《近似数》教案

时间:2024-07-25 09:55:38 教案 我要投稿

《近似数》教案

  作为一名无私奉献的老师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么应当如何写教案呢?以下是小编帮大家整理的《近似数》教案,希望对大家有所帮助。

《近似数》教案

《近似数》教案1

  设计说明

  本课时主要学习将非整万、整亿数用“四舍五入”法求出近似数。学生在学习万以内数的认识时,已初步了解了近似数,生活中也经常遇到近似数。同时根据《数学课程标准》中关于学生观和学习方式的论述,在设计本课时的教学过程中突出了以下两个方面:

  1.注重已有的生活经验。

  对于学生来说,先前的经验是非常重要的,他们在日常生活中,在以往的学习中,已经形成了比较丰富的经验,遇到某些问题时,他们会从有关的知识经验出发,形成对问题的某种合乎逻辑的解释。如近似数的概念学生虽然没有接触过,但近似数在日常生活中是很常见的,通过学生对生活事例的调查和直观的描述,让学生进一步认识和理解近似数。

  2.注重以学生为主体。

  既然知识是个体主动建构的,不可能所有的知识都要通过教师的讲解传授给学生。因此,学生必须主动地参与到整个学习的过程中,要根据学生自己先前的经验来建构新知识。本课时在设计上更多地通过展示生活中的一些数学信息来激发学生的学习兴趣,让学生主动地投入到对近似数的认知中去,让学生经历探究求一个数的近似数的过程,理解并掌握求近似数的方法。

  课前准备

  教师准备 PPT课件

  学生准备 收集有关近似数的数据

  教学过程

  ⊙创设情境,导入新课

  1.获取信息。

  让学生观看一个短片(课件出示国庆60周年庆典片段),提问:这是什么场面?

  生:国庆60周年庆典。

  师:请同学们阅读资料,说一说从资料中你获取了哪些信息。(课件出示教材10页主题图的'文字资料)

  2.处理信息,建立数学模型。

  观察这组信息中的数据,它们有什么特点?你们能不能试着将它们分分类?

  (1)小组讨论。

  (2)全班汇报,说明理由。

  (学生分类的角度不同,但大部分学生会按是不是准确的数这一标准将这些数据分为两类:准确的数和大概的数)

  设计意图:通过国庆庆典资料中的数据,让学生初步体会什么是近似数,什么是精确数。同时对学生了解近似数的特点也有一个潜移默化的作用。

  ⊙合作交流,探究新知

  1.理解精确数、近似数的含义。

  (1)介绍精确数和近似数。

  说明:在人类实践活动中,经常遇到各种数据。有些数据与实际完全相符,这样的数叫精确数。例如:四(1)班有40名同学,40就是精确数;而有些数据与实际大体符合,或者说比较接近实际数据,这样的数叫近似数。例如:课桌宽约50厘米,50就是近似数。

  (2)分辨精确数和近似数。

  师:说一说国庆庆典数据中,哪些是精确数?哪些是近似数?为什么?

  “60周年”中的“60”是精确数,“60响礼炮声”中的“60”是精确数,“行进了169步”中的“169”是精确数,“169年”中的“169”是精确数,“近66分”中的“66”是近似数,“有56个方队和梯队”中的“56”是精确数,“约20万人”中的“20”是近似数,“近2万平方米”中的“2”是近似数)

  2.了解近似数的作用。

  (1)教师质疑,激发思考。

  为什么这些情况要用近似数来描述呢?(课件出示近似数)像接受检阅的人数和巨幅国画《江山如此多娇》的画布总面积,它们为什么不用精确数来表示呢?

  (2)学生探讨。

  (3)指名交流想法。

  教师小结:有些情况很难、也没有必要用准确的数据来描述它,只要知道一定的范围就足够了,这个时候就需要用到近似数。这说明近似数在生活中的应用还是相当广泛的。

  3.发现生活中的近似数。

  (1)请同桌说说自己收集的数据中的近似数。

  (2)请同学找一找日常生活中的近似数。

  (学生纷纷发言,表述自己的看法)

《近似数》教案2

  教材分析

  “准确数和近似数”是义务教育课程标准实验教科书,浙教版七年册第二章的内容。教材通过一则科技报道引入准确数和近似数的概念,在学生已有的运算能力的基础上,给出近似数的精确度的两种表示方式,及近似值的取法。准确数和近似数是运用有理数进行实际计算所必需的,本节课也培养了学生用所学的数学知识解决,生活中的数学问题的能力,让学生体验到生活中无处不存在准确数和近似数。

  学生分析

  学生往往存在着一些生活经验,这些生活经验是学生学习的基础,但其中也有一些是错误的,必须让学生在正确区分准确数和近似数的基础上,明确近似数的角度有两种表示方式以及学会近似值的取法。教学中要及时了解学生的认知程度,以便调整教学。

  教学目标

  通过实例经历近似数和准确数概念的产生过程。

  了解近似数的精确度的两种表示方式。

  能说出由四舍五入得到的`有理数的精确位数和有效数字。

  会根据预定精确度取近似值。

  教学重点

  近似数的两种表示方式及近似值的取法

  教学难点

  近似数所表示范围及有效数字如何表示近似数的精确度

  教辅工具

  投影仪、卷尺、“神舟五号飞船”图片、投影片6张

  教学设计思路

  本节课首先从学生熟悉的生活情境出发引入数学概念。通过近似数在生活中的应用,激发学生主动学习的欲望,然后通过老师讲解、学生练习,使学生学会近似数的两种表示方式及近似值的取法,最后再配以练习巩固,让学生很自然地接受这一部分知识。

  教学流程

  一、实践操作,引入课题

  问:我想知道我们教室里有多少张课桌?黑板长为多少?

  20xx年我国人口总数为多少?你们能帮老师解答吗?

  (学生分小组进行合作操作、讨论)

  [设计说明:通过学生亲自操作,引起学生的兴趣]

  问:上面所出现的数据中,哪些跟实际完全符合,哪些跟实际是接近的?

  (学生回答)

  板书:像这样与实际完全符合的数称为准确数

  像这样与实际接近的数称为近似数

  通过测量或估计得到的都是近似数

  板书课题:准确数和近似数

  [设计说明:通过实例使学生充分体验准确数和近似数的概念的产生是由于人们生活和生产实践的需要]

  二、导入新知

  师:21世纪进入太空是很多人的梦想,同学们有想过吗?

  (学生开心的各抒己见)

  展示:“神舟五号飞船”图片

  投影片A:“神舟五号飞船总长9.2米,总质量为7790千克,装有52台发动机,在太空中,该飞船大约每90分绕地球一圈,其间要经受180℃的温差考验。

  [设计说明:跟时尚接轨活跃课堂气氛,加深对概念的理解]

  问:上面叙术中的各数,哪些是准确数?哪些是近似数?并说明你的理由。

  (只要学生根据准确数和近似数的概念和自身的经验说出理由,均可以认为正确)

  投影片B:(快速口答)下列叙述中的各数,哪些是准确数?哪些是近似数?

  (1)月球与地球之间的平均距离大约是38万公里

  (2)某本书的定价是4.50元

  (3)小明身高为1.57米

  (4)美国一家猫粮制作公司称:“在美国共有8500万只猫,22%的猫主人都选择猫爱看的频道”。

  [设计说明:通过练习,加以巩固]

  师:生活中用到近似数的情况很多,有时是因为客观条件无法或难以得到精确数据,如:“20xx年我国人口总数约为12.9533亿”,有时是实际问题无需得到精确数据,如“校长在会上说,这次学校包场看电影,买票大约需2500元”

  三、展开过程,师生互动

  对近似数,我们常需知道它的精确度,一个近似数的精确度通常有两种表示方式:

  板书:1、一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位

  如:身高1.57米是千分位数字四舍五入到百分位的结果,它精确到百分位(或精确到0.01)

  近似数38万是千位数字四舍五入到万位的结果,它精确到万位

  问:身高1.57米表示小明实际身高在什么范围内呢?

  (学生思考、讨论,教师给予指导)

  近似数38万表示的范围为 ?

  (学生举手回答,教师鼓励,每位同学都发表自己的见解,最后指出正确答案)

  投影片C:例1、下列由四舍五入法得到的近似数各精确到哪一位?

  (1)11亿 (2)36.8 (3)1.2万 (4)1.20万

  (学生起立回答,教师和其余学生一起进行评判)

  [设计说明:让学生学会辨认一个由四舍五入得到的近似数的精确位数]

  注:①以百、千、万、十万、百万等做单位的近似数的精确位数

  ②小数点后面的零

  板书:2、用有效数字的个数来表述一个近似数的精确度,由四舍五入得到的近似数从左边第一个不是零的数字起,到末位数字为止的所有数字,都叫做这个数的有效数字。

  如:1.57有 3个有效数字:1、5、7

  38万 有2个有效数字:3、8

  0.03070 有4个有效数字:3、0、7、0

  注:近似数中越在左边的数字就越重要,有效数字越多,精确度越大

  投影片D:例2、(口答)例1中各数有几个有效数字?分别是什么?

  (1)11亿 (2)36.8 (3)1.2万 (4)1.20万

  [设计说明:让学生学会辨认一个由四舍五入得到的近似数的有效数字及个数]

  四、知识应用

  投影片E:例3、用四舍五入法,按括号内的要求对下列各数取近似值

  (1)0.33448(精确到千分位)

  (2)64.8(精确到个位)

  (3)1.5952(精确到0.01)

  (4)0.05069(保留2个有效数字)

  (5)84960(保留3个有效数字)

  (学生练习上独立完成,教师巡视进行辅导对于(5)教师不急于指出,先让学生思考,发现问题提出来,如没有学生提出,教师可直接指出)

  [设计说明:让学生学会如何根据预定精确度取近似值]

  注:按预定要求取近似值时,不要遗漏小数点后面的零,对较大数取近似值最好用科学记数法表示

  投影片F:例4、(1)计算:-22×11÷7(结果保留4个有效数字)

  (2)一根木棒长4.4米,均匀截成6段,每段长多少米?(精确到0.01米)

  [设计说明:这里安排练习,使学生体会到数学知识来源于实际,又应用于实际问题中]

  五、小结:引导学生进行总结

  六、作业:

  教材P57课内练习、P58作业题A组、B组、C组

《近似数》教案3

  教学目的:

  ●使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

  ●培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

  教学重点:能正确的求一个小数的近似数。

  教学难点:怎样准确的求一个小数的近似数。

  教学过程:

  一、导入新课

  师:我们已经认识了小数,生活中有许多小数的信息,你收集到了吗?

  生:汇报,教师按准确数和近似数把学生提供的信息中的小数分成两种写在黑板上。

  师:谁注意到了老师为什么把同学提供的这些小数分成两种写在黑板上呢?(生通过观察回答)

  师:在实际生活中有时不必说出小数的准确数,只要说出它的近似数就可以了,同学们看一看自己收集到的信息中有这样的情况吗?(生汇报和小数近似数有关的信息。)

  师:听了同学们的汇报,你有什么感受呢?小数的近似数在生活中应用的这么广泛,怎么求一个小数的近似数呢?今天我们就来一起学习。师板书课题。

  1、把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)

  986534 58741 31200

  50047 398010 14870

  2、下面的□里可以填上哪些数字?

  32□645≈32万 47□05≈47万

  学生填完后,说一说是怎么想的。

  [以上复习内容重点抓住了整数取近似值的方法让学生回忆练习,通过复习唤起学生印象,为求小数的近似值打下基础]

  二、探究新知

  我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:如豆豆的身高0.984米,平常不需要说得那么精确,那么如何求一个小数的`近似数呢?今天我们就来学习这一内容。

  师:豆豆的身高0.984米,我们一般怎么表述豆豆的身高?

  你是怎样得出豆豆身高的进似数的?

  师:你们能利用已有的知识来求出这个小数在不同情况下的近似数吗?

  生:自己练习在练习本上做一做,然后在小组内进行交流,看一看有没有争议的地方。并引导学生按顺序进行汇报。

  生:

  (1)学生汇报保留两位小数求近似数的思维过程,并再找一名同学进行汇报,加深对方法的理解。

  (2)保留一位小数,有争议吗?找同学汇报自己的想法。学生讨论近似数是1.0还是1。教师出示线段图,看一看给学生带来什么启示。

  引导学生小组讨论交流:使学生明确保留一位小数是1.0,原来的长度在0.95与1.04之间。保留整数为1,原来的准确长度在1.4与1.0之间,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。

  师:总结出尽管两个数的大小相等,但表示的精确程度不同,同学们认为哪个答案是正确的呢?求近似数时,小数末尾的零不能去掉。

  (3)保留整数部分应怎样思考,注意什么问题呢?

  师:请同学们回忆求0.984近似数的过程,你能发现求一个小数的近似数有什么共同的特点吗?同学们利用我们以前学过的知识也就是求整数近似数的方法,四舍五入的方法来求小数的近似数,希望同学在今后的学习中也能运用我们学过的知识来解决新的问题。下面我们就用这种方法来求课前同学们提供的这些小数的近似数。(保留到十分位)

  (4)小结:

  问:求一个小数的近似数应注意什么?

  引导学生讨论知道:求一个小数的近似数要注意两点:

  ①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。

  ②取近似值时,在保留的小数位里,小数末一位或几位是0的.0应当保留,不能丢掉。

  三、练习

  (1)师:最后一个信息谁提供的,你能把这个信息用小数近似数的形式)表示出来吗?学生自己修改自己手中的信息,汇报后,再同桌之间交流。

  (2)师:老师也收集到了一些小数的信息,这些信息能用小数近似数的形式表述吗?能请你表示出来,不能,请说明理由)

  (3)师:同学们还记得自己的身高大约是多少吗?想知道老师的身高吗?教师提示:身高大约是1.6米,老师的实际身高是两位小数,猜一猜老师的实际身高是多少米?老师的身高是用四舍法得到的,再来猜一猜。

  (4)出示食物的价格,判断小明带12元钱够吗?学生自由发言,说明自己的理由。

  (5)出示租车说明,判断租多少辆车去出游?

  师:看来我们不仅要掌握求近似数的方法,还要灵活的运用所学的知识才能解决生活中的实际问题。

  四、全课小结:教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。

《近似数》教案4

  教学目标:

  1.知识与技能:能理解商的近似数的意义。

  2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

  3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。

  教学重点:

  掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

  教学难点:

  根据题意正确求出商的近似数。

  教学方法:

  注重新旧知识的迁移,引导学生自主学习、总结。

  教学准备:

  多媒体。

  教学过程:

  一、复习导入

  复习旧知:(出示如下题目)

  1.用“四舍五入”法将下面的数改写成一位小数。

  8.7693.45212.7118.64

  2.计算下面各题,得数保留两位小数。

  2.43×4.67 12.15×3.41

  订正答案,并通过问题:你是用什么方法求这些数的近似数?

  (保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)

  引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)

  二、互动新授

  1.出示教材第32页例6情境图。

  阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?

  引导学生自主列算式,并试着计算:19.4÷12

  学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?

  通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。

  教师小结:根据我们的'生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)

  然后再引导学生想一想:算到分和角时分别需要保留几位小数?

  (算到分要保留两位小数,算到角就要保留一位小数。)

  师引导学生思考并讨论:除的时候应该怎么算?

  小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。

  让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书

  2.提问:说一说如何求商的近似数?

  让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。

  3.引导学生比较求商的近似值和求积的近似值的异同点。

  小组讨论后发言:相同点:都是用“四舍五入”法求近似数。

  不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。

  师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。

  三、巩固拓展

  1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。

  四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?

  引导学生归纳

  1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

  2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。

《近似数》教案5

  一.教学内容:

  求出积的近似数和有关它的一些内容。

  二.教学目的:

  (1)进一步巩固小数乘法计算。

  (2)根据要求,会用“四舍五入法”取积的近似值。

  (3)体会“四舍五入法”是解决实际问题的重要工具,培养学生的实践能力和思维的灵活性。

  三.教学重、难点:

  重点:应用“四舍五入法”取积的近似数。难点:要根据实际

  需要求出积的近似值。

  四.教学过程:

  (一).复习:

  1.保留一位小数

  2.34 5.68

  2.保留两位小数

  4.256 34.708

  3.保留整数

  5.67 6.502

  (二).导入课:

  1.老师出示几个语句,你知道那些句子表达是准确数,哪些是近似数。你是根据句中的哪些字词来判断的'呢?

  (1)我们班有28人

  (2)这个箱子里大约有23个苹果。

  (3)小明的身高是172厘米,体重约60千克。

  2.我们生活中有时需要很准确的数字,但是有些时候往往不需要知道很精确的数字,只需要知道它们的近似值就可以了,那我们一般用什么方法来取近似值生:四舍五入法

  3.师:现在就用“四舍五入法”求出小数的近似值。保留整数保留一位小数保留两位小数2.095 4.307思考并回答:怎么样用“四舍五入法”将这些小数保留整数、一位小数或两位小数,去它们的近似值?按要求,它们的近似值各应是多少?

  4.揭题谈话:在实际应用中,小数乘法乘得积往往不需要保留很多的小数位数,这时可根据需要,用“四舍五入法”保留一定的小数位数,求出积的近似数。

  板书:积的近似数

  (三).探求新知:

  1.出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45狗约有多少亿个嗅觉细胞?(得数保留一位小数)

  (1)读题,找出已知所求,列式计算,板书:0.04945

  (2)指明板演,集体订正。

  (3)按要求,积保留一位小数,怎么保留?结果怎样?

  0.49 ×45 ≈ 2.2(亿个)

  师:今天我们学习了用四舍五入法取积的近似数,那么谁来归纳一下?生答,互相补充,归纳概括:我们求积的近似数时,首先求出积的准确值,然后明确要保留的小数位数,再看比要保留的小数位数多一位上的数字,按“四舍五入”法截取积的近似数。

  (四).巩固练习:

  1.填空题:

  (1).积是4.56保留一位小数( )

  (2).积是6.075保留两位小数( )

  (3).积是45.9保留整数( )

  2.要完成第10页的“学一学”

  (五).小结:

  四舍五入法:

  0------4要舍去。

  5------9向前进一位,再舍去。

  (按着要求再用“四舍五入法”)

  五.布置作业:

  第13页1 . 2

  教学反思:

  (一).优点:

  (1)从实际问题中取材,使学生更快进入新知学习中,也能让学生体会源于实际生活而且于生活,激发学生学习的兴趣。

  (2)在出示图片后让学生自己提取信息、提问、解答,意在培养学生提取信息、分析问题、解决问题的能力。

  (二)不足:

  (1)引入太冗长,“四舍五入法”是四年级所学的内容,对五年级学生来说不是难点,因此可以直接入题。重难点把握不是很准确,没能很好分析学生的学情。

  (2)内容过于简单,不够充实,练习的时间过长了。可以再根据生活中实际情况深入内容,渗透“进一法”和“去尾法”。

  (3)在上课时,由于自身经验不足,在对及时抓住学生的反馈给予及时的评价和引申方面有很大欠缺,比如:我在问学生你们想付给他多少钱时,学生的答案很多,有的说6元,有的说6.1元,这些我都没能及时抓住学生的反馈,完美地结合实际生活进行教学。

  (4)在巩固练习的习题设置上不懂得延伸,2、3两题设计意图有点重复,其实可以直接用其一进行延伸。

《近似数》教案6

  教学内容:

  课本第77页例8及练习十六第6题。 授课日期 __年__月_ 日 星期

  教学目标:

  1、通过具体的情景让学生理解近似数的含义,体会近似数在生活中的作用。

  2、通过独立猜测、交流等活动让学生掌握一定猜测的方法,培养学生的数感和估计能力。

  教学重、难点:

  1、通过独立猜测、交流等活动让学生掌握一定猜测的方法。

  2、培养学生的数感和估计能力。

  教学准备:教学挂图。

  教学过程:

  一、准备练习

  1、 接着数数。

  1998、( )、( )、( )

  9997、( )、( )、 ( )

  497、( ) ( ) 、( )

  2、按照要求排列下面各数。

  1001 996 1008

  ( ) > ( ) > ( )

  205 306 402

  ( ) < ( ) < ( )

  复习旧知,为新知学习作好铺垫。

  二、新课教学

  1、组织理解近似数的含义。

  出示例8的主题图。

  聪聪去调查了育英小学的学生数,他写下了这样的一句话:“育英小学有1506人,约是1500人。”育英小学到底有1506人还是1500人呢?为什么?

  组织学生进行讨论、交流。思考:后半句约1500人是什么意思?

  小组汇报:

  A、认为育英小学的认数是1506人,因为他告诉我们就是1506人,后半句他说的是约是1500人,是说他们学校的人数和1500人的差不多。

  B、也认为育英小学有1506人,他说约有1500人是大概就是1500人的意思。

  师小结:我们把1506这个很准确的数字就叫做“准确数”,而1500这个和1506差不多的数就叫做“近似数”。(边说边板书)

  引导学生明白近似数更容易记,因为它正好是正百数。

  出示例8主题图比较一下1506和1500这两个数,体会一下准确数和近似数哪个数更容易记住

  (2) 聪聪那天不仅调查了育英小学的人数,还调查了新长镇的人数是9992人,约是( )人,先独立填填,再和你的同桌交流交流。谁来说说你写出的近似数是多少?

  个别汇报:

  A、约是10000人,因为我觉得9992人接近10000人,

  B、我写的是“约9990人”因为9992人和9990只相差2。

  同学们你们同意哪位写的呢?为什么?

  师生小结:我们用近似数就是为了让我们更容易记住,所以,一般我们都用整百、整千、整万数。

  通过活动的学习,理解近似数的含义,感受到近似数的作用,同时掌握近似数的写法。

  2、请你说说身边的近似数,找找生活中的近似数。按照教师的要求,先独立想想,再和小组的同学交流。

  3、组织活动3——猜一猜。

  (1)(练习十六第9题)

  提出题中的要求。

  请大家独立动脑筋想一想,再和同桌交流看你们手猜的一样吗?互相说说你们为什么要这样猜。

  (2)组织进行集体交流。说一说你猜出来的结果是什么样的.?你是怎么猜的?

  及时肯定回答好的学生,并帮助学生总结应当怎样猜。

  让学生将所准备的卡片,按照教师的要求摆一摆:将所准备的卡片组成三位数或四位数;读一读:同桌相互读摆出的数;

  说一说:再互相说一说对方所摆事出的数的组成;

  比一比:比较两个数的大小。

  通过“说一说、猜一猜”活动让学生感受到近似数与生活的联系。

  三、课外训练

  1、组织数学游戏——猜价格/

  (1)电视节目“幸运52”猜商品价格的游戏大家看过吗?

  其实这样的游戏应用的也是数学知识。今天我们也来玩一玩这样的猜数游戏。

  (2)游戏规则:老师给你一个提示,比如这个数几千几百的数,然后就开始猜,老师提示手中的数比你猜的数大还是小。同学们再根据这个提示继续猜直到猜对为止。

  (3)进行第一轮猜数游戏。

  此活动培养学生的思维能力和数感。

《近似数》教案7

  教学内容:第20—21页例9

  教学目的:

  1.使学生初步学会“四舍五入“法求一个数的近似数。

  2.会写、会用“≈“。

  教学重点:用“四舍五入“法求一个数的近似数。

  教学难点:归纳求万以内近似数得方法。

  教学过程:

  一、调查汇报有关数据。

  1.学生汇报调查情况。

  2.根据学生的调查情况引入新课:

  (1)教师根据学生的调查情况进行板书。

  (2)通过实例向学生说明什么是近似数。

  二、自主探索,领悟新知

  1.教师在学生汇报的'基础上,出示一组与学生或生活相关的数据、让学生直接说出它们大约是几百。

  (1)教师出示数据。

  (2)学生汇报说明自己的想法,教师板书:

  208 200 987 1000

  927 900 892 900

  517 500 671 700

  439400 152 400

  2.在出示几个百位上的数字相同,十位数上的数字是4、5、6的三位数,让学生讨论他们大约是几百?并说明理由。

  (1)学生讨论汇报。

  (2)教师根据学生汇报点拨引导。

  在肯定学生的判断方法后提出问题,这种方法的确能够判断一个数比较接近哪个整百数,即它的近似数,但是这种求法太麻烦,因为看到这个数,就要进行口算,有的数并不是一眼就能看出来,启发学生根据板书看一看有没有更方便的方法求一个数的近似数?

  (3)学生再`次讨论,教师巡视。

  (4)汇报交流,总结方法。

  (5)教师小结,提炼方法。

  3.学习准确数和近似数的表示方法。

  教师利用板书进行引导,教学约等号的写法和读法,完善板书。

  4.反馈练习,巩固方法。

  做第20页的“做一做”

  三、总结交流,提炼方法

  (1)学生先在小组中讨论分析求万以内数的近似数的方法,然后汇报。

  (2)教师总结。

  (3)学生看书。

  四、巩固练习,强化知识

  做练习五的第1题。

  五、课堂作业

  (1)当5 60≈6000时, 内取得数字可以是( )。

  (2)当4 89≈4000时, 内取得数字可以是( )。

  (3)求下面各数的近似数(省略最高位后面的尾数)

  485≈ 16498≈ 2510≈ 40938≈ 76560≈

  板书:

  近似数和“四舍五入”法

  208≈200 987≈1000

  927≈900 892≈900

  517≈500 671≈700

  439≈400 152≈400

《近似数》教案8

  教学目标:

  1.使学生掌握求小数乘法的积的近似数的方法。

  2.使学生经历求小数乘法的积的近似数的过程。

  3.使学生在解决实际问题中,进一步体会数学与生活的密切联系,培养实践能力的灵活性。

  教学重点:

  掌握求小数乘法的积的近似数的方法。

  教学难点:

  根据要求与实际需要取积的近似数。

  教学准备:

  多媒体课件。

  教学过程:

  一、基础训练

  1.436保留整数、一位小数、两位小数分别是多少?

  15.7394精确到个位、十分位、百分位、千分位分别是多少?

  一般用什么方法取近似数?怎样用四舍五入法求出这些近似数?

  二、导入新课

  师:同学们你们知道什么单位的嗅觉最灵敏吗?

  生:狗,人们用狗来做侦探,看家。

  三、进入新课

  师出示教材11页情境图

  师:从图上你都看到了什么?

  生:描述画面内容。

  师:是呀,狗狗使用它灵敏的嗅觉发现坏人的.。

  投影出示例6

  生:读题,理解题意。题中得知生活中和多地方不需要准确值,要近似数。

  1.尝试题

  师:怎样计算狗的嗅觉约有多少亿个嗅觉细胞呢?(求0.049的45倍是多少。)

  2.自学课本

  有困难的同学借助课本来学习

  3.尝试练习

  生:独立完成在练习本上。指名学生板演。

  0.049×45≈2.2(亿个)

  4.学生讨论

  师:充分展示学生出现的情况,组织学生讨论,探究。

  强调:横式后面写的是近似数所以要用约等号而不用等号。

  明确:保留一位小数,看哪位,根据什么保留?(看百分位,满5舍去后向前一位进一;小于5就直接舍去)保留两位小数呢?

  生:看千分位是几,千分位上是5舍去后向前一位进一。

  讨论:怎样求积的近似数?

  5.教师讲解

  小结:先求积,看保留小数的后一位,用“四舍五入法”取近似数,横式得数要用约等号。

  四、巩固练习

  1.11页做一做第1题.

  求近似数要注意什么?(计算准确,看清题目要求几位小数,积中小数点的位置)

  2.11页做一做第2题.

  明确为什么保留两位小数?(生活中没有比分更小的钱币)

  五、课堂作业

  练习三1~3题。

  六、小结:谈谈收获。

  练习题

  1.计算下面各题。

  0.8×0.9(得数保留一位小数)

  1.7×0.45(得数保留两位小数)

  2.一种大米的价格是每千克3.85元,买2.5千克应付多少钱?

  练习三

  1.按要求保留小数数位

  (1)保留一位小数

  1.2×1.40.37×8.43.14×3.9

  (2)保留两位小数

  0.86×1.22.34×0.151.05×0.26

  2.一幢大楼有21层,每层高2.84米。这幢大楼约高多少米?(得数保留整数)

  3.世界上的一台电子计算机很大,它的质量相当于6头5.85吨重的大象。这台计算机有多重?(得数保留整数)

《近似数》教案9

  课题

  积的近似数

  教学内容:

  人教版教材P10页例6及P13页练习二第1、2、3题

  教学目标:

  知识与技能:

  理解积的近似值,掌握求小数乘法的积的近似值的方法。

  过程与方法:

  经历求小数乘法的积的近似值的过程,体验迁移学习的方法。

  情感态度与价值观:

  在学习活动中,激发学生的学习兴趣,体验知识源于实际生活的思想

  教学重点:

  用“四舍五入”法取积是小数的近似值的一般方法。

  教学难点

  根据题目要求与实际需要取积的近似值。

  教法与学法:

  教法:创设情境,质疑引导

  学法:小组合作,运用旧知迁移

  教学准备:

  口算卡

  教学过程:

  一、复习引入

  (1)口算。

  1.2×0.3=0.7×0.5=0.21×0.8=1-0.82=1.3+0.74=

  (2)用“四舍五入”法求出每个小数的近似数。(多媒体出示)

  保留整数

  保留一位小数

  保留两位小数

  1.436

  0.835

  6.574

  1.994

  思考并回答:(根据学生的回答填空)

  怎样用“四舍五入”法将这些小数保留整数、一位小数或两位小数,取它们的近似值?

  小结:求小数的.近似数,可以用“四舍五入”法。即要看精确数位的下一位是几,如果是4或比4小,就把尾数舍去,如果是5或比5大,就把尾数舍去,然后在精确的数位上加上1。

  (3)揭题谈话:在实际应用中,小数乘法得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五入”法保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)

  二.探究新知

  (1)创设情境。

  教师:同学们,你们知道什么动物和嗅觉最灵敏吗?(学生回答:狗)所以人们常用狗来帮助侦探、看家。

  教师出示教材第10页的例6的主题图。

  教师:这幅图画上,你看到了什么?学生描述图画上的内容。

  教师:是啊!你看狗是多么勇敢的动物,它敢把持刀的坏人抓住,我们也要有这种敢于与坏人作斗争的精神。它是怎么发现坏人的呢?

  (2)教师投影出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍。狗约有多少亿个嗅觉细胞?(得数保留一位小数)

  学生读题,理解题意。

  ①怎样计算狗约有多少亿个嗅觉细胞呢?(提示:实际是要求0.049的45倍是多少)

  学生思考后,在练习本上独立列式解答,教师指名学生板演。

  0.049×45

  0 . 0 4 9

  × 4 5

  2 4 5

  1 9 6

  2. 2 0 5

  ②学生思考:保留一位小数应该怎么做?

  组织学生在小组中讨论,说一说取积的近似值的方法,然后指名汇报。

  学生汇报时可能会说出:要保留一位小数,看百分位上是几,如果满5就舍去后向前一位进1,如果比5小,就直接舍去,2.205的百分位是0,比5小,所以舍去后面的0和5,保留一拉小数,约等于2.2.

  ③教师根据学生的汇报,完成板书答题。

  0.049×45≈2.2(亿个)

  (4)拓展:

  教师:如果题目要求保留两位小数,怎样取它的近似值?

  学生在小组中议一议,相互说说保留两位小数取近似值的方法:看千分位上是几,千分位上是5,所以舍去后要向前一位进1,结果是2.21。

  三、巩固应用

  (1)教材第10页“做一做”及P13页练习二第1题

  学生独立练习后,在小组中相互交流。教师点名学生演板,集体更正。

  (2)教师出示:如果两个因数的积保留两位小数的近似值是3.58,准确的值可能是下面哪个数?

  3.059 3.578 3.574 3.583 3.585

  学生独立思考后,在小组中讨论,使学生明确:准确值可能在3.575到3.584之间。

  四、全课小结:

  通过这节课的学习,你学到了什么?

  五、作业:P13页练习二第2、3题

  六、板书设计:

  积的近似数

  例6 0.049×45≈2.2(亿个)

  0. 0 4 9

  × 4 5

  2 4 5

  1 9 6

  2.2 0 5

  0<5,舍去0和5,保留一位小数

  答:狗约有2.2亿个嗅觉细胞。

  七、教学反思:

  本节的教学内容是把小数乘法的计算和求小数的近似数的知识结合在一起。在教学时,主要采用的是引导学生复习旧知识,然后将两个原来没有联系的知识通过例6中的具体问题加以结合,在教学中提出这样的问题:你能用我们学过的知识自己试着解决吗?学生基本上都是利用以前的知识来解决。在此基础上组织学生交流怎样求积的近似值。在学生们交流的基础上引导他们总结出具体的步骤和方法。通过一系列练习,巩固所学的知识,增强学生的熟练度。

《近似数》教案10

  【教学内容】

  义务教育课程标准实验教科书(西师版)四年级上册第22页例2,课堂活动的第2题及练习三的第4、5题。

  【教学目标】

  1.让学生经历探索求近似数的方法的过程,会用“四舍五入”法求近似数。

  2.让学生明确学习和掌握用四舍五入法求近似数的重要性,加强数学与生活的联系。

  3.培养学生的主体意识和探索精神。

  【教学重点】

  掌握求近似数的方法

  【教学难点】

  正确选择“四舍法”或“五入法”

  【教学过程】

  一、引入新课

  教师:这学期,我们班转来了几位新同学,为了增进大家的了解,谁愿意用数据向他们介绍一下自己或者我们学校的情况?

  学生1:我今年10岁,身高大约140厘米。

  学生2:我的体重在36千克左右,我家有3个人,爸爸妈妈每月的收入大约1万元。

  学生3:我们学校有学生2125人。

  教师:在刚才介绍的这些数据中,哪些是准确数?哪些是近似数?

  学生:10、 3、2125是准确数,大约140、36千克左右、大约1万是近似数。

  教师:在我们的生活中,有时不需要也不可能得到准确数,这时就要用到近似数,比如:20xx年重庆市总人口约3100万,中国大陆总人口约13亿等都是近似数。那么,怎样求一个数的近似数呢?

  [点评:体现数学的现实性。利用学生身边现有的、熟悉的学习材料引入教学,让学生在相互介绍的过程中,感受到近似数在生活中的存在和广泛应用,突出其学习价值。]

  二、学习新知

  1探索“四舍五入”法。

  (出示:534607)

  教师:这是一个准确数,如果改成一个近似数,大约等于多少?

  学生1:约等于五十三万四千六百。

  学生2:也可以约等于五十三万四千。

  学生3:还可以约等于五十三万、五十万。教师:了不起,还写成了用“万”作单位的.数,你们认为“五十三万”和“五十万”谁比较合适?

  学生1:我认为五十万比较合适,因为这样的近似数比较简单。

  学生2:我不同意,我认为五十三万比较合适,因为五十万与准确数相比,比准确数少了三万多,相差太多,而五十三万与准确数很接近,只相差四千多。

  教师:五十四万怎么样?

  学生1:不行,与准确数相差五千多了。

  学生2:我发现,只要千位上的数没有达到五千,就可以直接去掉万位后面的数,约等于五十三万。

  学生3:对,当千位上的数达到或者超过五千,就可以在万位上增加1,再把万位后面的尾数舍去,约等于五十四万。

  (出示:38290)

  教师:按照大家刚才讨论出的办法,38290约等于多少万?

  学生:千位上是8,满了5,所以,万位上增加1,约等于4万。

  2.归纳方法。

  教师:同学们表现很出色,下面请同学们以小组为单位讨论讨论,整理出“省略万位后面的尾数求近似数”的方法。

  (学生分组讨论,然后全班交流)

  学生:省略万位后面的尾数求近似数,先看千位上的数,千位上的数小于5,就把万位后面的尾数直接舍去,千位上的数是5或者大于5,就向万位上进1,再把后面的尾数舍去。

  教师:我们把这种方法叫做“四舍五入”法。

  (学生看书第22页例2,质疑)

  [点评:“学生是数学学习的主人,教师是数学学习的组织者、引导者、合作者”。在新知识的学习过程中,学生围绕“怎样用近似数表示”这一问题展开了大胆的、富有个性的讨论,自主探索出了“四舍五入”法,知识的建构水到渠成。而教师的点拨——“谁比较合适”对学生的进一步探索起了重要的作用。]

  3.练习。

  (1)教科书第22页的试一试。

  教师:用“四舍五入”法求近似数。

  (学生独立完成,评讲)

  (2)教科书第23页的课堂活动第2题。

  师生活动:老师出示卡片,学生说近似数。

  师生活动:同桌活动,一人写数,一人说近似数。

  4.扩展。

  (出示:省略153904270亿位后面的尾数,它的近似数是多少?)

  教师:先回忆省略万位后面的尾数求近似数的方法,想一想,这个问题怎样解答?

  (学生独立思考,尝试解答,再交流)

  学生1:省略万位后面的尾数求近似数,看千位上的数“四舍五入”;省略亿位后面的尾数求近似数,就该看千万位上的数“四舍五入”,约等于2亿。

  学生2:也就是省略哪一位后面的尾数求近似数,就看那一位后面一个数位上的数“四舍五入”。

  [点评:引导学生充分利用已有经验验,迁移类推到新知识的学习中。通过省略万位后面的尾数求近似数的方法,很容易得出省略亿位后面的尾数求近似数的方法,即“看后面一位四舍五入”。]

  三、小结(略)

  四、课堂练习

  教科书第24~25页第4~6题(学生独立完成)。

《近似数》教案11

  课题:

  求近似数、四舍五入

  教学目标

  1.使学生理解并掌握近似数的概念.

  2.使学生初步掌握用“四舍五入法”求一个数的近似数.

  3.能正确运用“四舍五入法”解决日常生活中的实际问题,并通过联系生活实际,激发学生学习数学的兴趣.

  教学重点

  用“四舍五入法”求一个数的近似数.

  教学难点

  归纳求万以内近似数的方法.

  教学步骤

  一、铺垫孕伏.

  出示卡片,进行口算练习.

  60×4= 57-20= 36÷4=300×6=

  72÷9= 30×70= 23×4=25+8=

  二、探究新知.

  1.导入新课.

  (1)教师引导:请同学们拿出直尺测量一下教科书封面的长度是多少厘米?

  学生测后:20厘米多一些,接近21厘米.

  教师明确:如果我们不需要非常准确的结果,可以认为教科书的长大约是20厘米.

  (2)我们在日常生活中会经常遇到上面的情况.例如:今天早晨老师买早点,花去了2.1元,我们可以说花去了2元左右;又如:小明家路学校495米,我们可以说小明家距学校大约500米.在这里,我们就把“2元钱”、“500米”叫做2.1元和495米的`近似数.(板书)

  (3)近似数在我们日常生活中运用是非常广泛的,同学们回忆一下,我们日常生活中哪些地方运用过近似数?(学生自由回答)

  引导学生回答:我们伟大祖国的陆地面积是多少平方千米?(大约960万平方千米)

  哪位同学知道我国的人口约为多少亿?(十二亿)

  2.教师:以上一些数据,都是一些近似数.那么,究竟怎样来一个数的近似数呢?

  (1)出示例9:同学们浇树,浇了206棵松树,浇了284棵杨树,求这两个数的近似数.

  教师根据学生回答情况,总结说明:因206与200相差6,而206与300相差94,所以206最接近200,也就是说,206的近似数是200.板书:206≈200

  (2)讲授约等号.

  教师:这里的“≈”是约等号,206≈200读作206约等于200.

  (3)让学生通过以上的学习,自己类推284的近似数是284≈300.

  3.讲授“四舍五入法”.

  (1)二百几十几的近似数有的是200,有的是300,讨论一下,为什么出现这种情况?

  根据学生讨论,教师小结:二百几十几的数,十位上的数是0、1、2、3、4时,它们都比较接近于200,因此,求它们的近似数时,都是把百位后面的尾数会去,并且把会去的数位用“0”补足.如果二百几十几的数,十位上的数是5、6、7、8、9,它们比较接近于300,因此,求它们的近似数,是把这个数百位后面的尾数改写成0,同时,向百位进一.因此,284年的近似数就是300,这种求近似值的方法叫做“四舍五入法”.(板书)

  (2)用“四舍五入法”求一个数的近似数,比如求几百几十几的近似数大约是几百,首先看它十位上的数.如果十位上的数是4或者比4小的数,就把百位后的尾数舍去,改写为“0”;如果十位是5或者比5大的数,就把尾数改写为0,并向百位进一.

  4.反馈练习.

  (1)694大约是几百,并说出理由.

  引导学生明确:先看十位上的数是不是满5,9比5大,把尾数改写成0,还要向百位进一,写作694≈700.

  (2)6250大约是几千?

  三、课堂小结.

  本堂课我们学习了用“四舍五入”求一个数的近似数.即根据要求省略它的尾数:如果要省略的尾数最高位不满5,就把尾数舍去,改写为0;如果要省略的尾数最高位满5,把尾数改写为0后,还要向它的前一位进1.

  四、随堂练习.

  1.求出下面各数的近似数.(省略最高位后面的尾数)

  89 419 581 6792 8870

  2.填空.

  (1)新编小学生字典有592页,大约是_______页.

  (2)我班有学生43人,大约有_______人.

  (3)今天,小明买学习用具花去大约10元钱,小明可能花去了_______元或_______元.

  3.(1)下面各数大约是几百?

  189≈ 203≈ 451≈

  (2)下面各数大约是几千?

  1120≈ 5906≈ 3005≈

  五、布置作业.

  结合生活实际,自编5道用“四舍五入法”求近似数的题,如:我们班有72块玻璃,72≈70;奶奶今年59岁,大约60岁.

  板书设计

《近似数》教案12

  教学目标

  (一)通过学生熟悉的事物来认识求近似数的实用性.

  (二)使学生掌握四舍五入法求一个数的近似数的方法.

  (三)培养学生分析、判断、解决实际问题的能力.

  教学重点和难点

  重点:使学生掌握用四舍五入法求一个数的近似数的方法.

  难点:掌握近似数的判断方法.

  教学过程设计

  (一)复习准备

  教师通过启发谈话,即从学生生活贴近的事物中引出近似数.

  在日常生活中,描述一些事物的数量有时不一定要说出它们的准确数量,只要知道它们的大概是多少就可以了,因此不用准确数表示,而是用一个与准确数比较接近的整十、整百、整千数表示.如:我们国家的领土大约960万平方千米;我国人口大约12亿;我们学校有学生大约1200人等等.这样做比较方便、记忆容易、计算简单.

  (二)学习新课

  出示例题:

  同学们浇树.浇了206棵松树,浇了284棵杨树.求这两个数的近似数大约是几百?

  首先引导学生观察、思考:

  206接近哪个整百数?(接近200)

  206≈200用“≈”连接,“≈”叫做约等号.读作:206约等于200.

  讨论下面几个数的近似数大约是几百?说一说你是怎样想的?怎样求的?

  314≈300(十位上的1不满5)

  325≈300(十位上的2不满5)

  336≈300(十位上的3不满5)

  347≈300(十位上的4不满5)

  那么我们进一步讨论284接近哪个整百数?为什么?怎样想的?

  284≈300(十位上的8满5,把十位、个位上的数改写成0,向百位进1)

  继续进行小组讨论:395,486,573,264, 358的数大约是几百?

  395≈400 486≈500 573≈600

  264≈300 358≈400

  根据同学讨论的情况,归纳小结:

  要求三位数的近似数,关键是看它十位上的数是不是满5,(也就是4或3,2,1)就把位和个位上的数去掉写成0.如果满5,(也就是5或6,7,8,9)就把十位和个位上的数改写成0,同时向百位进1.这样的方法我们称作“四舍五入”法.

  (三)巩固反馈

  1.说出下面各数的近似数.(投影)

  (1)386≈400 (2)247≈200

  579≈600 739≈700

  462≈500 305≈300

  758≈800 428≈400

  观察比较两组题的相同点与不同点.(小组讨论)

  相同点:两组题都是求三位数的近似数.

  不同点:第(1)组各数十位上的数都满5,(大于或等于5),所以都把十位和个位上的数改写成0,同时向百位进1.第(2)组各数十位上的数都不满5,(小于5)就把十位和个位上的数字舍掉改写成0.

  请同学们强调:把一个三位数改写成整百的近似数关键是什么?

  关键是看十位上的数是否满5,来决定四舍五入.

  那么,我们一起来研究一下,如何求四位数的近似数?关键要看哪一位上的数呢?

  出示:6250大约是几千?

  6250≈6000

  6250百位上是2(小于5),就把百位后面的尾数舍掉,改写成0.

  2.做一做.(投影)

  求下面各数的近似数.(独立写在本上)

  3845≈4000 2489≈20xx

  5290≈5000 4562≈5000

  2908≈3000 8397≈8000

  订正时请同学说一说是怎样想的?(求一个四位数的近似数,要看百位上的数是否满5,百位上的数不满5,直接把千位后面的尾数舍掉改写成0.如果百位上的数满5,把千位后面的尾数改写成0,同时还要把百位上的数向它的前一位进1)

  3.求下面各数的近似数.

  根据学生掌握情况教师总结:

  求万以内数的近似数,要根据要求省略这个数的十位、百位或千位后面的尾数.如果尾数的最高位不满5,就直接把尾数舍去,改写成0;如果尾数的最高位满5,把尾数改写成0后,还要向它的前一位进1.

  作业:看书第20、21页.

  小资料

  〔近似数和四舍五入法〕

  有关近似数的知识在实际生活、应用中经常遇到.在多位数读写之后,教学近似数和四舍五入法,使学生初步理解近似数的意义与截取近似数的方法,可以进一步加深学生对数的概念的理解,为以后学习小数取近似值做准备.

  取近似数的时候,省略哪一位后面的尾数要根据实际需要,按一定的规则进行.考虑到学生的接受能力,在小学主要讲常用的把一个多位数四舍五入到“万位”或“亿位”的方法.例如751872和754920,755830和758850,要省略万后面的.尾数.751872和754920,尾数最高位千位上是1和4,不足一万的一半,把尾数舍去,改写成0.751872≈750000,754920≈750000.755830和758850,尾数最高位千位上是5和8,等于或大于一万的一半,把尾数改写成0后,要向它的前一位进1.755830≈760000,758850≈760000.省略亿位后面的尾数的方法可以依此类推.

  〔四舍五入法〕

  这是取近似数最常用的方法.具体做法是:把数按需要截取指定数位后,如果去掉的部分最高位上的数是4或者比4小,就把它舍去(称为“四舍”),这样得到的近似数值叫不足近似值;如果去掉的部分最高位上的数是5或者比5大,就在保留部分的最后一位数上加1(称为“五入”),这样得到的近似值叫过剩近似值.

  例如:20÷7=2。85714……

  用四舍五入法使得数保留三位小数,得

  20÷7≈2。857 (四舍)

  用四舍五入法使得数保留两位小数,得

  20÷7≈2。86 (五入)

  课堂教学设计说明

  有关近似数的概念是学生第一次接触,但又不生疏,因为在日常生活中会经常遇到,根据这一实际情况,教师就从学生身边熟悉的事物入手,通过一些实例使学生体会到用一个与准确数相接近的整十、整百、整千的数来表示一些事物的数量很方便,记忆容易,计算简单,这样学生既认识到近似数的实用性,又提高了学生的学习兴趣,使学生感到很容易就掌握了这一新知识.

  教学例9时,通过让学生观察思考206接近哪个整百数.由于数字比较简单学生容易说出206接近200,情绪自然很高,老师接着出示314,325,336,347这几个数让学生充分讨论.使学生自己悟出“四舍”的方法,至于“五入”学生自然是自己获取.在教师引导下,学生通过观察,分析,讨论,判断掌握了如何用“四舍五入”法求三位数的近似数的方法.学生的求知欲望激发起来了,在这个基础上再来研究如何求四位数的近似数,这是进一步巩固求一个数的近似数的关键.通过一定量的练习,使学生真正理解和掌握求近似数的方法.

《近似数》教案13

  教学目标:

  1.使学生掌握求一个小数的近似数的方法.

  2.能正确地用“四舍五人法”求近似数.

  3.使学生理解保留小数位数越多,精确程度越高.

  教学重点:

  使学生理解取近似值对结果的精确程度的影响.

  教学难点:

  理解保留小数位数越多,精确程度越高.

  教学方法:

  探究交流法

  教学准备:

  多媒体课件

  课时课型:

  1课时 新授课

  教学过程:

  (一)、创设情境

  1.出示情境图,电子秤上显示的数据和售货员的话,提出疑问怎么会不一样?引出“四舍五入法”

  2.引出近似数,复习整数求近似数。

  (二)探究交流

  1.出示情境图,在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。提出0.984的近似数是多少?小组讨论后指名汇报。

  (根据学生汇报现场操作展示在多媒体PPT中,插入函数能在播放时在方框里输入学生汇报结果,能及时将学生的想法展现在课件上)

  2根据汇报结果,分别具体探讨保留两位小数的近似数,保留一位小数,保留整数后的近似数。并说一说操作的过程。

  3、强调取近似数的要求不同表示方法

  4、小组探讨1与1.0的精确度

  5、引导通过线段图理解保留一位小数是1.0,小数末尾的0,应当保留,不能去掉。

  6、总结:刚才是利用什么方法求0.984的近似数?独立完成想一想后在小组中交流,找不同说原因。

  (三)巩固练习

  1、选择,学生独立完成,指名汇报

  (1)保留( )位小数,表示精确到十分位。

  ①一位 ②两位 ③三位

  (2)如果要求保留三位小数,表示精确到( )位。

  ①分 ②百分 ③千分

  2、求下面小数的近似数

  (1)保留两位小数

  0.256 12.006 1.0987

  (2)精确到十分位

  3.72 0.58 9.0548

  (选两组,整组4人一起在电脑前讨论后,将本组答案用电脑操作展现在课件上放映呈现给大家)

  3、按要求填出表中的近似数

  4、拓展题

  四、全课总结

  1、数学课将结束了,你有哪些收获?在哪方面还需努力?

  2、今天我们学习的'是课本73页的知识,打开课本,认真看一看课本,找出书中你认为需要掌握的知识用笔做个记号,然后大声地朗读出来。

  课后作业: 1.从课后习题中选取;

  2.完成练习册本课时的习题

  板书设计:

  求一个小数的近似数

  0.984≈0.98 0.984≈1.0 0.984≈1

  小于5,舍去 大于5,向前一位进1 大于5,向前一位进1

  表示近似数的时,0不能去掉

  课后反思:

《近似数》教案14

  教学目标:

  知识与技能:1、通过复习,巩固所学的计数单位和相邻两个单位之间的进率,掌握数位顺序表,能正确地读写大数,掌握改写和省略的方法。2、进一步培养学生的数感。

  过程与方法:使学生参与复习的全过程,通过合作交流等活动,使学生形成知识网络。

  情感、态度和价值观:培养学生的反思意识和合作精神。

  重点:数的概念、读写数的方法、改写和省略的方法

  难点:数中间和末尾有0的读写法、用四舍五入法求近似数

  教具:题卡

  教学过程:

  一、复习整理:

  1、本节课对多位数的认识这部分知识进行整理和复习。板书课题:复习多位数的认识。

  2、打开数学书看第一单元的内容,看看本单元都学习了哪些内容?

  哪个小组愿意汇报你们组的交流情况?

  老师指导并归纳,总结在黑板上。

  问:你认为本单元哪些内容比较难?你最容易出错?

  二、复习知识点

  1、复习数位顺序表

  1)什么叫数位、计数单位、数级?

  2)每相邻两个计数单位之间有什么关系?

  10个一万是十万

  10个十万是一百万

  10个一百万是一千万

  10个一千万是一亿

  3)每相邻的两个计数单位之间的进率都是十,这种计数方法叫十进制计数法。

  4)自然数的认识

  表示物体个数的.1、2、3、4、5、6、7、8、9、10、11都是自然数,一个物体也没有,用0表示,0也是自然数。

  问:最小的自然数是几?有没有最大的自然数?自然数的个数是无限的还是有限的?

  2、多位数的读写法的方法是什么?

  3、改写和省略的方法是什么?

  4、如何比较数的大小?

  三、练习内容

  1、读出下面各数。4231579、30050082、3960400000、7000700070、700300009、26740020000、315400000、50708000000。

  2、写出下面各数

  三千零三万三百零三、一千零五十万四千零二十、二十亿零七百六十八、三百一十亿七千零八万三千零四十。

  3、改写成以万做单位的数。80000、9000000、47000000、200320000。

  4、改写成以亿做单位的数。325600000000、48000000000

  5、求近似数

  1)16483520、9528641、799000、380800、8396000(省略万后面的尾数)

  2)2709546312、983536478、89970804758(省略亿后面的尾数)

  6、比较大小

  1650010○16500100;350020○530020;2509200○2509000;6309607○670630。

  7、用6、3、8、9和5个0按要求写出九位数。

  1)最大的数;2)最小的数;3)一个0都不读的数;4)只读出一个0的数;5)要读出2个0的数;6)约等于3亿的数;7)约等于10亿的数。

  四、这节课复习了什么?还有什么问题?

  五、作业:练习二十一1、2、3

《近似数》教案15

  教学目标:

  1、在测量情境中体会用近似数表示长度的必然性,能用近似数表示生活中的数量.

  2、能根据实际问题的需要四舍五入取近似值.

  3、对于由四舍五入法得到的近似数,能说出它精确到哪一位,它们有几个有效数字,是什么.

  教学重点:

  按要求取近似值,能说出它精确到哪一位,有几个有效数字,按精确到哪一位的要求,四舍五入取近似值.

  教学难点:

  指出较大数位的近似数的有效数字.

  教学过程:

  一、创设情景引入

  出示投影:78页彩图,学生组内合作讨论、交流解决问题.

  二、新课:

  (一)通过学生的活动,加深对近似数的理解,并讲解例题1、2

  (二)练习:

  1、判断下列各数,哪些是准确数,哪些是近似数

  (1)某歌星在体育馆举办音乐会,大约有一万二千人参加;()

  (2)检查一双没洗过的手,发现带有各种细菌80000万个;()

  (3)张明家里养了5只鸡;()

  (4)1990年人口普查,我国的人口总数为11.6亿;()

  (5)小王身高为1.53米;(6)月球与地球相距约为38万千米;()

  (7)圆周率π取3.14156.()

  2.小明量得一条线长为3.652米,按下列要求取这个数的近似数:

  (1)四舍五入到十分位___________;(2)四舍五入到百分位_________;

  (3)四舍五入到个位____________.

  一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.

  在上题中,小明得到的近似数分别精确到那一位.

  3、下面由四舍五入得到的近似数各精确到那一位

  0.320__________;123.3__________;5.60____________;204__________;

  5.93万____________;1.6×104_____________.

  4.小亮量得某人三级跳的距离是12.9546米,按下列要求取这个数的近似数:

  (1)精确到0.1____________;(2)精确到0.01_________;(3)精确到0.001_______.

  5.把数73600精确到千位得到的近似数是_______________

  精确到万位得到的近似数是_________________

  6.近似数3.70所表示的精确值a的范围是()

  (A)3.695≤a<3.705(B)3.6≤a<3.80

  (C)3.695<a≤3.705(D)3.700<a≤3.705

  7.下列数中,不能由四舍五入得到近似数38.5的`数是()

  (A)38.53(B)38.56001(C)38.549(D)38.5099

  分析近似数8与8.0的差别

  (三)讲解精确度、有效数字的概念:

  对于一个近似数从____边第____个不是____的数字起,到________的数位止,所有的数字都叫做这个数的有效数字.

  如:1、0.03296精确到万分位是_______,有____个有效数字,它们是_________________

  2、数0.8050精确到_______位,有_____个有效数字,是_______________

  3、数4.8×105精确到_______位,有_____个有效数字,是_______________

  4、数5.31万精确到_______位,有_____个有效数字,是_______________

  四、讲解例题,解后反思,加深对相关知识的理解.

  练习:一箱雪梨的质量为20.95㎏,按下面的要求分别取值:

  (1)精确到10㎏是______㎏,有______个有效数字,它们是________

  (2)精确到1㎏是______㎏,有______个有效数字,它们是________

  (3)精确到0.1㎏是______㎏,有______个有效数字,它们是______

  五、小结:什么是有效数字?按精确到哪一位,求近似值时要注意什么?

  六、作业:P83习题1、2

【《近似数》教案】相关文章:

《积的近似数》教案03-30

《求小数的近似数》教案07-01

小数的近似数练习教案范文01-28

近似数教学反思02-10

《近似数》教学反思06-25

近似数教学反思优秀11-24

积的近似数教学反思(精选)10-11

小数的近似数教学反思07-03

商的近似数教学反思09-04