五年级数学教案

时间:2024-10-01 19:45:36 教案 我要投稿

五年级数学教案精选15篇

  作为一名为他人授业解惑的教育工作者,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。教案应该怎么写呢?下面是小编整理的五年级数学教案,仅供参考,欢迎大家阅读。

五年级数学教案精选15篇

五年级数学教案1

  【教学内容】新世纪小学数学五年级下册《长方体的认识》

  【教学目的】

  1.通过观察实物、动手操作等活动,使学生认识长方体的特征,形成长方体的概念。

  2.通过建立图形的表象的过程,发展学生的空间观念。

  3.通过动手操作,小组合作学习,培养学生的立体思维,使学生在合作交流中体验到学习数学的乐趣,体验到生活中处处有数学。

  【教学用具】长方体模型课件

  【教学过程】

  一、情境创设新课引入

  1.同学们听说过北京大学吗?上北大是老师读书时的梦想。你能从北大校区中找到我们曾经学过的图形吗?

  2.生活中,你还见过哪些物体的形状是长方体?

  3.揭题:这节课进一步认识长方体。(板书课题)

  二、引导探究小组合作

  1.认识长方体各部分的名称。

  (1)游戏:你们会玩摸长方体的游戏吗?

  A你怎么确定摸到的一定是呢?还有什么方法?(他是用“面”、“棱”、“顶点”描述这个长方体的。)

  B小组内互相说一说:什么是长方体的面、棱、顶点?(我想什么是长方体的“面、棱、顶点”你们可能有所了解,在资料袋中也有提示说明。)

  C全班反馈

  D教师小结:刚才同学们用自己的语言描述了长方体的面、棱、顶点。

  2.探究长方体面、棱、顶点的.特征

  A它们之间有联系吗?各有什么特征?

  B分小组活动。(下面小组分工合作,利用学具,通过摸一摸,数一数,量一量,剪一剪,比一比,看看有什么精彩的发现?将发现写在记录表上。)

  C全体发馈,同学提问。(根据小组的发现,谁能向他们提出问题?)

  D你们还有问题吗?

  E教师提问:正方体与长方体有关系吗?为什么说是特殊的长方体?(预设:认识长方体长、宽、高特征;正方体与长方体的关系)

  F教师小结:刚才同学们用自己的方法研究了长方体的特征,你可以画出一个长方体吗?

  3.教学如何画长方体。(如果这样放最多可以看见他的几个面?还有哪几个面看不见?)(在画图时,除了画前、后两个面是长方形,其它的面看上去成了平行四边形,实际上它还是长方形)

  三、运用新知体验价值

  1.如果现在只看到长方体的长、宽、高,你还能画出一个长方体吗?(闭上眼睛,画长方体。)

  2.说出长方体各个面的面积。说出长方体各个面的面积。

  3.猜一猜:根据长、宽、高长度,它可能是生活中的什么物体?

  4.做一个如图的长方体宝宝床的床架,至少需要多少分米长的木条?

  5.你准备选择下面哪一种尺寸的床板?(单位:分米)

  32×920×10

  四、全课总结拓展创新

  1.想一想:为何北大校区众多建筑设施的外观造型都是长方体呢?

  2.实验活动:用准备的材料做一个长方体(再次体验长方体的特征)。

五年级数学教案2

  在小学阶段,只是让学生在因数、倍数的基础上初步掌握质数、合数的概念,为后面学习求最大公因数、最小公倍数以及约分、通分打下基础。要求学生能用自己的方法找出100以内的质数,并熟练判断20以内的数哪个是质数,哪个是合数。

  学情分析

  1、学生对于抽象概念的学习积极性不高,理解概念和适时判断的能力还不强;

  2、学生观察1至20各数因数个数的规律还存在困难,对于概念的理解和判断会很模糊。

  教学目标

  1、帮助学生理解质数、合数的概念,熟记20以内的质数,能准确判断100以内的数是质数,还是合数。

  2、组织学生通过观察分析、动手操作、合作交流等方式理解概念、感受数学。

  3、活化抽象的'概念,增进学生应用数学的意识,激发学生学习数学的热情。

  教学重点和难点

  1、质数、合数的意义。

  2、质数、合数与奇数、偶数的区别。

五年级数学教案3

  【教学目标】

  1.知识与技能:会用计算器计算比较复杂的小数乘、除法,并有利用计算器进行计算的意识。

  2.过程与方法:在利用计算器进行计算时,学生能通过观察、分析发现算式中的规律,并能按规律直接填得数。

  3.情感、态度与价值观:在引导发现规律、描述规律的过程中,培养学生的逻辑推理能力,让学生体会数学中的美以及探究的乐趣。

  【教学重点】

  能用计算器探索计算规律,并能应用探索出的规律进行一些小数乘、除法的计算。

  【教学难点】

  发现规律。

  【教学准备】

  多媒体课件

  【教学过程】

  一、导入新课

  1.你能发现规律吗?

  2.出示:比一比谁算得快。

  32.47÷15=63.79÷5.2=

  学生自主计算并订正结果。

  3.教师引入:在计算这些题目时,同学们是不是感到很麻烦?这时我们可以使用计算器。用计算器还可以帮助我们探索一些规律呢!

  (板书课题:用计算器探索规律)

  二、新课学习

  1.出示教材例9例题。

  让学生用计算器计算下列各题。

  订正答案:

  1÷11=0.0909… 2÷11=0.1818…

  3÷11=0.2727… 4÷11=0.3636…

  5÷11=0.4545…

  师小结:这些都是循环小数。并引导学生观察、比较,你发现了哪些规律?在小

  组内交流讨论。

  引导学生说出规律:商是循环小数;循环节都是9的倍数。

  2.引导学生按规律写结果:同学们,通过用计算器计算,观察计算结果,我们发现了规律。现在大家能不能不计算,用发现的规律直接写出下面几题的商呢?(出示以下例题)

  6÷11=7÷11=8÷11= 9÷1l=

  学生汇报得出的结果。引导学生说一说,你是根据什么来写这些商的?

  (根据1÷11,2÷11,……,5÷11的结果得出的规律来写商的。)

  3.检验:同学们写出的规律对不对?用计算器来检验一下。

  学生自主验证计算结果,与自己得出的结果作比较。

  三、结论总结

  师:这节课学了什么知识?有什么收获?

  引导学生总结:

  1.用计算器计算省时省力又很精确。

  2.观察得到规律,不用计算器也能很快得出结果。

  四、课堂练习

  1.算一算,找规律:

  46×96= 69×64=

  14×82= 28×41=

  26×93= 39×62=

  ①等式左边的因数十位和个位上的.数字交换位置就是等式右边的因数。

  ②两个因数十位上数字的乘积等

  于个位上数字的乘积。

  2.明辨是非:

  (1)被除数和除数同时乘或除以一个相同的数(0除外),商不变。()

  (2)一个因数不变,另一因数乘或除以一个数(0除外),积也扩大或缩小相同的倍数。()

  (3)因为75÷4=18 3,所以750÷40=18 3。()

  (4)两个数相除,被除数扩大3倍,除数缩小3倍,商扩大9倍。()

  (5)因为360÷15=24,所以3600÷15=240,360÷5=8。()

  3.不计算,运用规律直接填出得数,再用计算器验算。

  6×0.7=

  6.6×6.7=

  6.66×66.7=

  6.666×666.7=

  想一想6.666×666.7整数部分有几个4,小数部分又是多少?

  4.用计算器计算前4题,试着写出后2题的积。

  3×7=

  3.3×6.7=

  3.33×66.7=

  3.333×666.7=

  3.3333×6666.7=

  3.33333×66666.7=

  3.333333×666666.7=

  你能用发现的规律接着写出下面一个算式吗?

  5.用计算器计算下面各题。

  1÷7=2÷7=

  3÷7=4÷7=

  5÷7=6÷7=

  (1)你能用发现的规律把后面两道算式的商写出来吗?

  (2)你发现了什么?

  五、作业布置

  1.先用计算器计算前面3题,仔细观察,再试着写出后面的得数。(保留6位小数)

  1÷7=2÷7=

  3÷7=4÷7=

  5÷7=6÷7=

  2.根据规律不计算直接写得数。

  5×5=25

  15×15=225

  25×25=625

  35×35=

  45×45=

  55×55=

  六、板书设计

  用计算器探索规律

  计算器:省时、省力、精确

  1122÷34=33

  111222÷334=333

  11112222÷3334=3333

  1111122222÷33334=33333

  ┆

  11111112222222÷33333334=333333

五年级数学教案4

  【教学内容】

  认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。

  【教学目标】

  1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

  【重点难点】

  理解因数和倍数的含义。

  【复习导入】

  1. 教师用课件出示口算题。

  10÷5= 16÷2=

  12÷3= 100÷25=

  220÷4= 18×4=

  25×4= 24×3=

  150×4= 20×86=

  学生口算

  2. 导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

  (板书课题:因数和倍数(1)

  【新课讲授】

  1.学习因数和倍数的概念

  (1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

  学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

  教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。

  谁来说一说其他的式子?

  学生回答。

  教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  (2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

  学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?

  学生回答,教师板书:倍数与因数是相互依存的。

  2.举例概括

  教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

  教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。

  教师同时板书。

  教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

  引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

  如:M÷N=P,M、N、P都是非0自然数,那么N和P是M的因数,M是N和P的倍数。

  A×B=C,A、B、C、都是非0自然数,那么A和B是C的因数,C是A和B的倍数。

  你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

  3、9、15、21、36

  学生独立思考并回答。

  【课堂作业】

  1.完成教材第5页“做一做”。

  2.完成教材第7页练习二第1题。

  3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

  4.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  【课堂小结】

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  因数和倍数(1)

  在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  因数和倍数一般指的是自然数,而且其中不包括0。

  倍数与因数是相互依存的。

  本节课的重点是掌握因数和倍数的概念,理解因数和倍数是相互依存的,知识内容比较抽象,知识点比较少,教学中,我采取让学生反复说,互相说的方式,让学生加深理解,提高他们自主学习和合作学习的能力。

  因数和倍数(2)

  【教学内容】

  一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。

  【教学目标】

  1.通过学习使学生掌握找一个数的因数,倍数的方法;

  2.学生能了解一个数的因数是有限的,倍数是无限的;

  3.能熟练地找一个数的因数和倍数;

  4.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

  【重点难点】

  掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。

  【复习导入】

  说出下列各式中谁是谁的因数?谁是谁的倍数?

  20÷4=5 6×3=18

  在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数, 你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。

  (板书课题:因数和倍数(2))

  【新课讲授】

  (一)找因数:

  1.出示例1:18的因数有哪几个?

  一个数的因数还不止一个,我们一起找找18的因数有哪些?

  学生尝试完成后汇报

  (18的因数有: 1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

  教师:18的因数中,最小的`是几?最大的是几?我们在写的时候一般都是从小到大排列的。

  2.用这样的方法,请你再找一找36的因数有哪些?

  小组合作交流后汇报,36的因数有: 1,2,3,4,6,9,12,18,36

  教师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  仔细看看,36的因数中,最小的是几,最大的是几?

  教师板书:一个数的最小因数是1,最大因数是它本身。

  3.你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

  4.其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

  从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

  (二)找倍数:

  1.我们一起找到了18的因数,那2的倍数你能找出来吗?

  小组合作交流后汇报,2的倍数有:2、4、6、8、10、16、……

  教师:为什么找不完?

  你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几?最大的你能找到吗?

  2.让学生完成做一做1、2小题:找3和5的倍数。汇报

  3的倍数有:3,6,9,12

  教师:这样写可以吗?为什么?应该怎么改呢?

  改写成:3的倍数有:3,6,9,12,……

  你是怎么找的?(用3分别乘以1,2,3,……)

  5的倍数有:5,10,15,20,……

  教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的倍数,5的倍数。

  教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

  (一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)【课堂作业】

  1.完成课本第7页练习二第2~5题。

  2.完成教材第8页练习二第6~8题。

  【课堂小结】我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  因数和倍数(2)

  一个数的因数的个数是有限的,,最小的是1,最大的是它本身.

  一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数.

  本节课是在学生认识因数和倍数的基础上进行教学的,在找一个数的因数时,如何做到既不重复又不遗漏,对于刚刚对因数和倍数有感性认识的学生来说有一定的困难,教学时充分发挥小组学习的优势,在小组交流的过程中,学生对自己的方法进行反思,吸取同伴的好方法,很好的体现了自主探索和合作交流的教学理念。

五年级数学教案5

  首先,我对本节教材进行一些分析:

  一、教材分析:

  教材所处的地位和作用:

  本节课的主要内容是方程的定义,方程的性质和利用方程性质解方程。

  从知识结构上看:本节课是在学生学习了一定的算术知识(如整数,小数的四则运算及其应用),已初步接触了一些代数知识(如用字母表示数及其运算定律)的基础上,进一步学习的关键。这为过渡到下节的学习起着铺垫作用。

  从认知结构上看:本节课在初等代数中占有重要地位,中学生在学习代数的整个过程中,几乎都要接触这方面的知识。

  二、教育教学目标:

  根据本节课的地位和作用,依据教学大纲,以及学生已有的认知结构心理特征,我制定了如下目标:

  (1)知识目标:根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

  (2)能力目标:培养学生的分析能力应用所学知识解决实际问题的能力。

  (3)情感目标:通过教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。帮助学生养成自觉检验的学习习惯,培养学生的分析能力和应用能力,渗透代数的数学思想和方法。

  这三个目标将为后面的教学起到一个导向作用。

  三、重点与难点:

  那么根据上面的分析不难看出《解简易方程》这节课在整个教材中将起到承上启下的作用,特别是利用方程性质解未知数,它是后续知识发展的起点,学生对未知数的理解对今后一元一次方程,一元二次方程的学习起着决定作用,所以我认为这节课的重点是:

  (1)重点:理解方程的解和解方程的含义。

  另一方面,对于学生来说,弄清方程和等式的异同,正确设未知数,找出等量关系是很困难的,所以我认为这节课的难点是:

  (2)难点:掌握解方程的方法。

  五、教学过程:

  下面,对于如何突出重点,突破难点,从而实现教学目标,在教学过程中拟定计划进行如下操作:(1、复习铺垫;2、探究新知;3、例题解析;4、巩固练习;5、归纳小结;6、布置作业。)六个步骤

  1.复习铺垫:

  (1)抛出问题:

  师:同学们我们上节课学了方程的意义,你还记得什么叫方程吗?

  生:含有未知数的等式叫方程。

  提问的目的:让学生回忆旧知识,巩固旧知识,引出方的解、解方程的定义。结合引导复习的方法,激发学生的学习兴趣。

  (2)判断下面哪些是方程:

  师:你能判断下面哪些是方程吗?

  (1)a+24=73(2)4x<36+17(3)234÷a>12

  (4)72=x+16(5)x+85(6)25÷y=0.6

  生:(1)(4(6)是方程。

  师:你为什么说这三个是方程呢?

  生:因为它含有未知数,而且是等式)

  这样做的目的:在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式教法,课堂讨论法。巩固方程的性质,承接后面利用方程的性质解方程的应用。

  理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  2、探究新知

  (1)、看图写方程

  师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(看书上57页天平图)从图中你知道了什么?

  生:我知道杯子重100克,水重X克,合起来是250克。

  师:你能根据这幅图列出方程吗?

  生:100+X=250.

  这样做的目的:运用知识迁移,结合直观图例,应用方程的性

  质,让学生自主探索列出方程。

  (2)、求方程中的未知数

  师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

  生1:根据加减法之间的关系250-100=150,所以X=150.

  生2:根据数的组成100+150=250,所以X=150.

  生3:100+X=250=100+150,所以X=150.

  生4:假如在方程左右两边同时减去100,那么也可得出X=150.

  目的:这样的提问,有多种回答,锻炼学生的发散性思维,有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。

  (3)、验证方程中的未知数,引出方程的解和解方程两个概念。

  师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?

  生:对,因为X=150时方程左边和右边相等。

  师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们翻到课本57页,(使方程左右两边相等的未知数的值叫做方程的解,解出方程的解的过程叫解方程。)勾上这两句话并齐读三遍。

  这样做的目的:学生齐读的时候,我可以把解方程和方程的解的概念板书在黑板上,并且,在学生读的过程中学生可以加深印象。

  (4)辨析方程的`解和解方程两个概念

  师:方程的解是未知数的值,它是一个数,怎样判断一个数是不是方程的解呢?

  生:要看这个数能不能使方程左右两边相等。

  师:而解方程是求未知数的过程,是一个计算过程,它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。

  3、例题解析

  师:前几天我们学习了等式的性质,今天我们又学习了请根据等式的性质完成填空吗?

  (1)如果5+3=8,那么5+3-3=8()

  (2)如果50-13=37,那么50-13+13=50()

  (3)如果a-7=8,那么a-7+7=8()

  (4)如果X+9=45,那么X+9-9=45()

  师:你是根据什么填空的?

  生:等式的性质。

  师:等式有什么性质呢?我们齐来说一遍。

  2、理解方程与等式的联系,引出课题。

  师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)

  3、出示例1图,列出方程。

  师:图上画的是什么?你能列出方程吗?

  生:X+3=9

  师:这个方程用天平怎么表示呢?

  生:天平左边放X个和3个球,右边放9个球。(电脑显示)

  4、引导学生思考怎样解方程。

  师:我们解方程的目的是求X,怎样使天平一边只剩x呢?

  生:天平两边同时减去3个球。(电脑显示)

  师:天平两边还平衡吗?怎样反映在方程上呢?

  生:方程两边同时减3。(结合学生回答板书)

  师:为什么同时减3而不是其它数呢?

  生:方程两边同时减3就可以使方程一边只剩X。

  5、检验方程的解。

  师:X=6是不是方程的解呢?

  生:是,因为X=6是方程左边是6+3=9,右边是9,左右两边相等,所以X=6是方程X+3=9的解。

  6、强调解方程的格式步骤

  电脑显示:解方程要注意:

  (1)先写“解”,等号要对齐。

  (2)做完后要注意检验。

  2.学情分析:

  (1)学生特点分析:积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。

  (2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  (3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

  最后我来具体谈谈这一堂课的教学过程:

  三、教学程序及设想:

  (1)引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。抛出问题,什么叫方程?什么是方程的性质?让学生回忆上节课内容,引出方的解、解方程的定义。揭示课题:这节课我们就利用等式的性质来解简易方程。

  (2)由例题得出本课新的知识点:

  解方程:X+6=7.8;X-6=7.8;6X=7.8;X÷6=7.8。

  讲解例题。说明在方程的两边什么情况应该同时加,什么情况该同时减,什么情况该同时乘,什么情况该同时除?在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

  (3)接下来,我们用今天学习的知识解决实际问题。

  出示情景图:

  X元X元X元

  18元

  提问:从图中你知道了哪些信息?会列方程吗?然后说出图意并列出方程。

  (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  ①列出方程并解答:每个福娃X元,买5个共花80元。

  ②看题回答:1.6X=6.4(要解这个方程,方程两边应同时?)

  (看来解法掌握得不错,下面看谁的反应最快。)

  ①选择正确答案,说说你是怎样判断的?

  X+8=30的解是()A.X=22B.X=38

  0.3X=0.21的解是()A.X=7B.X=0.7

  X=5是方程()的解。A.15X=3B.6X=30

  X=30是方程()的解。A.0.2X=6B.2X=15

  (5)总结结论:知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。(这节课学习了什么?解简易方程的依据和方法是什么?)

  *(6)变式延伸:针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高进行重构,适当对题目进行引申,使教学的作用更加突出,有利于优等学生对知识的串联,累积,加工,从而达到举一反三的效果。(对有能力接受的学生)

  (7)板书:略

  (8)布置作业。P66第5—7题。

五年级数学教案6

  教学内容:观察物体

  教学目标:

  1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。

  2.培养学生从不同角度观察,分析事物的能力。

  3.培养学生构建简单的空间想象力。

  重点:帮助学生构建初步的空间想象力。

  难点:帮助学生构建初步的空间想象力。

  教学过程:

  一、谜语导入

  请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的.耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)

  二、合作探究

  (一)整体观察

  1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:

  你观察到的正方体是什么样的?

  在你的位置上观察,你看到了哪几个面?

  2.学生汇报交流。

  学生自由走动,观察。汇报交流。

  3.解释应用

  教师出示两个正方体的立体图,一个有虚线,另一个没有。

  提问:谁能用刚学到的知识解释一下正方体为什么这样画?

  学生解释说明。

  (二)分别从三个面进行观察(出示例1)

  1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。

  学生离开座位自由观察。

  2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。

  总结学生的发言:从不同的方向观察,所看到的形状是不一样的。

  三、拓展应用

  1.做教科书例2

  2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。

  学生玩游戏,教师指导。

  四、总结

  本节课你学会了什么?

  五、作业布置

  兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。

  1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。

  2.从一个面看到物体的形状,可以有多种不同的摆放方式。

  3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。

五年级数学教案7

  分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:

  一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。

  从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。

  二、渗透数学建模思想,强化用方程解答分数除法问题。

  从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的'应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。

  三、借助线段图分析数量关系,发挥其工具性。

  线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。

  本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。

  本单元的教育目标是:

  1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。

  2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。

  3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。

  4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。

  ●分数除法,安排4课时。

  第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。

  第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。

  第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。

  第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。

  分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。

五年级数学教案8

  教学内容:

  课本第52页。

  教学目标:

  1.掌握用计算器进行一些稍复杂的小数加、减法的计算方法,能正确进行计算,正确率达到90%以上。

  2.体会使用计算器工具进行计算更简单,更快捷,初步学会使用计算器探索一些简单的数学规律。

  3.体会数学学习的趣味性和挑战性。

  教学重点:

  用计算器正确计算稍复杂的小数加、减法的方法。

  教学难点:

  在计算器上暗处纯小数的简便方法,利用计算器探索规律。

  教学准备:

  课件

  教学过程:

  一、口算热身。(3分钟左右)

  算一组一位小数、两位小数的加减法(不进位、不退位),共8题。

  0.2+0.8= 0.76-0.36=

  5+4.8= 6.9-0.5=

  5.4+3.6= 7.72-6.52=

  3.6+2.1= 9.1-1.1=

  二、自学例3。(15分钟左右)

  1.明确例3中的数学信息及所需要解决的问题。

  出示:教材例3情境图。

  导入:图中有哪些数学信息?围绕导学单进行自主学习。

  2.自学。

  导学单(时间:5分钟)

  1.根据所求的问题列出算式,估算结果。

  2.尝试用计算器计算。(你遇到什么问题?)

  3.对照书本第52页例3的提示,自己的.方法不同在哪里?怎样按键更简便?

  4.模仿练习:用计算器计算下面各题。

  4.75+12.63=

  7.03-0.895=

  0.268+3.87=

  导学要点:

  在计算器上输入小数,可以按照顺序依次按键。

  用计算器再算一遍,进行检验。

  3.小组交流。

 交流内容

  1.你是怎样在计算器上输入买铅笔的钱数的?

  2.小数部分是0的小数还可以怎样按键?

  4.全班交流。

  分析学生在自学中出现的各种情况,给予适当点评。

  三、练习。(15分钟左右)

  (一)适应练习。

  1.第52页试一试,用计算器计算并验算。

  点拨:可以直接利用例3的得数来列式计算,也可以用100一次减去每种商品的金额。

  2.第52页练一练,比一比,看谁算得又对又快。

  同桌互相核对计算结果。

  提醒:

  要按照运算顺序连贯地进行计算。

  (二)比较练习。

  1.完成第53页练习九第1题。

  每桌南边的学生用笔算或口算进行计算;

  每桌北边的学生用计算器进行计算。

  2.完成第53页练习九第2题。

  用计算器进行计算并填表

  示范:

  用上月余额减去9月2日买米、油等的金额等于9月2日的余额。

  点拨:

  用上次余额减去本次用去的金额就等于本次余额。将两次收入相加等于合计

  收入,7次支出相加等于合计支出。

  (三)探索练习。

  第53页练习九第3题。

  用计算器计算上面三题

  思考:这三题有什么规律吗?

  用计算器完成第四题

  (四)应用练习。

  第53页练习九第四题

  先列式,再用计算器进行计算。

  (五)创编练习。

  1.小马虎在计算1.86加上一个一位小数时,由于错误地把数的末尾对齐,结

  果得到2.19,你能帮他算出正确答案吗?

  2.用计算器计算,探索规律。

  1122÷34=

  111222÷334=

  11112222÷3334=

  111111222222÷333334=

  四、课堂总结:

  通过这节课的学习,你学到了什么知识?

五年级数学教案9

  教学目标:

  1、引导学生通过观察、思考、归纳、总结等方法,掌握简单的时间单位的换算。

  2、引导学生从图片中获取有意义的数学信息,找出要解决的问题,通过独立思考、小组合作等方式解决问题,掌握解学问题的基本方法。

  3、通过教学,使学生体验数学与生活的密切联系,在运用所学知识解决问题的过程中,体验数学学习的乐趣。

  教学重点:

  1、掌握简单的时间单位的换算。

  2、建立计算经过时间的模型:终点时间—起点时间=经过的时间。

  3、渗透解决问题的三个步骤:阅读与理解、分析与解答、回顾与反思。

  教学难点:

  建立计算经过时间的模型:终点时间—起点时间=经过的时间。

  教学过程:

  一、导

  开学了,熊大和熊二从熊堡出发去学校,熊大用了2小时,熊二用了120分钟,熊大说它用的时间少,熊二说它的用时少,它俩谁也不甘示弱。同学们,请你们当裁判,它们俩究竟谁用的时间少,好吗?

  二、学

  (一)单位换算

  1、从熊堡到学校,熊大熊二谁用的时间少?为什么2时=120分?你是怎么想的?

  2、学生独立思考后,汇报:1时是60分,2时就是2个60分,也就是60+60=120分。

  3、同学间相互说一说。

  4、180秒=()分,你是怎么想的?

  5、练一练:3分=()秒

  600分=()时

  你是怎么想的.?你又是怎么算的?

  先独立思考,然后与你的同学交流交流。

  (二)时间计算

  9月1日,小明背着书包上学去了!(课件出示)

  三、析

  1、观察你从中获得了哪些有意义的数学信息?(小明7时30分离家,7时45分到校)你能提出什么数学问题?(小明从家到学校用了多长时间?)

  2、小明从家到学校用了多长时间?怎么解决这个问题呢?你有什么方法?先独立思考,然后与小组同学交流你的想法。

  3、小组合作交流,教师巡视指导,收集信息。

  4、学生汇报,课件出示

  (1)直接数一数,7:30到7:45分针走了15分钟。

  (2)7:30到7:45分针走了3个大格,是15分钟。

  (3)都是7时多,直接用45—30算出用了15分钟。

  5、小明从家到学校用了15分钟对吗?你是怎么想的?(7:30过15分钟就是7:45,15分钟是对的。)

  6、写上答语。(小明从家到学校用了15分钟。)

  7、你喜欢哪种方法?为什么?

  8、整理解决问题的基本方法。我们是怎么解决这个问题的?谁来说说?师做整理板书:阅读与理解→分析与解答→回顾与反思。

  四、练

  1、填一填。

  在○里填上>、<或=

  9分○90秒4时○24分1分15秒○65秒3时○200分140秒○2分1时30分○90秒

  2、做一做。

  小明去给外地打工的妈妈打电话,电话亭的营业时间,早上9:00开门,晚上8:00关门。小明8:40到达,他还要等多久呢?

  3、总结:今天的学习,你有哪些收获?

  4、作业:课本第7页第8题。

五年级数学教案10

  教学内容:

  长方体、正方体的体积计算

  教学目标:

  1.通过讲授,引导学生找出规律,总结出体积的公式。

  2.指导学生运用公式正确计算长方体、正方体的体积。

  3.培养学生积极思考、探索新知的思维品质。

  教学重点:

  长方体、正方体体积计算。

  教学难点:

  长方体、正方体体积计算

  教具运用:

  正方体木块若干。

  教学过程:

  一、复习导入

  1.什么叫体积?计量物体的体积常用的单位有哪些?

  2.怎样计算一个物体的体积呢?

  二、新课讲授

  1.长方体体积的计算。

  教师课件出示一块长方体积木,一块盖房用的大型砖板。

  (1)提问:它们的体积是多少?你是怎样想的?

  引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

  教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

  (2)观察操作,探究长方体的体积公式。

  小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

  学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

  说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

  学生独立思考,然后小组内讨论交流,得出结论。

  小结:长方体的.体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

  板书:长方体的体积=长宽高

  讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

  (3)质疑:求长方体的体积公式需要知道什么条件?

  2.探究正方体的体积公式。

  (1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

  (2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

  3.运用长方体的体积公式解决问题。

  (1)出示教材第30页的例1。

  (2)学生看图,理解题意。

  (3)说出题中所给信息,和所求问题。

  (4)指名说出长方体的体积公式。

  (5)指名学生上台板演过程,其他同学判断。

  (6)老师订正书写。V=abh=743=84(cm3)

  (7)看图,学生独立在练习本上完成。

  (8)指名板演,集体订正。

  三、课堂作业

  完成课本第31页做一做第1、2题。

  四、课堂小结

  1.这节课,你有什么收获?

  2.在计算长方体和正方体的体积时,要注意哪些问题?

  五、课后作业

  完成练习册中本课时练习。

  板书设计 :

  长方体和正方体的体积

  长方体的体积=长宽高

  V=abh

  正方体体积=棱长棱长棱长

  V=aaa=a3

五年级数学教案11

  教学目标

  1、联系长方体表面积在生活中的运用,培养学生用数学知识解决问题的意识。

  2、在摆、算、想象、猜想等学习活动中,培养学生有序思考、合理分类、化繁为简的思维方法,并发展空间观念。

  3、会根据实际需要,合理策划选择包装样式,体现解决问题策略的多样化。

  4、能用准确的数学语言描述思考过程。

  教学过程

  一、引入。

  师:生活中,常把几个长方体物体包成一个大长方体。这样就会有各种各样的包装。

  学生间相互交流了解的情况。

  师:前几天,我曾让大家去了解这方面的情况,谁来说说你带来了什么?

  生:火柴盒、香烟盒或药盒等。

  师:这节课,我们一起来讨论、研究问题。(揭题)。

  二、展开。

  1、师:下面我们研究两个相同情况。想一想:用两个相同的长方体物体包装,会有几种不同的.包法?

  2、试一试:要求摆得出,还要说得明白。

  交流:有哪几种?为了方便表达,最大面用字母A表示,次大面用字母B表示,最小面用字母C表示。

  归纳:三种不同包法:

  A面重叠(上下叠);

  B面重叠(前后叠);

  C面重叠(左右叠)。

  3、师:现在研究6个相同情况。2个有三种不同摆法,6个有几种呢?你能很快猜出有几种吗?

  生:6、7、8、9、10、12种等。

  师:那么,究竟有几种呢?想试试吗?(生:想!)

  师:两人一组,边摆边思考,怎样说才能让大家明白你的摆法?

  合作学习:

  (1)小组摆、交流。教师在巡视时及时向同学们推荐了同学中作记录的学习方法。并问:为什么要记呢?

  生:包装方式多,记一记,不会重复。

  (2)大组交流、汇报。

  两人一组汇报,要求一位同学边说边摆,另外一位同学选择相应的直观图贴在黑板上。

  学生汇报:总共有9种不同的包法。(见下图)

  师生归纳:按接触面思考:A、B、C各一种;AB、AC、BC各两种。

  师:这种方法怎么样?它是按什么思考的?

  生:按接触面来思考;这样思考有序,不容易漏掉。

  师:还有其他思考方法吗?能不能将问题简化,比如以两个一组作为一个整体,将两个A面重叠(上下叠)的长方体看作一个大长方体,这样就转化为3个长方体的包装问题了,可以有几种包法?

  生:按上下、前后、左右的方向拼摆,有3种包法。

  师:大家从中受到什么启发?还可以怎样考虑?。

  生:哦,我明白了!还可以将两个B面重叠(前后叠)的长方体看作一个大长方体,按上下、前后、左右的方向拼摆,又有3种包法。

  生:还可以将两个C面重叠(前后叠)的长方体看作。

  生:(抢着说)对,对!它也有3种包法。因此6个长方体共有33=9种不同的包法。

  师:这种方法怎么样?

  生:这种方式很好,很清楚。

  师:先把2个小长方体看作一个大长方体,那么6个小长方体就可以看作3个大长方体。2个小长方体间的位置不同,就得到了3个不同长方体的包装问题。这种将复杂的问题转化为已经解决简单问题,是我们解决问题的基本方法,很重要。

  4、师:现在我们来猜猜,哪些样式的表面积较大、较小?说理由,并算算。

  生:都是C面重叠的包装样式的表面积较大,因为重叠部分面积最小;上图第一列中的A面重叠、AB、AC面重叠的包装样式表面积较小,因为重叠部分面积较大

  师:哪个表面积更小些呢?

  生:可以算一算。

  师:假设A面面积为6,B面为3,C面为2。

  生:62+312+212=72,64+36+212=66,64+312+26=72。这几个表面积都比较小。

  三、讨论现实生活中的各种包装。

  教师取一种物品(火柴),先请大家猜可能的包装样式,再说说理由,结合实际谈想法。

  学生打开一包火柴观察后说,(见图)这种样式表面积小,也就是材料省。

  师:是不是厂商对商品的包装都考虑节省材料呢?

  生:不一定。

  师:分小组,互相观察带来的其他物品,说说自己的看法。

  学生纷纷举例说明:有的考虑经济、实用,有的考虑美观、大方,有的考虑方便不同的需要就有不同的标准。

  四、小结。

  师:这节课对你有什么启示?

  生:生活中有许多事,可以用数学方法来解决;包装这一小问题,学问可不小。

五年级数学教案12

  设计意图:教学实践告诉我们,教学的成败,学生的学习效果如何,在很大程度上取决于学生的参与程度。教师的全部劳动,归根到底就是为了学生的主动学习。因此,激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的评价,包罗万象,既有对学习方法的评价,又有对学习情感的评价,也有对自己的鞭策鼓励。这样的评价,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。

  教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的最大公约数,培养学生的观察能力。

  教学重点 掌握求两个数的最大公约数的方法。

  教学难点 正确、熟练地求出两种特殊情况的最大公约数。

  教学过程

  一、创设情境

  1、思考并回答:①什么是公约数,什么是最大公约数?②什么是互质数?质数与互质数有什么区别?(回答后做练习十四的第5题)

  2、求30和70的最大公约数?

  3、说说下面每组中的两个数有什么关系?

  7和21 8和15

  二、揭示课题

  我们已经学会求两个数的最大公约数,这节课我们继续学习求这两种特殊情况的最大公约数(板书课题)

  三、探索研究

  1.教学例3

  (1)求出下列几组数的最大公约数:7和21 8和15 42和14 17和19

  (2)观察结果:通过求这几组数的最大公约数,你发现了什么?

  (3)归纳方法:先让学生讲,再指导学生看教材第69页的结论。

  (4)尝试练习。

  做教材第69页的“做一做”,学生独立做后由学生讲评,集体订正。

  四、课堂实践

  1.做练习十四的第7题,学生独立观察看哪几组数是第一种特殊情况,哪几组数是第二种特殊情况,再解答出来。

  2.做练习十四的第6题,先让学生独立作出判断后再让学生讲明判断的理由。

  3.做练习十四的第9题,学生口答集体订正。

  五、课堂小结

  学生小结今天学习的内容、方法。

  六、课堂作业

  1、做练习十四的第8、10、11题。

  2、有兴趣、有余力的同学可做练习十四的第13*题和思考题。

  课后反思:有的数学问题比较复杂,光靠个人的学习,在短时间内达不到好的效果时,教学时,我让学生前后桌组成四人小组,小组中搭配上、中、下三类学生,由一位优等生任组长,组织组内同学讨论如下问题:(1)、一个数的约数与这个数的质因数有什么联系?

  (2)、两个数的公约数与这两个数公有的质因数有什么联系?

  (3)、怎样求两个数的最大公约数?

  我们知道“最大公约数”一课最难理解的就是其算理,我也尝试过多种不同的教学组织形式,但无论是老师讲解还是学生看书,给学生的.感觉大多是:太难懂了,算了吧!这时,何不让学生讨论讨论,让他们把自己的想法在组内说说?俗话说:三个臭皮匠顶一个诸葛亮。这样,不仅保证了全班同学的全员参与,使每位同学都有了发表自己见解的机会;而且通过小组之间的交流、启发、讨论、总结,学生的思路被打开了,想法在逐步完善着,学生个人对最大公约数算理的理解都会有不同幅度的提升;学生的归纳、推理、判断等能力也在这里得到提高;学生的合作意识,团结协作的精神也在不断增强;当自己的意见被采纳时,学生也在尽情地享受着交流成功的乐趣。如果学生能把学习当成一件“美差”去做,这不正是我们最想看到的吗?

五年级数学教案13

  教学内容:

  人教版义务教育教科书五年级上册91页《三角形的面积》,92页例2及练习题。

  教学目标:

  1、理解并掌握三角形面积计算公式,能够应用公式解决一些简单的问题,培养应用已有知识解决新问题的能力。

  2、经历探索三角形面积计算方法的过程,培养学生观察、操作、推理、概括的能力,体会转化的思想。

  3、在解决实际问题的过程中体验数学与生活的联系,进一步培养学生学习数学的兴趣。

  教学重点:

  三角形面积公式的推导及应用公式进行计算。

  教学难点:

  理解三角形面积的推导过程,感受转化的数学思想和方法。

  教学准备:

  教师准备:多媒体课件、红领巾、实验记录单。

  学生准备:各种完全相同的三角形。

  教学过程:

  (一)复习铺垫,创设情境。

  1、复习旧知,做好铺垫。回忆平行四边形面积计算公式及推导过程。

  【复习铺垫是小学数学重要的环节,对于引起学生对已有知识的回忆,帮助学生更有效地参与到新知的探究过程中有着重要的作用。】

  2、猜谜语:一块布料三角样,颜色鲜红真漂亮。少先队员才能有,每天佩戴不要忘。学生猜谜。

  3、创设情境:要想做这样的一条红领巾,需要多少布呢?也就是计算什么?

  4、揭示课题。

  【设计意图:在这个环节中利用学生熟悉的`红领巾实物猜谜,以及做一条红领巾要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。】

  (二)动手操作,探索交流。

  活动一:小组合作拼一拼、摆一摆。要求:请你用手中两个完全一样的三角形拼一拼,看看能拼成我们以前学过的哪种图形,快来试一试吧!小组动手操作并展示交流。

  活动二:观察讨论,完成下面的实验记录。实验记录两个完全一样的三角形可以拼成平行四边形。

  通过观察我们发现:

  1、三角形的底和拼成的平行四边形的底( ),三角形的高和拼成的平行四边形的高( )。

  2、拼成的平行四边形的面积是三角形面积的( ),三角形的面积是拼成的平行四边形面积的( )。

  3、因为,平行四边形的面积等于( )X( ), 所以,三角形的面积=( )学生根据要求进行小组活动,然后交流汇报。

  【设计意图:本环节让学生充分经历了操作、观察、推理、概括等数学活动与数学思考,发现了三角形的面积计算公式。在合作探究过程中,把自主学习的权力还给了学生,培养了学生的动手能力和分析能力,顺利实现原有数学知识结构的扩充和新知结构的建立,使学生真正感受到数学方法的内在魅力。】

  (三)运用公式,解决问题。

  出示例2:学校计划做的红领巾的底是100㎝,高是33㎝,红领巾的面积是多少?

  (1)学生尝试完成。

  (2)交流做法和结果。

  【设计意图:本环节的设计既解决了课前的问题,还让学生感知到数学学习能够方便生活,有效的提高学生学好数学的自信心。】

  (四)巩固应用,举一反三。

  第一关:辨一辨。

  1、两个面积相等的三角形可以拼成一个平行四边形。

  2、三角形的面积等于平行四边形面积的一半。

  3、用两个完全一样的直角三角形可以拼成一个长方形,也可以拼成一个平行四边形。

  第二关:指出下面三角形的底和高,并说出怎样计算它的面积。 (单位:厘米)

  第三关:制作两个这样的交通警示标志,需要多少铁皮?第四关:求出下图中三角形和平行四边形的面积。你发现了什么?

  【设计意图:本环节我依据教学目标和学生在学习中存在的问题,采用智慧闯关的形式设计有针对性、层次分明的练习题组,激发了学生的学习兴趣,让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。同时也强化了本节课的教学重点。】

  (五)质疑总结,反思评价。

  课件出示:今天你有什么收获?

  (2)你要提醒大家注意什么?

  (3)你感觉自己今天表现如何?

  (4)我还想说……

  【设计意图:让学生以同桌为单位,每位学生充分发言,交流学习所得。在评价方面,先让学生自我评价,接着让学生互相评价,增强学生学习数学知识的自信心和荣誉感,同时培养了学生敢于质疑、勇于创新的精神。】

  五、板书设计。

五年级数学教案14

  目标

  使学生在理解的基础上掌握常用的体积单位之间的进率和名数的改写。

  教学及训练

  重点

  体积单位之间的进率。

  仪器

  教具

  投影仪和棱长是1分米的正方体模型,如教材第26页的图。

  教 学内容和过程

  教学札记

  一、创设情境

  填空:

  ①长方体体积=;

  ②常用的体积单位有、、;

  ③正方体体积=。

  师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)

  二、探索研究

  1.小组学习--体积单位间的进率。

  (1)出示:1个棱长是1分米的正方体模型教具。

  提问:

  ①当正方体的棱长是1分米时,它的体积是多少?

  ②②当正方体的棱长是10厘米时,它的体积是多少?

  ③③而1分米是多少厘米?1立方分米等于多少立方厘米?

  小组合作填表:

  正方体

  棱长

  1分米

  =

  10厘米

  体积

  1立方分米

  =

  1000立方厘米

  小组汇报结论:1立方分米=1000立方厘米

  同理得出:1立方米=1000立方分米

  用填空的形式:

  从上面可以看出,相邻两个体积单位之间的进率都是。

  (2).将长度单位、面积单位、体积单位加以比较(投影显示第26页的表)

  先让学生填后并比较这三类单位相邻两个单位间的'进率有什么不同?为什么?

  (3)学习体积单位名数的改写。

  先思考:

  (1)怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?

  (2)怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?

  出示例3,并写成如下形式:

  8立方米=()立方分米0.54立方米=()立方分米

  出示例4,并写成如下形式:

  3400立方厘米=()立方分米96立方厘米=()立方分米

  学生独立思考,再小组讨论自己是怎样想和做的。

  出示例3。(投影显示)

  放手让学生独立审题并解答,再针对出现的问题重点讲解。

  解法一:

  1.8×1.5×0.01=0.027(立方米)

  0.027立方米=27立方分米

  解法二:

  1.8米=18分米1.5米=15分米0.01米=0.1分米

  18×15×0.1=27(立方分米)

  三、巩固练习

  将练习五的第1、2题填在书上,老师进行个别辅导后订正。

  四、课堂。学生今天学习的内容。

  五、课后作业

  练习五的3、4题。

  体积单位之间的进率

  常用的体积单位及进率:

  立方米、立方分米、立方厘米

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  注意点:

  高级单位的数转化成低级单位的数要乘以进率,低级单位的数转化成高级单位的数要除以进率。

  在实际计算中要注意单位的统一。

五年级数学教案15

  一、本班学生情况分析

  我负责的五年级学生的基础参差不齐,两级分化现象严重。学习的主动性远远不够。当然,班上也有很多积极向上的学生,也有很多思维活跃、善于思考的学生。针对班级的实际情况,在下学期的数学教学应重点采取以下措施:

  1、帮助后进生树立学习数学的信心,加强课后辅导,对其作业降低要求。

  2、深入调查学生的作业要求,改进作业的布置及检查方式,增加趣味性、开放性、实践性作业。

  3、强化培养、训练学生良好的学习态度和习惯,把学习习惯的好坏与期末数学成绩的评价相结合。

  4。多鼓励和表扬学生,多开展一些数学竞赛活动,激发学生学习数学的积极性和主动性。坚持课堂“数学之星”的评选,严格要求的同时鼓励学生上进。

  二、教学内容

  图形的变换,因数与倍数,长方体和正方体,分数的意义和性质,分数的加法和减法,统计,数学广角和综合应用等。

  在数与代数方面,这一册教材安排了因数与倍数、分数的意义和性质,分数的加法和减法。因数与倍数,在前面学习整数及其四则运算的基础上教学初等数论的一些基础知识,包括因数和倍数的意义,2、5、3的倍数的特征,质数和合数。教材在三年级上册分数的初步认识的基础上教学分数的意义和性质以及分数的加法、减法,结合约分教学公因数,结合通分教学最小公倍数。

  在空间与图形方面,这一册教材安排了图形的变换、长方体和正方体两个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,认识图形的轴对称和旋转变换;探索并体会长方体和正方体的特征、图形之间的关系,及图形之间的转化,掌握长方体、正方体的体积及表面积公式,探索某些实物体积的测量方法,促进学生空间观念的进一步发展。

  在统计方面,本册教材让学生学习有关众数和复式折线统计图的知识。在学习平均数和中位数的基础上,本册教材教学众数。平均数、中位数和众数都是反映一组数据集中趋势的特征数。平均数作为一组数据的代表,比较稳定、可靠,但易受极端数据的'影响;中位数作为一组数据的代表,可靠性比较差,但不受极端数据的影响;众数作为一组数据的代表,也不受极端数据的影响。当一组数据中个别数据变动较大时,适宜选择众数或中位数来表示这组数据的集中趋势。

  在用数学解决问题方面,教材一方面结合分数的加法和减法、长方体和正方体两个单元,教学用所学的知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等活动向学生渗透优化的数学思想方法,体会解决问题策略的多样性及运用优化的方法解决问题的有效性,感受数学的魅力。

  本册教材根据学生所学习的数学知识和生活经验,安排了两个数学综合应用活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学意识和实践能力。

  三、教学目标

  1、理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行整数、小数的互化,能够比较熟练地进行约分和通分。

  2、掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征;会求100以内的两个数的公因数和最小公倍数。

  3、理解分数加、减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题。

  4、知道体积和容积的意义及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义。

  5、结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法。

  6、能在方格纸上画出一个图形的轴对称图形,以及将简单图形旋转90°;欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案。

  7、通过丰富的实例,理解众数的意义,会求一组数据的众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征。

  8、认识复式折线统计图,能根据需要选择合适的统计图表示数据。

  9、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

  10、体会解决问题策略的多样性及运用优化的'数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。

  11、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

  12、养成认真作业、书写整洁的良好习惯。

  日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

  四、教学重点

  因数与倍数,长方体和正方体,分数的意义和性质,分数的加法和减法,统计。

  五、教学中需要准备的教具和学具

  1、长方体和正方体实物及模型

  2、演示分数用的教具

  3、其他教具教师还可以根据各部分教学内容的需要自己准备或设计制作一些教具和学具。如教学体积时制备1 m3、1dm3模型,容纳1 L、100 ml液体的量杯;教学因数与倍数时,可根据教科书上的图制成教具等。教师还可以根据需要自己制作其他适用的教具。

  六、课时安排

  根据《义务教育阶段国家数学课程标准(征求意见稿)》中的“各学段课程内容参考教学时间一览表”,实验教材的编者为五年级下学期数学教学安排了60课时的教学内容。各部分教学内容教学课时大致安排如下,教师教学时可以根据本班具体情况适当灵活掌握。

  (一)、图形的变换(4课时)

  (二)、因数与倍数(6课时)

  1、因数和倍数2课时左右

  2、2、5、3的倍数的特征…………………………3课时左右

  3、质数和合数………………………………………1课时左右

  (三)、长方体和正方体(12课时)

  1、长方体和正方体的认识…………………………2课时左右

  2、长方体和正方体的表面积………………………2课时左右

  3、长方体和正方体的体积…………………………7课时左右

  整理和复习1课时

  粉刷围墙1课时

  (四)、分数的意义和性质(20课时)

  1、分数的意义——————4课时左右

  2、真分数和假分数—————3课时左右

  3、分数的基本性质—————2课时左右

  4、约分—————4课时左右

  5、通分—————4课时左右

  6、分数与小数的互化——2课时左右

  整理和复习1课时

  (五)、分数的加法和减法(7课时)

  1、同分母分数加、减法——2课时左右

  2、异分母分数加、减法——3课时左右

  3、分数加减混合运算——2课时左右

  (六)、统计(3课时)

  打电话—————1课时

  (七)、数学广角(2课时)

  (八)、总复习(4课时)

【五年级数学教案】相关文章:

五年级数学教案10-28

五年级数学教案01-14

五年级数学教案约分04-08

五年级下册数学教案03-26

五年级上册数学教案03-25

(精选)五年级上册数学教案08-29

五年级下册数学教案02-08

五年级上册数学教案01-24

五年级数学教案《通分》04-03

五年级数学教案:圆的面积06-12