b、c,由于已知三点坐标必须适合所求的函数关系式,故可列出三个方程,求出三个待定系数。 六、作业 1.P19习题 26.2 4.(1)、(3)、5。 2.选用课时作业优化设计, 【基础过关】 1、用一根长10 的铁丝围成一个矩形,设其中的一边长为 ,矩形的面积为 ,则 与 的函数关系式为 . 2、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.求S与x之间的函数关系 3、小敏在某次投篮中,球的运动路线是抛物线 的' 一部分(如图),若命中篮圈中心,则他与篮底的距离 是( ) 4、小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米. 5、某商场以每台2500元进口一批彩电,如果每台售价定为2700元,可卖出400台,以100元为一个价格单位,若每台提高一个单位价格,则会少卖出50台。 ⑴若设每台的定价为 (元)卖出这批彩电获得的利润为 (元),试写出 与 的函数关系式; ⑵当定价为多少元时可获得最大利润?最大利润是多少? 6、王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线 , 其中 (m)是球的飞行高度, (m)是球飞出的水平距离,结果球离球洞的水平距离还有2m. (1)请写出抛物线的开口方向、顶点坐标、对称轴.(2)请求出球飞行的最大水平距离. (3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式. 比例线段 1.相似形:在数学上,具有相同形状的图形称为相似形 2.比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段 3. 比例的性质 (1)基本性质: , a∶b=b∶c b2=ac (2)比例中项:若 的比例中项. 比例尺 = (做题之前注意先统一单位) 以上就是初三数学寒假作业之求二次函数的应用的全部内容,希望你做完作业后可以对书本知识有新的体会,愿您学习愉快。 一、教材分析 1.教材的地位和作用 (1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届佛山市中考试题中,二次函数都是必不可少的内容。 (2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。 (3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。 2.课标要求: ①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。 ②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。 ③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导)。 ④会根据二次函数的性质解决简单的实际问题。 3.学情分析: (1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。 (2)学生的分析、理解能力较学习新课时有明显提高。 (3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。 (4)学生能力差异较大,两极分化明显。 4.教学目标 ◆认知目标 (1)掌握二次函数 y=图像与系数符号之间的关系。通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力。 ◆能力目标 提高学生对知识的整合能力和分析能力。 ◆ 情感目标 制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的'思想,让学生在数学活动中学会感受探索与创造,体验成功的喜悦。 5.教学重点与难点: 重点:(1)掌握二次函数y=图像与系数符号之间的关系。 (2) 各类形式的二次函数解析式的求解方法和思路。 (3)本节课主要目的,对历届中考题中的二次函数题目进行类比分析,达到融会贯通的作用。 难点:(1)已知二次函数的解析式说出函数性质 (2)运用数形结合思想,选用恰当的数学关系式解决几何问题. 二、教学方法: 1. 运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。 2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。 3.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。 三、学法指导: 1.学法引导 “授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学终极目标。 2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。 3、设计理念:《课标》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.” 4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。 四、教学过程: 1、教学环节设计: 根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点. 本节课的教学设计环节: ◆创设情境,引入新知 :复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的题型,让每一个学生都能为下一步的探究做好准备。 ◆自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。 ◆运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。 安排三个层次的练习。 (一)从定义出发的简单题目。 (二)典型例题分析,通过反馈使学生掌握重点内容。 (三)综合应用能力提高。 既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。 (四)方法与小结 由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。 2、作业设计:(见课件) 3、板书设计:(见课件) 五、评价分析: 本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知――合作交流;探究新知――运用知识,体验成功;知识深化――应用提高;归纳小结――形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。 【知识与技能】 1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质. 2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题. 【过程与方法】 经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的'经验,培养观察、思考、归纳的良好思维习惯. 【情感态度】 通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性. 【教学重点】 1.会画y=ax2(a>0)的图象. 2.理解,掌握图象的性质. 【教学难点】 二次函数图象及性质探究过程和方法的体会教学过程. 一、情境导入,初步认识 问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢? 问题2 如何用描点法画一个函数图象呢? 【教学说明】 ①略; ②列表、描点、连线. 二、思考探究,获取新知 探究1 画二次函数y=ax2(a>0)的图象. 画二次函数y=ax2的图象. 【教学说明】 ①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学. ②从列表和描点中,体会图象关于y轴对称的特征. ③强调画抛物线的三个误区. 误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势. 误区二:并非对称点,存在漏点现象,导致抛物线变形. 误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止. 二次函数的图象与性质 1.画出函数=2x2-3x的图象,说明这个函数具有哪些性质。 2. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。 (1)=3x2+2x; (2)=-x2-2x ( 3)=-2x2+8x-8 (4)=12x2-4x+3 板书设计 1、画函数=ax2+bx+c(a≠0)的图象。 (列表时,应以对称轴为中心,对称地选取自变量的值,求出相应的函数值。) 2、二次函数=ax2+bx+c(a≠0), 当a>0时,开口向上,当a<0时,开口向下。 对称轴是x=-b2a,顶点坐标是(-b2a,4ac-b24a) (最值与抛物线的开口方向及顶点的纵坐标有关。) 课后反思 在本节教学中,教学仍从回顾上节人手,使学生掌握二次函数 是由 如何平移得来,并熟练掌握二次函数 图象的开口方向、对称轴和顶点坐标及有关性质。在此基础上,引导学生思考二次函数=ax2+bx+c(a≠0)图像的开口方向、对称轴和顶点坐标?这样激起学生的'求知欲望,能进行有目的探究活动,学生变被动为主动,学习方式发生了改变。这节课学生既动手又动脑,体验到学习知识的乐趣。 教学设计 一 教学设计思路 通过小球飞行高度问题展示二次函数与一元二次方程的联系。然后进一步举例说明,从而得出二次函数与一元二次方程的关系。最后通过例题介绍用二次函数的图象求一元二次方程的根的方法。 二 教学目标 1 知识与技能 (1).经历探索函数与一元二次方程的关系的过程,体会方程与函数之间的联系。总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根. (2).会利用图象法求一元二次方程的近似解。 2 过程与方法 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系. 三 情感态度价值观 通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况培养学生自主探索意识,从中体会事物普遍联系的观点,进一步体会数形结合思想. 四 教学重点和难点 重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解。 难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。 五 教学方法 讨论探索法 六 教学过程设计 (一)问题的提出与解决 问题 如图,以20m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线。如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系 h=20t5t2。 考虑以下问题 (1)球的飞行高度能否达到15m?如能,需要多少飞行时间? (2)球的飞行高度能否达到20m?如能,需要多少飞行时间? (3)球的飞行高度能否达到20.5m?为什么? (4)球从飞出到落地要用多少时间? 分析:由于球的飞行高度h与飞行时间t的关系是二次函数 h=20t-5t2。 所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值。 解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。 当球飞行1s和3s时,它的高度为15m。 (2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。 当球飞行2s时,它的高度为20m。 (3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。 因为(-4)2-44.10。所以方程无解。球的飞行高度达不到20.5m。 (4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。 当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出。4s时球落回地面。 由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系? 例如:已知二次函数y=-x2+4x的值为3。求自变量x的值。 分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值。 一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0。 (二)问题的讨论 二次函数(1)y=x2+x-2; (2) y=x2-6x+9; (3) y=x2-x+0。 的图象如图26.2-2所示。 (1)以上二次函数的图象与x轴有公共点吗?如果有,有多少个交点,公共点的横坐标是多少? (2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗? 先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题。 可以看出: (1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1。当x取公共点的横坐标时,函数的值是0。由此得出方程x2+x-2=0的根是-2,1。 (2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3。当x=3时,函数的值是0。由此得出方程x2-6x+9=0有两个相等的实数根3。 (3)抛物线y=x2-x+1与x轴没有公共点, 由此可知,方程x2-x+1=0没有实数根。 总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的.横坐标就是一元二次方程 =0的根。 (三)归纳 一般地,从二次函数y=ax2+bx+c的图象可知, (1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根。 (2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。 由上面的结论,我们可以利用二次函数的图象求一元二次方程的根。由于作图或观察可能存在误差,由图象求得的根,一般是近似的。 (四)例题 例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1)。 解:作y=x2-2x-2的图象(如图),它与x轴的公共点的横坐标大约是-0.7,2.7。 所以方程x2-2x-2=0的实数根为x1-0.7,x22.7。 七 小结 二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。 。 八 板书设计 用函数观点看一元二次方程 抛物线y=ax2+bx+c与方程ax2+bx+c=0的解之间的关系 例题 一、教材分析: 《34.4二次函数的应用》选自义务教育课程标准试验教科书《数学》(冀教版)九年级上册第三十四章第四节,这节课是在学生学习了二次函数的概念、图象及性质的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。这也突出了课标的要求:注重知识与实际问题的联系。 本节教学时间安排1课时 二、教学目标: 知识技能: 1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系. 2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根. 3.能够利用二次函数的图象求一元二次方程的近似根。 数学思考: 1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神. 2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验. 3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。 解决问题: 1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。 2.通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。 情感态度: 1.从学生感兴趣的问题入手,让学生亲自体会学习数学的价值,从而提高学生学习数学的好奇心和求知欲。 2.通过学生共同观察和讨论,培养大家的合作交流意识。 三、教学重点、难点: 教学重点: 1.体会方程与函数之间的联系。 2.能够利用二次函数的图象求一元二次方程的近似根。 教学难点: 1.探索方程与函数之间关系的过程。 2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。 四、教学方法:启发引导 合作交流 五:教具、学具:课件 六、教学过程: [活动1] 检查预习 引出课题 预习作业: 1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0. 2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解. 师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。 教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。 设计意图:这两道预习题目是对旧知识的回顾,为本课的'教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。 [活动2] 创设情境 探究新知 问题 1. 课本P94 问题. 2. 结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m? 3. 结合预习题1,完成课本P94 观察中的题目。 师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。 二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? 教师重点关注: 1.学生能否把实际问题准确地转化为数学问题; 2.学生在思考问题时能否注重数形结合思想的应用; 3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。 设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。 [活动3] 例题学习 巩固提高 问题 例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1). 师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。 教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。 设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。 [活动4] 练习反馈 巩固新知 课题 二次函数y=ax2的图象(一) 一、教学目的 1.使学生初步理解二次函数的概念。 2.使学生会用描点法画二次函数y=ax2的图象。 3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。 二、教学重点、难点 重点:对二次函数概念的初步理解。 难点:会用描点法画二次函数y=ax2的图象。 三、教学过程 复习提问 1.在下列函数中,哪些是一次函数?哪些是正比例函数? (1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2 - 2。 2.什么是一无二次方程? 3.怎样用找点法画函数的图象? 新课 1.由具体问题引出二次函数的定义。 (1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。 (2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。 (3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示? 解:(1)函数解析式是S=πR2; (2)函数析式是S=30L—L2; (3)函数解析式是y=50(1+x)2,即 y=50x2+100x+50。 由以上三例启发学生归纳出: (1)函数解析式均为整式; (2)处变量的最高次数是2。 我们说三个式子都表示的是二次函数。 一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。 2.画二次函数y=x2的图象。 按照描点法分三步画图: (1)列表 ∵ x可取任意实数,∴ 以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同; (2)描点 按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点; (3)边线 用平滑曲线顺次连接各点,即得所求y=x2的图象。 注意两点: (1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。而图象在x>3或x<-3的区间是无限延伸的。 (2)所画的图象是近似的。 3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们 –1与1之间每隔0。2的间距取x值表和图13-14。按课本P118内容讲解。 4.引入抛物线的概念。 关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。 小结 1.二次函数的定义。 (1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。 2.二次函数y=x2的图象。 (1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。 补充例题 下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c? (1)y=2-3x2; (2)y=x (x-4); (3)y=1/2x2-3x-1; (4)y=1/4x2+3x-8; (5)y=7x(1-x)+4x2; (6)y=(x-6)(6+x)。 作业:P122中A组1,2,3。 四、教学注意问题 1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。 2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考: (1)y=x2的图象的图象有什么特点。(答:具有对称性。) (2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。) 课题 二次函数y=ax2的图象(一) 一、教学目的 1.使学生初步理解二次函数的概念。 2.使学生会用描点法画二次函数y=ax2的图象。 3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。 二、教学重点、难点 重点:对二次函数概念的初步理解。 难点:会用描点法画二次函数y=ax2的图象。 三、教学过程 复习提问 1.在下列函数中,哪些是一次函数?哪些是正比例函数? (1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2 - 2。 2.什么是一无二次方程? 3.怎样用找点法画函数的图象? 新课 1.由具体问题引出二次函数的定义。 (1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。 (2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。 (3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示? 解:(1)函数解析式是S=πR2; (2)函数析式是S=30L—L2; (3)函数解析式是y=50(1+x)2,即 y=50x2+100x+50。 由以上三例启发学生归纳出: (1)函数解析式均为整式; (2)处变量的最高次数是2。 我们说三个式子都表示的是二次函数。 一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。 2.画二次函数y=x2的图象。 按照描点法分三步画图: (1)列表 ∵ x可取任意实数,∴ 以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同; (2)描点 按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点; (3)边线 用平滑曲线顺次连接各点,即得所求y=x2的图象。 注意两点: (1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。而图象在x>3或x<-3的`区间是无限延伸的。 (2)所画的图象是近似的。 3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们 –1与1之间每隔0。2的间距取x值表和图13-14。按课本P118内容讲解。 4.引入抛物线的概念。 关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。 小结 1.二次函数的定义。 (1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。 2.二次函数y=x2的图象。 (1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。 补充例题 下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c? (1)y=2-3x2; (2)y=x (x-4); (3)y=1/2x2-3x-1; (4)y=1/4x2+3x-8; (5)y=7x(1-x)+4x2; (6)y=(x-6)(6+x)。 作业:P122中A组1,2,3。 四、教学注意问题 1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。 2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考: (1)y=x2的图象的图象有什么特点。(答:具有对称性。) (2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。) 二次函数的应用 教学设计思想:本节主要研究的是与二次函数有关的实际问题,重点是实际应用题,在教学过程中让学生运用二次函数的知识分析问题、解决问题,在运用中体会二次函数的实际意义。二次函数与一元二次方程、一元二次不等式有密切联系,在学习过程中应把二次函数与之有关知识联系起来,融会贯通,使学生的认识更加深刻。另外,在利用图像法解方程时,图像应画得准确一些,使求得的解更准确,在求解过程中体会数形结合的思想。 教学目标: 1.知识与技能 会运用二次函数计其图像的知识解决现实生活中的实际问题。 2.过程与方法 通过本节内容的学习,提高自主探索、团结合作的能力,在运用知识解决问题中体会二次函数的应用意义及数学转化思想。 3.情感、态度与价值观 通过学生之间的讨论、交流和探索,建立合作意识和提高探索能力,激发学习的兴趣和欲望。 教学重点:解决与二次函数有关的实际应用题。 教学难点:二次函数的应用。 教学媒体:幻灯片,计算器。 教学安排:3课时。 教学方法:小组讨论,探究式。 教学过程: 第一课时: Ⅰ.情景导入: 师:由二次函数的一般形式y= (a0),你会有什么联想? 生:老师,我想到了一元二次方程的一般形式 (a0)。 师:不错,正因为如此,有时我们就将二次函数的有关问题转化为一元二次方程的问题来解决。 现在大家来做下面这两道题:(幻灯片显示) 1.解方程 。 2.画出二次函数y= 的图像。 教师找两个学生解答,作为板书。 Ⅱ.新课讲授 同学们思考下面的问题,可以共同讨论: 1.二次函数y= 的图像与x轴交点的横坐标是什么?它与方程 的根有什么关系? 2.如果方程 (a0)有实数根,那么它的根和二次函数y= 的图像与x轴交点的横坐标有什么关系? 生甲:老师,由画出的图像可以看出与x轴交点的横坐标是-1、2;方程的两个根是-1、2,我们发现方程的两个解正好是图像与x轴交点的横坐标。 生乙:我们经过讨论,认为如果方程 (a0)有实数根,那么它的根等于二次函数y= 的图像与x轴交点的横坐标。 师:说的很好; 教师总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。 师:我们知道方程的两个解正好是二次函数图像与x轴的两个交点的横坐标,那么二次函数图像与x轴的交点问题可以转化为一元二次方程的根的问题,我们共同研究下面问题。 [学法]:通过实例,体会二次函数与一元二次方程的关系,解一元二次方程实质上就是求二次函数为0的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。 问题:已知二次函数y= 。 (1)观察这个函数的图像(图34-9),一元二次方程 =0的两个根分别在哪两个整数之间? (2)①由在0至1范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到十分位的正根吗? x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1 ②由在0.6至0.7范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到百分位的正根吗? x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190 (3)请仿照上面的方法,求出一元二次方程 =0的另一个精确到十分位的根。 (4)请利用一元二次方程的求根公式解方程 =0,并检验上面求出的近似解。 第一问很简单,可以请一名同学来回答这个问题。 生:一个根在(-2,-1)之间,另一个在(0,1)之间;根据上面我们得出的结论。 师:回答的很正确;我们知道图像与x轴交点的横坐标就是方程的根,所以我们可以通过观看图象就能说出方程的两个根。现在我们共同解答第(2)问。 教师分析:我们知道方程的一个根在(0,1)之间,那么我们观看(0,1)这个区间的图像,y值是随着x值的增大而不断增大的,y值也是从负数过渡到正数,而当y=0时所对应的x值就是方程的根。现在我们要求的是方程的近似解,那么同学们想一想,答案是什么呢? 生:通过列表可以看出,在(0.6,0.7)范围内,y值有-0.04至0.19,如果方程精确到十分位的正根,x应该是0.6。 类似的,我们得出方程精确到百分位的正根是0.62。 对于第三问,教师可以让学生自己动手解答,教师在下面巡视,观察其中发现的问题。 最后师生共同利用求根公式,验证求出的近似解。 教师总结:我们发现,当二次函数 (a0)的图像与x轴有交点时,根据图像与x轴的交点,就可以确定一元二次方程 的根在哪两个连续整数之间。为了得到更精确的近似解,对在这两个连续整数之间的x的值进行细分,并求出相应得y值,列出表格,这样就可以得到一元二次方程 所要求的精确度的近似解。 Ⅲ.练习 已知一个矩形的长比宽多3m,面积为6 。求这个矩形的长(精确到十分位)。 板书设计: 二次函数的应用(1) 一、导入 总结: 二、新课讲授 三、练习 第二课时: 师:在我们的实际生活中你还遇到过哪些运用二次函数的实例? 生:老师,我见过好多。如周长固定时长方形的面积与它的.长之间的关系:圆的面积与它的直径之间的关系等。 师:好,看这样一个问题你能否解决: 活动1:如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。 回答下面的问题: 1.设每个小矩形一边的长为xm,试用x表示小矩形的另一边的长。 2.设四个小矩形的总面积为y ,请写出用x表示y的函数表达式。 3.你能利用公式求出所得函数的图像的顶点坐标,并说出y的最大值吗? 4.你能画出这个函数的图像,并借助图像说出y的最大值吗? 学生思考,并小组讨论。 解:已知周长为40m,一边长为xm,看图知,另一边长为 m。 由面积公式得 y= (x ) 化简得 y= 代入顶点坐标公式,得顶点坐标x=4,y=5。y的最大值为5。 画函数图像: 通过图像,我们知道y的最大值为5。 师:通过上面这个例题,我们能总结出几种求y的最值得方法呢? 生:两种;一种是画函数图像,观察最高(低)点,可以得到函数的最值;另外一种可以利用顶点坐标公式,直接计算最值。 师:这位同学回答的很好,看来同学们是都理解了,也知道如何求函数的最值。 总结:由此可以看出,在利用二次函数的图像和性质解决实际问题时,常常需要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下的方法: (1)画出函数的图像,观察图像的最高(或最低)点,就可以得到函数的最大(或最小)值。 (2)依照二次函数的性质,判断该二次函数的开口方向,进而确定它有最大值还是最小值;再利用顶点坐标公式,直接计算出函数的最大(或最小)值。 师:现在利用我们前面所学的知识,解决实际问题。 活动2:如图34-11,已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG,都是正方形,设BC=x, (1)AC=______; (2)设正方形ACDE和四边形CBFG的总面积为S,用x表示S的函数表达式为S=_____. (3)总面积S有最大值还是最小值?这个最大值或最小值是多少? (4)总面积S取最大值或最小值时,点C在AB的什么位置? 教师讲解:二次函数 进行配方为y= ,当a0时,抛物线开口向上,此时当x= 时, ;当a0时,抛物线开口向下,此时当x= 时, 。对于本题来说,自变量x的最值范围受实际条件的制约,应为02。此时y相应的就有最大值和最小值了。通过画出图像,可以清楚地看到y的最大值和最小值以及此时x的取值情况。在作图像时一定要准确认真,同时还要考虑到x的取值范围。 解答过程(板书) 解:(1)当BC=x时,AC=2-x(02)。 (2)S△CDE= ,S△BFG= , 因此,S= + =2 -4x+4=2 +2, 画出函数S= +2(02)的图像,如图34-4-3。 (3)由图像可知:当x=1时, ;当x=0或x=2时, 。 (4)当x=1时,C点恰好在AB的中点上。 当x=0时,C点恰好在B处。 当x=2时,C点恰好在A处。 [教法]:在利用函数求极值问题,一定要考虑本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取得范围内画。 练习: 如图,正方形ABCD的边长为4,P是边BC上一点,QPAP,并且交DC与点Q。 (1)Rt△ABP与Rt△PCQ相似吗?为什么? (2)当点P在什么位置时,Rt△ADQ的面积最小?最小面积是多少? 小结:利用二次函数的增减性,结合自变量的取值范围,则可求某些实际问题中的极值,求极值时可把 配方为y= 的形式。 板书设计: 二次函数的应用(2) 活动1: 总结方法: 活动2: 练习: 小结: 第三课时: 我们这部分学习的是二次函数的应用,在解决实际问题时,常常需要把二次函数问题转化为方程的问题。 师:在日常生活中,有哪些量之间的关系是二次函数关系?大家观看下面的图片。 (幻灯片显示交通事故、紧急刹车) 师:你知道两辆车在行驶时为什么要保持一定的距离吗? 学生思考,讨论。 师:汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,这段距离叫做刹车距离。刹车距离是分析、处理道路交通事故的一个重要原因。 请看下面一个道路交通事故案例: 甲、乙两车在限速为40km/h的湿滑弯道上相向而行,待望见对方。同时刹车时已经晚了,两车还是相撞了。事后经现场勘查,测得甲车的刹车距离是12m,乙车的刹车距离超过10m,但小于12m。根据有关资料,在这样的湿滑路面上,甲车的刹车距离S甲(m)与车速x(km/h)之间的关系为S甲=0.1x+0.01x2,乙车的刹车距离S乙(m)与车速x(km/h)之间的关系为S乙= 。 教师提问:1.你知道甲车刹车前的行驶速度吗?甲车是否违章超速? 2.你知道乙车刹车前的行驶速度在什么范围内吗?乙车是否违章超速? 学生思考!教师引导。 对于二次函数S甲=0.1x+0.01x2: (1)当S甲=12时,我们得到一元二次方程0.1x+0.01x2=12。请谈谈这个一元二次方程这个一元二次方程的实际意义。 (2)当S甲=11时,不经过计算,你能说明两车相撞的主要责任者是谁吗? (3)由乙车的刹车距离比甲车的刹车距离短,就一定能说明事故责任者是甲车吗?为什么? 生甲:我们能知道甲车刹车前的行驶速度,知道甲车的刹车距离,又知道刹车距离与车速的关系式,所以车速很容易求出,求得x=30km,小于限速40km/h,故甲车没有违章超速。 生乙:同样,知道乙车刹车前的行驶速度,知道乙车的刹车距离的取值范围,又知道刹车距离与车速的关系式,求得x在40km/h与48km/h(不包含40km/h)之间。可见乙车违章超速了。 同学们,从这个事例当中我们可以体会到,如果二次函数y= (a0)的某一函数值y=M。就可利用一元二次方程 =M,确定它所对应得x值,这样,就把二次函数与一元二次方程紧密地联系起来了。 下面看下面的这道例题: 当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示: v/(km/h) 40 60 80 100 120 s/m 2 4.2 7.2 11 15.6 (1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连结各点。 (2)利用图像验证刹车距离s(m)与车速v(km/h)是否有如下关系: (3)求当s=9m时的车速v。 学生思考,亲自动手,提高学生自主学习的能力。 教师提问,学生回答正确答案,教师再进行讲解。 课上练习: 某产品的成本是20元/件,在试销阶段,当产品的售价为x元/件时,日销量为(200-x)件。 (1)写出用售价x(元/件)表示每日的销售利润y(元)的表达式。 (2)当日销量利润是1500元时,产品的售价是多少?日销量是多少件? (3)当售价定为多少时,日销量利润最大?最大日销量利润是多少? 课堂小结:本节课主要是利用函数求极值的问题,解决此类问题时,一定要考虑到本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取的范围内画。 板书设计: 二次函数的应用(3) 一、案例 二、例题 分析: 练习: 总结: 数学网 【二次函数教案】相关文章: 二次函数教案07-28 二次函数说课稿11-15 初三二次函数教学反思04-08 《用三种方式表示二次函数》教案06-16 数学二次函数教学反思10-06 正弦函数、余弦函数图像教案02-25 数学二次函数教学反思(精选18篇)05-12 《二次函数与一元二次方程》教学反思08-28 函数与一元二次方程教学反思03-20二次函数教案7
二次函数教案8
二次函数教案9
二次函数教案10
二次函数教案11
二次函数教案12
二次函数教案13
二次函数教案14
二次函数教案15