高中数学教案

时间:2024-08-31 02:29:37 教案 我要投稿

高中数学教案15篇

  作为一位杰出的老师,通常需要准备好一份教案,教案有助于顺利而有效地开展教学活动。快来参考教案是怎么写的吧!下面是小编为大家收集的高中数学教案,欢迎大家分享。

高中数学教案15篇

高中数学教案1

  教学目标

  知识与技能目标:

  本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:

  (1)通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。

  (2)从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。

  (3)依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。即:

  导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k

  在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。

  过程与方法目标:

  (1)学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。

  (2)学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。

  (3)结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。

  情感、态度、价值观:

  (1)通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;

  (2)在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。

  教学重点与难点

  重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。

  难点:发现、理解及应用导数的几何意义。

  教学过程

  一、复习提问

  1.导数的定义是什么?求导数的三个步骤是什么?求函数y=x2在x=2处的导数.

  定义:函数在导数的几何意义教案处的导数导数的几何意义教案就是函数在该点处的瞬时变化率。

  求导数的步骤:

  第一步:求平均变化率导数的几何意义教案;

  第二步:求瞬时变化率导数的几何意义教案.

  (即导数的几何意义教案,平均变化率趋近于的确定常数就是该点导数)

  2.观察函数导数的几何意义教案的图象,平均变化率导数的几何意义教案在图形中表示什么?

  生:平均变化率表示的是割线PQ的斜率.导数的几何意义教案

  师:这就是平均变化率(导数的几何意义教案)的几何意义,

  3.瞬时变化率(导数的几何意义教案)在图中又表示什么呢?

  如图2-1,设曲线C是函数y=f(x)的图象,点P(x0,y0)是曲线C上一点.点Q(x0+Δx,y0+Δy)是曲线C上与点P邻近的任一点,作割线PQ,当点Q沿着曲线C无限地趋近于点P,割线PQ便无限地趋近于某一极限位置PT,我们就把极限位置上的直线PT,叫做曲线C在点P处的切线.

  导数的几何意义教案

  追问:怎样确定曲线C在点P的切线呢?因为P是给定的,根据平面解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ的倾斜角为导数的几何意义教案,切线PT的倾斜角为导数的几何意义教案,易知割线PQ的斜率为导数的.几何意义教案。既然割线PQ的极限位置上的直线PT是切线,所以割线PQ斜率的极限就是切线PT的斜率导数的几何意义教案,即导数的几何意义教案。

  由导数的定义知导数的几何意义教案导数的几何意义教案。

  导数的几何意义教案

  由上式可知:曲线f(x)在点(x0,f(x0))处的切线的斜率就是y=f(x)在点x0处的导数f'(x0).今天我们就来探究导数的几何意义。

  C类学生回答第1题,A,B类学生回答第2题在学生回答基础上教师重点讲评第3题,然后逐步引入导数的几何意义.

  二、新课

  1、导数的几何意义:

  函数y=f(x)在点x0处的导数f'(x0)的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率.

  即:导数的几何意义教案

  口答练习:

  (1)如果函数y=f(x)在已知点x0处的导数分别为下列情况f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.试求函数图像在对应点的切线的倾斜角,并说明切线各有什么特征。

  (C层学生做)

  (2)已知函数y=f(x)的图象(如图2-2),分别为以下三种情况的直线,通过观察确定函数在各点的导数.(A、B层学生做)

  导数的几何意义教案

  2、如何用导数研究函数的增减?

  小结:附近:瞬时,增减:变化率,即研究函数在该点处的瞬时变化率,也就是导数。导数的正负即对应函数的增减。作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的增减性,体会导数是研究函数增减、变化快慢的有效工具。

  同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性。都反应了导数是研究函数增减、变化快慢的有效工具。

  例1函数导数的几何意义教案上有一点导数的几何意义教案,求该点处的导数导数的几何意义教案,并由此解释函数的增减情况。

  导数的几何意义教案

  函数在定义域上任意点处的瞬时变化率都是3,函数在定义域内单调递增。(此时任意点处的切线就是直线本身,斜率就是变化率)

  3、利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程.

  例2求曲线y=x2在点M(2,4)处的切线方程.

  解:导数的几何意义教案

  ∴y'|x=2=2×2=4.

  ∴点M(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.

  由上例可归纳出求切线方程的两个步骤:

  (1)先求出函数y=f(x)在点x0处的导数f'(x0).

  (2)根据直线方程的点斜式,得切线方程为y-y0=f'(x0)(x-x0).

  提问:若在点(x0,f(x0))处切线PT的倾斜角为导数的几何意义教案导数的几何意义教案,求切线方程。(因为这时切线平行于y轴,而导数不存在,不能用上面方法求切线方程。根据切线定义可直接得切线方程导数的几何意义教案)

  (先由C类学生来回答,再由A,B补充.)

  例3已知曲线导数的几何意义教案上一点导数的几何意义教案,求:(1)过P点的切线的斜率;

  (2)过P点的切线的方程。

  解:(1)导数的几何意义教案,

  导数的几何意义教案

  y'|x=2=22=4. ∴在点P处的切线的斜率等于4.

  (2)在点P处的切线方程为导数的几何意义教案即12x-3y-16=0.

  练习:求抛物线y=x2+2在点M(2,6)处的切线方程.

  (答案:y'=2x,y'|x=2=4切线方程为4x-y-2=0).

  B类学生做题,A类学生纠错。

  三、小结

  1.导数的几何意义.(C组学生回答)

  2.利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程的步骤.

  (B组学生回答)

  四、布置作业

  1.求抛物线导数的几何意义教案在点(1,1)处的切线方程。

  2.求抛物线y=4x-x2在点A(4,0)和点B(2,4)处的切线的斜率,切线的方程.

  3.求曲线y=2x-x3在点(-1,-1)处的切线的倾斜角

  4.已知抛物线y=x2-4及直线y=x+2,求:(1)直线与抛物线交点的坐标; (2)抛物线在交点处的切线方程;

  (C组学生完成1,2题;B组学生完成1,2,3题;A组学生完成2,3,4题)

  教学反思:

  本节内容是在学习了“变化率问题、导数的概念”等知识的基础上,研究导数的几何意义,由于新教材未设计极限,于是我尽量采用形象直观的方式,让学生通过动手作图,自我感受整个逼近的过程,让学生更加深刻地体会导数的几何意义及“以直代曲”的思想。

  本节课主要围绕着“利用函数图象直观理解导数的几何意义”和“利用导数的几何意义解释实际问题”两个教学重心展开。先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的几何意义;然后,类比“平均变化率——瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义——“导数是曲线上某点处切线的斜率”。

  完成本节课第一阶段的内容学习后,教师点明,利用导数的几何意义,在研究实际问题时,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”,从而达到“以简单的对象刻画复杂对象”的目的,并通过两个例题的研究,让学生从不同的角度完整地体验导数与切线斜率的关系,并感受导数应用的广泛性。本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。

高中数学教案2

  教学目的:

  (1)使学生初步理解集合的概念,知道常用数集的概念及记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  教学重点:集合的基本概念及表示方法

  教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

  授课类型:新授课

  课时安排:1课时

  教 具:多媒体、实物投影仪

  内容分析:

  集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

  这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。

  教学过程:

  一、复习引入:

  1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2、教材中的章头引言;

  3、集合论的创始人——康托尔(德国数学家)(见附录);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P4)

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念:

  由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。

  定义:一般地,某些指定的对象集在一起就成为一个集合.

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合 记作N,

  (2)正整数集:非负整数集内排除0的`集 记作N*或N+

  (3)整数集:全体整数的集合 记作Z ,

  (4)有理数集:全体有理数的集合 记作Q ,

  (5)实数集:全体实数的集合 记作R

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

  (2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写

  三、练习题:

  1、教材P5练习1、2

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数 (不确定)

  (2)好心的人 (不确定)

  (3)1,2,2,3,4,5.(有重复)

  3、设a,b是非零实数,那么 可能取的值组成集合的元素是_—2,0,2__

  4、由实数x,-x,|x|, 所组成的集合,最多含( A )

  (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

  5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

  (1) 当x∈N时, x∈G;

  (2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

  证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0* = a+b ∈G,即x∈G

  证明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =且 不一定都是整数,

  ∴ = 不一定属于集合G

  四、小结:本节课学习了以下内容:

  1、集合的有关概念:(集合、元素、属于、不属于)

  2、集合元素的性质:确定性,互异性,无序性

  3、常用数集的定义及记法

高中数学教案3

  教学准备

  1.教学目标

  1、知识与技能:

  函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

  赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

  2、过程与方法:

  (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解构成函数的要素;

  (3)会求一些简单函数的定义域和值域;

  (4)能够正确使用“区间”的符号表示函数的定义域;

  3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.

  教学重点/难点

  重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

  难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

  教学用具

  多媒体

  4.标签

  函数及其表示

  教学过程

  (一)创设情景,揭示课题

  1、复习初中所学函数的概念,强调函数的模型化思想;

  2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.

  3、分析、归纳以上三个实例,它们有什么共同点;

  4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

  5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  (二)研探新知

  1、函数的有关概念

  (1)函数的概念:

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

  记作:y=f(x),x∈A.

  其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

  注意:

  ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  (2)构成函数的三要素是什么?

  定义域、对应关系和值域

  (3)区间的概念

  ①区间的分类:开区间、闭区间、半开半闭区间;

  ②无穷区间;

  ③区间的数轴表示.

  (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

  通过三个已知的函数:y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.

  师:归纳总结

  (三)质疑答辩,排难解惑,发展思维。

  1、如何求函数的定义域

  例1:已知函数f(x)=+

  (1)求函数的定义域;

  (2)求f(-3),f()的值;

  (3)当a>0时,求f(a),f(a-1)的值.

  分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

  例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.

  分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引导学生小结几类函数的定义域:

  (1)如果f(x)是整式,那么函数的定义域是实数集R.

  2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的.集合.

  (3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.

  (4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)

  (5)满足实际问题有意义.

  巩固练习:课本P19第1

  2、如何判断两个函数是否为同一函数

  例3、下列函数中哪个与函数y=x相等?

  分析:

  1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

  2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

  解:

  课本P18例2

  (四)归纳小结

  ①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.

  (五)设置问题,留下悬念

  1、课本P24习题1.2(A组)第1—7题(B组)第1题

  2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.

  课堂小结

高中数学教案4

  课题:

  等比数列的概念

  教学目标

  1、通过教学使学生理解等比数列的概念,推导并掌握通项公式、

  2、使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力、

  3、培养学生勤于思考,实事求是的精神,及严谨的科学态度、

  教学重点,难点

  重点、难点是等比数列的定义的归纳及通项公式的推导、

  教学用具

  投影仪,多媒体软件,电脑、

  教学方法

  讨论、谈话法、

  教学过程

  一、提出问题

  给出以下几组数列,将它们分类,说出分类标准、(幻灯片)

  ①—2,1,4,7,10,13,16,19,…

  ②8,16,32,64,128,256,…

  ③1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1,,,…

  ⑤31,29,27,25,23,21,19,…

  ⑥1,—1,1,—1,1,—1,1,—1,…

  ⑦1,—10,100,—1000,10000,—100000,…

  ⑧0,0,0,0,0,0,0,…

  由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)、

  二、讲解新课

  请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题、假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数

  这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列、(这里播放变形虫分裂的多媒体软件的第一步)

  等比数列(板书)

  1、等比数列的定义(板书)

  根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义、学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的教师写出等比数列的定义,标注出重点词语、

  请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列、学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例、而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列、教师追问理由,引出对等比数列的认识:

  2、对定义的认识(板书)

  (1)等比数列的首项不为0;

  (2)等比数列的每一项都不为0,即

  问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

  (3)公比不为0、

  用数学式子表示等比数列的定义、

  是等比数列

  ①、在这个式子的写法上可能会有一些争议,如写成

  ,可让学生研究行不行,好不好;接下来再问,能否改写为

  是等比数列?为什么不能?式子给出了数列第项与第

  项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式、

  3、等比数列的通项公式(板书)

  问题:用和表示第项

  ①不完全归纳法

  ②叠乘法,…,,这个式子相乘得,所以(板书)

  (1)等比数列的通项公式得出通项公式后,让学生思考如何认识通项公式、(板书)

  (2)对公式的认识

  由学生来说,最后归结:

  ①函数观点;

  ②方程思想(因在等差数列中已有认识,此处再复习巩固而已)、

  这里强调方程思想解决问题、方程中有四个量,知三求一,这是公式最简单的'应用,请学生举例(应能编出四类问题)、解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

  如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究、同学可以试着编几道题。

  三、小结

  1、本节课研究了等比数列的概念,得到了通项公式;

  2、注意在研究内容与方法上要与等差数列相类比;

  3、用方程的思想认识通项公式,并加以应用。

  探究活动

  将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0、01毫米。

  参考答案:

  30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0、001毫米,对折34次就超过珠穆朗玛峰的高度了、还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(对数算也行)。

高中数学教案5

  教学准备

  教学目标

  熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

  掌握两角和与差的正、余弦公式,能用公式解决相关问题。

  教学重难点

  熟练两角和与差的.正、余弦公式的正用、逆用和变用技巧。

  教学过程

  复习

  两角差的余弦公式

  用- B代替B看看有什么结果?

高中数学教案6

  各位评委、各位专家,大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。

  下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

  (二)教学内容

  本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

  二、教学目标分析

  根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

  知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

  能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

  情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

  三、重难点分析

  一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

  要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

  四、教法与学法分析

  (一)学法指导

  教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

  (二)教法分析

  本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

  建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

  本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的'解法。

  五、课堂设计

  本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

  (一)创设情景,引出“三个一次”的关系

  本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“”则变成一元二次不等式x2-x-60让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

  为此,我设计了以下几个问题:

  1、请同学们解以下方程和不等式:

  ①2x-7=0;②2x-70;③2x-70

  学生回答,我板书。

  2、我指出:2x-70和2x-70的解实际上只需利用不等式基本性质就容易得到。

  3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。

  4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:

  ①2x-7=0的解恰是函数y=2x-7的图象与x轴

  交点的横坐标。

  ②2x-70的解集正是函数y=2x-7的图象

  在x轴的上方的点的横坐标的集合。

  ③2x-70的解集正是函数y=2x-7的图象

  在x轴的下方的点的横坐标的集合。

  三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-60的解集。

  (二)比旧悟新,引出“三个二次”的关系

  为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。

  看函数y=x2-x-6的图象并说出:

  ①方程x2-x-6=0的解是

  x=-2或x=3 ;

  ②不等式x2-x-60的解集是

  {x|x-2,或x3};

  ③不等式x2-x-60的解集是

  {x|-23}。

  此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。

  学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a0),那么图象与x轴的位置关系又怎样呢?(学生回答:△0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c0与ax2+bx+c0的解集与函数y=ax2+bx+c的图象有怎样的关系?

  (三)归纳提炼,得出“三个二次”的关系

  1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。

  2、此时提出:若a0时,怎样求解不等式ax2+bx+c0及ax2+bx+c0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)

  (四)应用新知,熟练掌握一元二次不等式的解集

  借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:

  例1、解不等式2x2-3x-20

  解:因为Δ0,方程2x2-3x-2=0的解是

  x1= ,x2=2

  所以,不等式的解集是

  { x| x ,或x2}

  例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。

  下面我们接着学习课本例2。

  例2 解不等式-3x2+6x2

  课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。

  通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。

  例3 解不等式4x2-4x+10

  例4 解不等式-x2+2x-30

  分别突出了“△=0”、“△0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。

  4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。

  (五)总结

  解一元二次不等式的“四部曲”:

  (1)把二次项的系数化为正数

  (2)计算判别式Δ

  (3)解对应的一元二次方程

  (4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算Δ→三求根→四写解集

  (六)作业布置

  为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。

  (1)必做题:习题1.5的1、3题

  (2)探究题:①若a、b不同时为零,记ax2+bx+c=0的解集为P,ax2+bx+c0的解集为M,ax2+bx+c0的解集为N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求实数k的取值范围。

  (七)板书设计

  一元二次不等式解法(1)

  五、教学效果评价

  本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。

高中数学教案7

  一、教材分析

  1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下B)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

  2、教学目标:

  知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

  (2)进一步培养学生把空间问题转化为平面问题的化归思想。

  能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

  德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

  情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

  3、重点、难点:

  重点:“二面角”和“二面角的平面角”的概念

  难点:“二面角的平面角”概念的形成过程

  二、教法分析

  1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

  2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

  3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

  三、学法指导

  1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

  2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。

  3、会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题。

  四、教学过程

  心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

  (一)、二面角

  1、揭示概念产生背景。

  问题情境1、在平面几何中“角”是怎样定义的?

  问题情境2、在立体几何中我们还学习了哪些角?

  问题情境3、运用多媒体和身边的实例,展示我们遇到的另一种空间的角——二面角(板书课题)。

  通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为它与我们的生活密不可分,激发学生的求知欲。2、展现概念形成过程。

  问题情境4、那么,应该如何定义二面角呢?

  创设这个问题情境,为学生创新思维的展开提供了空间。引导学生回忆平面几何中“角”这一概念的引入过程。教师应注意多让学生说,对于学生的创新意识和创新结果,教师要给与积极的评价。

  问题情境5、同学们能举出一些二面角的实例吗?通过实际运用,可以促使学生更加深刻地理解概念。

  (二)、二面角的平面角

  1、揭示概念产生背景。平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量。说明二面角不仅有大小,而且其大小是唯一确定的。平面

  与平面的位置关系,总的说来只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题。

  问题情境6、二面角的大小应该怎么度量?能否转化为平面角来处理?这样就从度量二面角大小的需要上揭示了二面角的平面角概念产生的背景。

  2、展现概念形成过程

  (1)、类比。教师启发,寻找类比联想的对象。

  问题情境7、我们以前碰到过类似的问题吗?引导学生回忆前面所学过的两种空间角的定义,电脑演示以提高效率。

  问题情境8、两定义的共同点是什么?生:空间角总是转化为平面的角,并且这个角是唯一确定的。

  问题情境9、这个平面的角的顶点及两边是如何确定的?

  (2)、提出猜想:二面角的大小也可通过平面的角来定义。对学生提出的猜想,教师应该给予充分的肯定,以培养他们大胆猜想的意识和习惯,这对强化他们的创新意识大有帮助。

  问题情境10、那么,这个角的顶点及两边应如何确定呢?生:顶点放在棱上,两边分别放在两个面内。这也是学生直觉思维的结果。

  (3)、探索实验。通过实验,激发了学生的学习兴趣,培养了学生的动手操作能力。

  (4)、继续探索,得到定义。

  问题情境11、那么,怎样使这个角的大小唯一确定呢?师生共同探讨后发现,角的`顶点确定后,要使此角的大小唯一确定,只须使它的两条边在平面内唯一确定,联想到平面内过直线上一点的垂线的唯一性,由此发现二面角的大小的一种描述方法。

  (5)、自我验证:要求学生阅读课本上的定义。并说明定义的合理性,教师作适当的引导,并加以理论证明。

  (三)、二面角及其平面角的画法

  主要分为直立式和平卧式两种,用电脑《几何画板》作图。

  (四)、范例分析

  为巩固学生所学知识,由于时间的关系设置了一道例题。来源于实际生活,不但培养了学生分析问题和解决问题的能力,也让学生领会到数学概念来自生活实际,并服务于生活实际,从而增强他们应用数学的意识。

  例:一张边长为10厘米的正三角形纸片ABc,以它的高AD为折痕,折成一个1200二面角,求此时B、c两点间的距离。

  分析:涉及二面角的计算问题,关键是找出(或作出)该二面角的平面角。引导学生充分利用已知图形的性质,最后发现可由定义找出该二面角的平面角。可让学生先做,为调动学生的积极性,并增加学生的参与感,活跃课堂的气氛,教师可给学生板演的机会。教师讲评时强调解题规范即必须证明∠BDc是二面角B—AD—c的平面角。

  变式训练:图中共有几个二面角?能求出它们的大小吗?根据课堂实际情况,本题的变式训练也可作为课后思考题。

  题后反思:(1)解题过程中必须证明∠BDc是二面角B—AD—c的平面角。

  (2)求二面角的平面角的方法是:先找(或作)——后证——再解(三角形)

  (五)、练习、小结与作业

  练习:习题9.7的第3题

  小结在复习完二面角及其平面角的概念后,要求学生对空间中三种角加以比较、归纳,以促成学生建立起空间中角这一概念系统。同时要求学生对本节课的学习方法进行总结,领会复习类比和深入研究这两种知识创新的方法。

  作业:习题9.7的第4题

  思考题:见例题

  五、板书设计(见课件)

  以上是我对《二面角》授课的初步设想,不足之处,恳请大家批评指正,谢谢!

高中数学教案8

  [核心必知]

  1、预习教材,问题导入

  根据以下提纲,预习教材P6~P9,回答下列问题、

  (1)常见的程序框有哪些?

  提示:终端框(起止框),输入、输出框,处理框,判断框、

  (2)算法的基本逻辑结构有哪些?

  提示:顺序结构、条件结构和循环结构、

  2、归纳总结,核心必记

  (1)程序框图

  程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形、

  在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序、

  (2)常见的程序框、流程线及各自表示的功能

  图形符号名称功能

  终端框(起止框)表示一个算法的起始和结束

  输入、输出框表示一个算法输入和输出的信息

  处理框(执行框)赋值、计算

  判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”

  流程线连接程序框

  ○连接点连接程序框图的两部分

  (3)算法的基本逻辑结构

  ①算法的三种基本逻辑结构

  算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的

  ②顺序结构

  顺序结构是由若干个依次执行的步骤组成的`这是任何一个算法都离不开的基本结构,用程序框图表示为:

  [问题思考]

  (1)一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束吗?

  提示:由程序框图的概念可知一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束、

  (2)顺序结构是任何算法都离不开的基本结构吗?

  提示:根据算法基本逻辑结构可知顺序结构是任何算法都离不开的基本结构、

  [课前反思]

  通过以上预习,必须掌握的几个知识点:

  (1)程序框图的概念:

  (2)常见的程序框、流程线及各自表示的功能:

  (3)算法的三种基本逻辑结构:

  (4)顺序结构的概念及其程序框图的表示:

  问题背景:计算1×2+3×4+5×6+…+99×100。

  [思考1]能否设计一个算法,计算这个式子的值。

  提示:能。

  [思考2]能否采用更简洁的方式表述上述算法过程。

  提示:能,利用程序框图。

  [思考3]画程序框图时应遵循怎样的规则?

  名师指津:

  (1)使用标准的框图符号。

  (2)框图一般按从上到下、从左到右的方向画。

  (3)除判断框外,其他程序框图的符号只有一个进入点和一个退出点,判断框是一个具有超过一个退出点的程序框。

  (4)在图形符号内描述的语言要非常简练清楚。

  (5)流程线不要忘记画箭头,因为它是反映流程执行先后次序的,如果不画出箭头就难以判断各框的执行顺序。

高中数学教案9

  教学目的:

  掌握圆的标准方程,并能解决与之有关的问题

  教学重点:

  圆的标准方程及有关运用

  教学难点:

  标准方程的'灵活运用

  教学过程:

  一、导入新课,探究标准方程

  二、掌握知识,巩固练习

  练习:

  1、说出下列圆的方程

  ⑴圆心(3,—2)半径为5

  ⑵圆心(0,3)半径为3

  2、指出下列圆的圆心和半径

  ⑴(x—2)2+(y+3)2=3

  ⑵x2+y2=2

  ⑶x2+y2—6x+4y+12=0

  3、判断3x—4y—10=0和x2+y2=4的位置关系

  4、圆心为(1,3),并与3x—4y—7=0相切,求这个圆的方程

  三、引伸提高,讲解例题

  例1、圆心在y=—2x上,过p(2,—1)且与x—y=1相切求圆的方程(突出待定系数的数学方法)

  练习:1、某圆过(—2,1)、(2,3),圆心在x轴上,求其方程。

  2、某圆过A(—10,0)、B(10,0)、C(0,4),求圆的方程。

  例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

  例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

  四、小结练习P771,2,3,4

  五、作业P811,2,3,4

高中数学教案10

  猴子搬香蕉

  一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里?

  解答:

  100只香蕉分两次,一次运50只,走1米,再回去搬另外50只,这样走了1米的时候,前50只吃掉了两只,后50只吃掉了1只,剩下48+49只;两米的时候剩下46+48只;...到16米的时候剩下(50-2×16)+(50-16)=18+34只;17米的时候剩下16+33只,共49只;然后把剩下的这49只一次运回去,要走剩下的33米,每米吃一个,到家还有16个香蕉。

  河岸的距离

  两艘轮船在同一时刻驶离河的两岸,一艘从A驶往B,另一艘从B开往A,其中一艘开得比另一艘快些,因此它们在距离较近的岸500公里处相遇。到达预定地点后,每艘船要停留15分钟,以便让乘客上下船,然后它们又返航。这两艘渡轮在距另一岸100公里处重新相遇。试问河有多宽?

  解答:

  当两艘渡轮在x点相遇时,它们距A岸500公里,此时它们走过的距离总和等于河的宽度。当它们双方抵达对岸时,走过的总长度

  等于河宽的两倍。在返航中,它们在z点相遇,这时两船走过的距离之和等于河宽的三倍,所以每一艘渡轮现在所走的距离应该等于它们第一次相遇时所走的距离的三倍。在两船第一次相遇时,有一艘渡轮走了500公里,所以当它到达z点时,已经走了三倍的距离,即1500公里,这个距离比河的宽度多100公里。所以,河的宽度为1400公里。每艘渡轮的上、下客时间对答案毫无影响。

  变量交换

  不使用任何其他变量,交换a,b变量的值?

  分析与解答

  a = a+b

  b = a-b

  a= a-b

  步行时间

  某公司的办公大楼在市中心,而公司总裁温斯顿的家在郊区一个小镇的附近。他每次下班以后都是乘同一次市郊火车回小镇。小镇车站离家还有一段距离,他的私人司机总是在同一时刻从家里开出轿车,去小镇车站接总裁回家。由于火车与轿车都十分准时,因此,火车与轿车每次都是在同一时刻到站。

  有一次,司机比以往迟了半个小时出发。温斯顿到站后,找不到

  他的车子,又怕回去晚了遭老婆骂,便急匆匆沿着公路步行往家里走,途中遇到他的轿车正风驰电掣而来,立即招手示意停车,跳上车子后也顾不上骂司机,命其马上掉头往回开。回到家中,果不出所料,他老婆大发雷霆:“又到哪儿鬼混去啦!你比以往足足晚回了22分钟??”。温斯顿步行了多长时间?

  解答:

  假如温斯顿一直在车站等候,那么由于司机比以往晚了半小时出发,因此,也将晚半小时到达车站。也就是说,温斯顿将在车站空等半小时,等他的轿车到达后坐车回家,从而他将比以往晚半小时到家。而现在温斯顿只比平常晚22分钟到家,这缩短下来的8分钟是如果总裁在火车站死等的.话,司机本来要花在从现在遇到温斯顿总裁的地点到火车站再回到这个地点上的时间。这意味着,如果司机开车从现在遇到总裁的地点赶到火车站,单程所花的时间将为4分钟。因此,如果温斯顿等在火车站,再过4分钟,他的轿车也到了。也就是说,他如果等在火车站,那么他也已经等了30-4=26分钟了。但是惧内的温斯顿总裁毕竟没有等,他心急火燎地赶路,把这26分钟全都花在步行上了。

  因此,温斯顿步行了26分钟。

  付清欠款

  有四个人借钱的数目分别是这样的:阿伊库向贝尔借了10美元;

  贝尔向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊库借了40美元。碰巧四个人都在场,决定结个账,请问最少只需要动用多少美金就可以将所有欠款一次付清?

  解答:

  贝尔、查理、迪克各自拿出10美元给阿伊库就可解决问题了。这样的话只动用了30美元。最笨的办法就是用100美元来一一付清。

  贝尔必须拿出10美元的欠额,查理和迪克也一样;而阿伊库则要收回借出的30美元。再复杂的问题只要有条理地分析就会很简单。养成经常性地归纳整理、摸索实质的好习惯。

  一美元纸币

  注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值。

  一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。当这三位男士同时站起来付帐的时候,出现了以下的情况:

  (1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。

  (2)这四人中没有一人能够兑开任何一枚硬币。

  (3)一个叫卢的男士要付的账单款额最大,一位叫莫的男士要

  付的帐单款额其次,一个叫内德的男士要付的账单款额最小。

  (4)每个男士无论怎样用手中所持的硬币付账,女店主都无法找清零钱。

  (5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己的账单而无需找零。

  (6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先所持的硬币没有一枚面值相同。

  (7)随着事情的进一步发展,又出现如下的情况:

  (8)在付清了账单而且有两位男士离开以后,留下的男士又买了一些糖果。这位男士本来可以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部硬币都找给了他。

  现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美元的纸币付了糖果钱?

  解答:

  对题意的以下两点这样理解:

  (2)中不能换开任何一个硬币,指的是如果任何一个人不能有2个5分,否则他能换1个10分硬币。

  (6)中指如果A,B换过,并且A,C换过,这就是两次交换。

高中数学教案11

  一、教学目标

  知识与技能:

  理解任意角的概念(包括正角、负角、零角)与区间角的概念。

  过程与方法:

  会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

  情感态度与价值观:

  1、提高学生的推理能力;

  2、培养学生应用意识。

  二、教学重点、难点:

  教学重点:

  任意角概念的理解;区间角的集合的书写。

  教学难点:

  终边相同角的集合的表示;区间角的集合的书写。

  三、教学过程

  (一)导入新课

  1、回顾角的定义

  ①角的.第一种定义是有公共端点的两条射线组成的图形叫做角。

  ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  (二)教学新课

  1、角的有关概念:

  ①角的定义:

  角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  ②角的名称:

  注意:

  ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

  ⑵零角的终边与始边重合,如果α是零角α =0°;

  ⑶角的概念经过推广后,已包括正角、负角和零角。

  ⑤练习:请说出角α、β、γ各是多少度?

  2、象限角的概念:

  ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

  例1、如图⑴⑵中的角分别属于第几象限角?

高中数学教案12

  教学目标:

  1、理解并掌握曲线在某一点处的切线的概念;

  2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;

  3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化

  问题的能力及数形结合思想。

  教学重点:

  理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。

  教学难点:

  用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。

  教学过程:

  一、问题情境

  1、问题情境。

  如何精确地刻画曲线上某一点处的变化趋势呢?

  如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。

  如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。

  因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。

  2、探究活动。

  如图所示,直线l1,l2为经过曲线上一点P的两条直线,

  (1)试判断哪一条直线在点P附近更加逼近曲线;

  (2)在点P附近能作出一条比l1,l2更加逼近曲线的'直线l3吗?

  (3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?

  二、建构数学

  切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。

  思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

  三、数学运用

  例1 试求在点(2,4)处的切线斜率。

  解法一 分析:设P(2,4),Q(xQ,f(xQ)),

  则割线PQ的斜率为:

  当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;

  当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。

  从而曲线f(x)=x2在点(2,4)处的切线斜率为4。

  解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:

  当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。

  练习 试求在x=1处的切线斜率。

  解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:

  当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。

  小结 求曲线上一点处的切线斜率的一般步骤:

  (1)找到定点P的坐标,设出动点Q的坐标;

  (2)求出割线PQ的斜率;

  (3)当时,割线逼近切线,那么割线斜率逼近切线斜率。

  思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

  解 设

  所以,当无限趋近于0时,无限趋近于点处的切线的斜率。

  变式训练

  1。已知,求曲线在处的切线斜率和切线方程;

  2。已知,求曲线在处的切线斜率和切线方程;

  3。已知,求曲线在处的切线斜率和切线方程。

  课堂练习

  已知,求曲线在处的切线斜率和切线方程。

  四、回顾小结

  1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。

  2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。

  五、课外作业

高中数学教案13

  教学目标

  (1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

  (2)理解直线与二元一次方程的关系及其证明

  (3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

  教学重点、难点:直线方程的一般式.直线与二元一次方程 ( 、 不同时为0)的对应关系及其证明.

  教学用具:计算机

  教学方法:启发引导法,讨论法

  教学过程

  下面给出教学实施过程设计的简要思路:

  教学设计思路

  (一)引入的设计

  前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

  问:说出过点 (2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是 ,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

  肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

  问:求出过点 , 的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是 (或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

  肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.

  启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

  学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

  【问题1】“任意直线的方程都是二元一次方程吗?”

  (二)本节主体内容教学的设计

  这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

  学生或独立研究,或合作研究,教师巡视指导.

  经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

  思路一:…

  思路二:…

  ……

  教师组织评价,确定最优方案(其它待课下研究)如下:

  按斜率是否存在,任意直线 的位置有两种可能,即斜率 存在或不存在.

  当 存在时,直线 的截距 也一定存在,直线 的方程可表示为 ,它是二元一次方程.

  当 不存在时,直线 的方程可表示为 形式的方程,它是二元一次方程吗?

  学生有的.认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

  平面直角坐标系中直线 上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  综合两种情况,我们得出如下结论:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于 、 的二元一次方程.

  至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成 或 的形式,准确地说应该是“要么形如 这样,要么形如 这样的方程”.

  同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

  学生们不难得出:二者可以概括为统一的形式.

  这样上边的结论可以表述如下:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如 (其中 、 不同时为0)的二元一次方程.

  启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

  【问题2】任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线吗?

  不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?

  师生共同讨论,评价不同思路,达成共识:

  回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程 (其中 、 不同时为0)系数 是否为0恰好对应斜率 是否存在,即

  (1)当 时,方程可化为

  这是表示斜率为 、在 轴上的截距为 的直线.

  (2)当 时,由于 、 不同时为0,必有 ,方程可化为

  这表示一条与 轴垂直的直线.

  因此,得到结论:

  在平面直角坐标系中,任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线.

  为方便,我们把 (其中 、 不同时为0)称作直线方程的一般式是合理的.

  【动画演示】

  演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.

  至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

  (三)练习巩固、总结提高、板书和作业等环节的设计

  略

高中数学教案14

  整体设计

  教学分析

  我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质。从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数。进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂。

  教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题。前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值。后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫。

  本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值。

  根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持。

  三维目标

  1、通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质。掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质。培养学生观察分析、抽象类比的能力。

  2、掌握根式与分数指数幂的互化,渗透“转化”的数学思想。通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理。

  3、能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力。

  4、通过训练及点评,让学生更能熟练掌握指数幂的运算性质。展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美。

  重点难点

  教学重点

  (1)分数指数幂和根式概念的理解。

  (2)掌握并运用分数指数幂的运算性质。

  (3)运用有理指数幂的性质进行化简、求值。

  教学难点

  (1)分数指数幂及根式概念的理解。

  (2)有理指数幂性质的灵活应用。

  课时安排

  3课时

  教学过程

  第1课时

  作者:路致芳

  导入新课

  思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的。教师板书本节课题:指数函数——指数与指数幂的运算。

  思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算。

  推进新课

  新知探究

  提出问题

  (1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?

  (2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?

  (3)根据上面的结论我们能得到一般性的结论吗?

  (4)可否用一个式子表达呢?

  活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维。

  讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.

  (2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根。一个数的五次方等于a,则这个数叫a的五次方根。一个数的六次方等于a,则这个数叫a的六次方根。

  (3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根。

  (4)用一个式子表达是,若xn=a,则x叫a的n次方根。

  教师板书n次方根的意义:

  一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整数集。

  可以看出数的平方根、立方根的概念是n次方根的概念的特例。

  提出问题

  (1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目)。

  ①4的平方根;②±8的立方根;③16的`4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。

  (2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?

  (3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?

  (4)任何一个数a的偶次方根是否存在呢?

  活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路。

  讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.

  (2)方根的指数是2,3,4,5,7…特点是有奇数和偶数。总的来看,这些数包括正数,负数和零。

  (3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数。0的任何次方根都是0.

  (4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数。

  类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:

  ①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0)。

  ②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示。

  ③负数没有偶次方根;0的任何次方根都是零。

  上面的文字语言可用下面的式子表示:

  a为正数:n为奇数,a的n次方根有一个为na,n为偶数,a的n次方根有两个为±na.

  a为负数:n为奇数,a的n次方根只有一个为na,n为偶数,a的n次方根不存在。

  零的n次方根为零,记为n0=0.

  可以看出数的平方根、立方根的性质是n次方根的性质的特例。

  思考

  根据n次方根的性质能否举例说明上述几种情况?

  活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题。

  解:答案不,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等。其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式。

  根式的概念:

  式子na叫做根式,其中a叫做被开方数,n叫做根指数。

  如3-27中,3叫根指数,-27叫被开方数。

  思考

  nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?

  活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论。教师点拨,注意归纳整理。

  〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。

  解答:根据n次方根的意义,可得:(na)n=a.

  通过探究得到:n为奇数,nan=a.

  n为偶数,nan=|a|=a,-a,a≥0,a<0.

  因此我们得到n次方根的运算性质:

  ①(na)n=a.先开方,再乘方(同次),结果为被开方数。

  ②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数。

  n为偶数,nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再开方(同次),结果为被开方数的绝对值。

  应用示例

  思路1

  例求下列各式的值:

  (1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。

  活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析。观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药。求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数。

  解:(1)3(-8)3=-8;

  (2)(-10)2=10;

  (3)4(3-π)4=π-3;

  (4)(a-b)2=a-b(a>b)。

  点评:不注意n的奇偶性对式子nan的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用。

  变式训练

  求出下列各式的值:

  (1)7(-2)7;

  (2)3(3a-3)3(a≤1);

  (3)4(3a-3)4.

  解:(1)7(-2)7=-2,

  (2)3(3a-3)3(a≤1)=3a-3,

  (3)4(3a-3)4=

  点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解。

  思路2

  例1下列各式中正确的是()

  A.4a4=a

  B.6(-2)2=3-2

  C.a0=1

  D.10(2-1)5=2-1

  活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答。

  解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=|a|,故A项错。

  (2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错。

  (3)a0=1是有条件的,即a≠0,故C项也错。

  (4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确。所以答案选D.

  答案:D

  点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心。

  例2 3+22+3-22=__________.

  活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式。正确分析题意是关键,教师提示,引导学生解题的思路。

  解析:因为3+22=1+22+(2)2=(1+2)2=2+1,

  3-22=(2)2-22+1=(2-1)2=2-1,

  所以3+22+3-22=22.

  答案:22

  点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式。

  思考

  上面的例2还有别的解法吗?

  活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消。同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法。

  另解:利用整体思想,x=3+22+3-22,

  两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

  点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解。

  变式训练

  若a2-2a+1=a-1,求a的取值范围。

  解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,

  即a-1≥0,

  所以a≥1.

  点评:利用方根的运算性质转化为去绝对值符号,是解题的关键。

  知能训练

  (教师用多媒体显示在屏幕上)

  1、以下说法正确的是()

  A.正数的n次方根是一个正数

  B.负数的n次方根是一个负数

  C.0的n次方根是零

  D.a的n次方根用na表示(以上n>1且n∈正整数集)

  答案:C

  2、化简下列各式:

  (1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

  答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。

  3、计算7+40+7-40=__________.

  解析:7+40+7-40

  =(5)2+25?2+(2)2+(5)2-25?2+(2)2

  =(5+2)2+(5-2)2

  =5+2+5-2

  =25.

  答案:25

  拓展提升

  问题:nan=a与(na)n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明。

  活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义。

  通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下。再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论。

  解:(1)(na)n=a(n>1,n∈N)。

  如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=na一定是它的一个n次方根,所以(na)n=a恒成立。

  例如:(43)4=3,(3-5)3=-5.

  (2)nan=a,|a|,当n为奇数,当n为偶数。

  当n为奇数时,a∈R,nan=a恒成立。

  例如:525=2,5(-2)5=-2.

  当n为偶数时,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,

  即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有条件的。

  点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解。

  课堂小结

  学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上。

  1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整数集。用式子na表示,式子na叫根式,其中a叫被开方数,n叫根指数。

  (1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0)。

  (2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示。

  (3)负数没有偶次方根。0的任何次方根都是零。

  2、掌握两个公式:n为奇数时,(na)n=a,n为偶数时,nan=|a|=a,-a,a≥0,a<0.

  作业

  课本习题2.1A组1.

  补充作业:

  1、化简下列各式:

  (1)681;(2)15-32;(3)6a2b4.

  解:(1)681=634=332=39;

  (2)15-32=-1525=-32;

  (3)6a2b4=6(|a|?b2)2=3|a|?b2.

  2、若5

  解析:因为5

  答案:2a-13

  3.5+26+5-26=__________.

  解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,

  不难看出5+26=(3+2)2=3+2.

  同理5-26=(3-2)2=3-2.

  所以5+26+5-26=23.

  答案:23

  设计感想

  学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学。

  第2课时

  作者:郝云静

  导入新课

  思路1.碳14测年法。原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平。而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失。对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半)。引出本节课题:指数与指数幂的运算之分数指数幂。

  思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的。这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂。

  推进新课

  新知探究

  提出问题

  (1)整数指数幂的运算性质是什么?

  (2)观察以下式子,并总结出规律:a>0,

  ①;

  ②a8=(a4)2=a4=,;

  ③4a12=4(a3)4=a3=;

  ④2a10=2(a5)2=a5= 。

  (3)利用(2)的规律,你能表示下列式子吗?

  ,,,(x>0,m,n∈正整数集,且n>1)。

  (4)你能用方根的意义来解释(3)的式子吗?

  (5)你能推广到一般的情形吗?

  活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示。

  讨论结果:(1)整数指数幂的运算性质:an=a?a?a?…?a,a0=1(a≠0);00无意义;

  a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

  (2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。实质上①5a10=,②a8=,③4a12=,④2a10=结果的a的指数是2,4,3,5分别写成了105,82,124,105,形式上变了,本质没变。

  根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式)。

  (3)利用(2)的规律,453=,375=,5a7=,nxm= 。

  (4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。

  结果表明方根的结果和分数指数幂是相通的。

  (5)如果a>0,那么am的n次方根可表示为nam=,即=nam(a>0,m,n∈正整数集,n>1)。

  综上所述,我们得到正数的正分数指数幂的意义,教师板书:

  规定:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1)。

  提出问题

  (1)负整数指数幂的意义是怎样规定的?

  (2)你能得出负分数指数幂的意义吗?

  (3)你认为应怎样规定零的分数指数幂的意义?

  (4)综合上述,如何规定分数指数幂的意义?

  (5)分数指数幂的意义中,为什么规定a>0,去掉这个规定会产生什么样的后果?

  (6)既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?

  活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a>0的必要性,教师及时作出评价。

  讨论结果:(1)负整数指数幂的意义是:a-n=1an(a≠0),n∈N+。

  (2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义。

  规定:正数的负分数指数幂的意义是= =1nam(a>0,m,n∈=N+,n>1)。

  (3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义。

  (4)教师板书分数指数幂的意义。分数指数幂的意义就是:

  正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是= =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义。

  (5)若没有a>0这个条件会怎样呢?

  如=3-1=-1,=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的。因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子3a2=,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上。

  (6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数。

  有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

  ①ar?as=ar+s(a>0,r,s∈Q),

  ②(ar)s=ars(a>0,r,s∈Q),

  ③(a?b)r=arbr(a>0,b>0,r∈Q)。

  我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题。

  应用示例

  例1求值:(1);(2);(3)12-5;(4) 。

  活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,12写成2-1,1681写成234,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来。

  解:(1) =22=4;

  (2)=5-1=15;

  (3)12-5=(2-1)-5=2-1×(-5)=32;

  (4)=23-3=278.

  点评:本例主要考查幂值运算,要按规定来解。在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如=382=364=4.

  例2用分数指数幂的形式表示下列各式。

  a3?a;a2?3a2;a3a(a>0)。

  活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结。

  解:a3?a=a3? =;

  a2?3a2=a2? =;

  a3a= 。

  点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算。对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数。

  例3计算下列各式(式中字母都是正数)。

  (1);

  (2)。

  活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤。

  解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;

  (2)=m2n-3=m2n3.

  点评:分数指数幂不表示相同因式的积,而是根式的另一种写法。有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了。

  本例主要是指数幂的运算法则的综合考查和应用。

  变式训练

  求值:(1)33?33?63;

  (2)627m3125n64.

  解:(1)33?33?63= =32=9;

  (2)627m3125n64= =9m225n4=925m2n-4.

  例4计算下列各式:

  (1)(325-125)÷425;

  (2)a2a?3a2(a>0)。

  活动:先由学生观察以上两个式子的特征,然后分析,化为同底。利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答。

  解:(1)原式=

  = =65-5;

  (2)a2a?3a2= =6a5.

  知能训练

  课本本节练习1,2,3

  【补充练习】

  教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励。

  1、(1)下列运算中,正确的是()

  A.a2?a3=a6 B.(-a2)3=(-a3)2

  C.(a-1)0=0 D.(-a2)3=-a6

  (2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意义的是()

  A.①② B.①③ C.①②③④ D.①③④

  (3)(34a6)2?(43a6)2等于()

  A.a B.a2 C.a3 D.a4

  (4)把根式-25(a-b)-2改写成分数指数幂的形式为()

  A. B.

  C. D.

  (5)化简的结果是()

  A.6a B.-a C.-9a D.9a

  2、计算:(1) --17-2+ -3-1+(2-1)0=__________.

  (2)设5x=4,5y=2,则52x-y=__________.

  3、已知x+y=12,xy=9且x

  答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8

  3、解:。

  因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.

  又因为x

  所以原式= =12-6-63=-33.

  拓展提升

  1、化简:。

  活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到:

  x-1= -13=;

  x+1= +13=;

  。

  构建解题思路教师适时启发提示。

  解:

  =

  =

  =

  = 。

  点拨:解这类题目,要注意运用以下公式,

  =a-b,

  =a± +b,

  =a±b.

  2、已知,探究下列各式的值的求法。

  (1)a+a-1;(2)a2+a-2;(3) 。

  解:(1)将,两边平方,得a+a-1+2=9,即a+a-1=7;

  (2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+ a-2=47;

  (3)由于,

  所以有=a+a-1+1=8.

  点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值。

  课堂小结

  活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流。同时教师用投影仪显示本堂课的知识要点:

  (1)分数指数幂的意义就是:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是= =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义。

  (2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数。

  (3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

  ①ar?as=ar+s(a>0,r,s∈Q),

  ②(ar)s=ars(a>0,r,s∈Q),

  ③(a?b)r=arbr(a>0,b>0,r∈Q)。

  (4)说明两点:

  ①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系。

  ②整数指数幂的运算性质对任意的有理数指数幂也同样适用。因而分数指数幂与根式可以互化,也可以利用=am来计算。

  作业

  课本习题2.1A组2,4.

  设计感想

  本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务。

  第3课时

  作者:郑芳鸣

  导入新课

  思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数。并且知道,在有理数到实数的扩充过程中,增添的数是无理数。对无理数指数幂,也是这样扩充而来。既然如此,我们这节课的主要内容是:教师板书本堂课的课题〔指数与指数幂的运算(3)〕之无理数指数幂。

  思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本节课的课题。

  推进新课

  新知探究

  提出问题

  (1)我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?

  (2)多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律?

  2的过剩近似值

  的近似值

  1.5 11.180 339 89

  1.42 9.829 635 328

  1.415 9.750 851 808

  1.414 3 9.739 872 62

  1.414 22 9.738 618 643

  1.414 214 9.738 524 602

  1.414 213 6 9.738 518 332

  1.414 213 57 9.738 517 862

  1.414 213 563 9.738 517 752

  … …

  的近似值

  2的不足近似值

  9.518 269 694 1.4

  9.672 669 973 1.41

  9.735 171 039 1.414

  9.738 305 174 1.414 2

  9.738 461 907 1.414 21

  9.738 508 928 1.414 213

  9.738 516 765 1.414 213 5

  9.738 517 705 1.414 213 56

  9.738 517 736 1.414 213 562

  … …

  (3)你能给上述思想起个名字吗?

  (4)一个正数的无理数次幂到底是一个什么性质的数呢?如,根据你学过的知识,能作出判断并合理地解释吗?

  (5)借助上面的结论你能说出一般性的结论吗?

  活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:

  问题(1)从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向。

  问题(2)对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联。

  问题(3)上述方法实际上是无限接近,最后是逼近。

  问题(4)对问题给予大胆猜测,从数轴的观点加以解释。

  问题(5)在(3)(4)的基础上,推广到一般的情形,即由特殊到一般。

  讨论结果:(1)1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值。

  (2)第一个表:从大于2的方向逼近2时,就从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。

  第二个表:从小于2的方向逼近2时,就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。

  从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以说从两个方向无限地接近,即逼近,所以是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.414 3,51.414 22,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示的点靠近,但这个点一定在数轴上,由此我们可得到的结论是一定是一个实数,即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5.

  充分表明是一个实数。

  (3)逼近思想,事实上里面含有极限的思想,这是以后要学的知识。

  (4)根据(2)(3)我们可以推断是一个实数,猜测一个正数的无理数次幂是一个实数。

  (5)无理数指数幂的意义:

  一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数。

  也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数。我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂。

  提出问题

  (1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?

  (2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢?

  (3)你能给出实数指数幂的运算法则吗?

  活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳。

  对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明。

  对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通。

  对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了。

  讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱。

  (2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂。类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则:

  ①ar?as=ar+s(a>0,r,s都是无理数)。

  ②(ar)s=ars(a>0,r,s都是无理数)。

  ③(a?b)r=arbr(a>0,b>0,r是无理数)。

  (3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂。

  实数指数幂的运算性质:

  对任意的实数r,s,均有下面的运算性质:

  ①ar?as=ar+s(a>0,r,s∈R)。

  ②(ar)s=ars(a>0,r,s∈R)。

  ③(a?b)r=arbr(a>0,b>0,r∈R)。

  应用示例

  例1利用函数计算器计算。(精确到0.001)

  (1)0.32.1;(2)3.14-3;(3);(4) 。

  活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按xy键,再按幂指数2.1,最后按=,即可求得它的值;

  对于(2),先按底数3.14,再按xy键,再按负号-键,再按3,最后按=即可;

  对于(3),先按底数3.1,再按xy键,再按3÷4,最后按=即可;

  对于(4),这种无理指数幂,可先按底数3,其次按xy键,再按键,再按3,最后按=键。有时也可按2ndf或shift键,使用键上面的功能去运算。

  学生可以相互交流,挖掘计算器的用途。

  解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.

  点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可。

  例2求值或化简。

  (1)a-4b23ab2(a>0,b>0);

  (2)(a>0,b>0);

  (3)5-26+7-43-6-42.

  活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律。

  解:(1)a-4b23ab2= =3b46a11 。

  点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示。

高中数学教案15

  一、单元教学内容

  (1)算法的基本概念

  (2)算法的基本结构:顺序、条件、循环结构

  (3)算法的基本语句:输入、输出、赋值、条件、循环语句

  二、单元教学内容分析

  算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的.能力,提高逻辑思维能力

  三、单元教学课时安排:

  1、算法的基本概念3课时

  2、程序框图与算法的基本结构5课时

  3、算法的基本语句2课时

  四、单元教学目标分析

  1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

  2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

  3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

  4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  五、单元教学重点与难点分析

  1、重点

  (1)理解算法的含义(2)掌握算法的基本结构(3)会用算法语句解决简单的实际问题

  2、难点

  (1)程序框图(2)变量与赋值(3)循环结构(4)算法设计

  六、单元总体教学方法

  本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

  七、单元展开方式与特点

  1、展开方式

  自然语言→程序框图→算法语句

  2、特点

  (1)螺旋上升分层递进(2)整合渗透前呼后应(3)三线合一横向贯通(4)弹性处理多样选择

  八、单元教学过程分析

  1.算法基本概念教学过程分析

  对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

  2.算法的流程图教学过程分析

  对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

  3.基本算法语句教学过程分析

  经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,

  4.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  九、单元评价设想

  1.重视对学生数学学习过程的评价

  关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

  2.正确评价学生的数学基础知识和基本技能

  关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

【高中数学教案】相关文章:

高中数学教案05-20

高中数学教案01-21

高中数学教案范文06-29

高中数学教案直线的方程12-28

高中数学教案范例[15篇]06-19

高中数学教案(锦集15篇)10-26

初中数学教案04-15

【精选】小学数学教案07-28

小学数学教案【经典】08-01