圆的面积教案
在教学工作者开展教学活动前,就不得不需要编写教案,教案是备课向课堂教学转化的关节点。那么什么样的教案才是好的呢?以下是小编收集整理的圆的面积教案,欢迎阅读,希望大家能够喜欢。
圆的面积教案1
教学目标
(1)知识与技能目标:学生结合具体情境认识组和图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
(2)过程与方法目标:通过自主合作,培养学生独立思考、合作探究的意识。
(3)情感态度与价值观目标:学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高学习好数学的自信心。
教学重难点
教学重点:组合图形的认识及面积计算。
教学难点:对组合图形的`分析。
教学工具
多媒体课件,各种基本图形纸片
教学过程
一、创设情境,谈话引入
同学们,在中国古代的建筑中我们经常会见到“外放内圆”“外圆内方”的设计,下面请同学们欣赏几组图片。(生欣赏完后)师提问:这些图片美吗?(生:美)
师:这些图片的设计中包含了我们学过的哪些平面图形?(生:圆、正方形、长方形等)
师:这些不同的几何图形拼在一起能构成精美的图案,给我们以美的享受,这说明我们的数学和现实生活联系密切。今天,我们就来学习会有圆的组合图形的面积。(板书课题)二、提出问题,自主探究
1、教师出示例3的两幅图并出示自学提示出示自学提示:
(1)上面两幅图有什么不同之处?
(2)右图中的正方形的对角线和圆得直径有什么关系?
(3)上图中两个圆的半径都是r,你能求出正方形和圆之间的半部分的面积吗?
2、请同学们带着问题认真阅读P69-70页的内容,独立思考自学提示中的问题,若有困难可以小组内讨论。(自学时间:4分钟)三、师生联动,合作探究1、汇报交流,师生互动
生汇报问题(1):这两幅图都是由圆和正方形组成,左图是外圆内方,右图是外方内圆。
生汇报问题(2):右图中的正方形的对角线和圆得直径相等。生汇报问题(3):左图阴影面积=正方形的面积-圆的面积列式为:S正=2×2=4(m2 ) S圆=3.14×12=3.14(m2 ) 4-3.14=0、86(m2 )左图:圆的面积减去正方形的面积
( 1/2 ×2×1)×2=2(m2 ) 3.14×12=3.14(m2 ) 3.14-2=1.14(m2 )
师:同学们做的很好!可我又有问题了,若两个圆的半径都是r,那结果又是如何呢?生派代表回答:
左图;(2r)-3.14r =0.86r
右图:3.14r-( 1/2 ×2r×r)×2=1.14r当r=1m时,和前面的结果完全一致
答:左图中正方形和圆之间的面积是0、86m、右图中圆与正方形之间的面积是1.14m。
四、总结引导,知识生成这节课你有什么收获?
师顺便对生进行德育教育:在我们今后的人生道路中,我们为人处事,必须能屈能伸,可方可圆,外在大度圆融,内在正直公正。五、科学训练,提高能力1、出示教材P70做一做2、完成教材P72第9题六、堂清作业
七、作业布置P73第10、11、
课后小结
这节课你有什么收获?
课后习题
1、出示教材P70做一做
2、完成教材P72第9题
板书
含有圆的组合图形的面积
左图:S正=2×2=4(m2 )右图:( 1/2 ×2×1)×2=2(m2 )
S圆=3.14×12=3.14(m2 ) 3.14×12=3.14(m2 )
4-3.14=0.86(m2 ) 3.14-2=1.14(m2 )
圆的面积教案2
教学目标:
1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算;
2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力;
3、在扇形面积公式的推导和例题教学过程中,渗透“从特殊到一般,再由一般到特殊”的辩证思想.
教学重点:扇形面积公式的导出及应用.
教学难点:对图形的分析.
教学活动设计:
(一)复习(圆面积)
已知⊙O半径为R,⊙O的面积S是多少?
S=πR2
我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积.为了更好研究这样的图形引出一个概念.
扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.
提出新问题:已知⊙O半径为R,求圆心角n°的扇形的面积.
(二)迁移方法、探究新问题、归纳结论
1、迁移方法
教师引导学生迁移推导弧长公式的方法步骤:
(1)圆周长C=2πR;
(2)1°圆心角所对弧长=;
(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;
(4)n°圆心角所对弧长=.
归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则(弧长公式)
2、探究新问题
教师组织学生对比研究:
(1)圆面积S=πR2;
(2)圆心角为1°的扇形的面积=;
(3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;
(4)圆心角为n°的扇形的面积=.
归纳结论:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则
S扇形= (扇形面积公式)
(三)理解公式
教师引导学生理解:
(1)在应用扇形的面积公式S扇形=进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;
(2)公式可以理解记忆(即按照上面推导过程记忆);
提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)
S扇形=lR
想一想:这个公式与什么公式类似?(教师引导学生进行,或小组协作研究)
与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了.这样对比,帮助学生记忆公式.实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限.要让学生在理解的基础上记住公式.
(四)应用
练习:1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积,S扇=____.
2、已知扇形面积为 ,圆心角为120°,则这个扇形的半径R=____.
3、已知半径为2的扇形,面积为 ,则它的圆心角的度数=____.
4、已知半径为2cm的扇形,其弧长为 ,则这个扇形的面积,S扇=____.
5、已知半径为2的`扇形,面积为 ,则这个扇形的弧长=____.
( ,2,120°, , )
例1、已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积.
学生独立完成,对基础较差的学生教师指导
(1)怎样求圆环的面积?
(2)如果设外接圆的半径为R,内切圆的半径为r, R、r与已知边长a有什么联系?
解:设正三角形的外接圆、内切圆的半径分别为R,r,面积为S1、S2.
S=.
∵ ,∴S=.
说明:要注意整体代入.
对于教材中的例2,可以采用典型例题中第4题,充分让学生探究.
课堂练习:教材P181练习中2、4题.
(五)总结
知识:扇形及扇形面积公式S扇形= ,S扇形=lR.
方法能力:迁移能力,对比方法;计算能力的培养.
(六)作业 教材P181练习1、3;P187中10.
圆的面积教案3
一、教材内容分析
新人教版上册《圆的面积》这部分内容是平面几何的最后阶段,它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实验几何阶段转入论证几何阶段作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解和掌握公式的应用,为以后进一步学习打下基础。
二、学习者特征分析
六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的掌握,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但由于圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,结合操作演示,让学生在学习圆面积公式的推导过程中,提高学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程。并且能应用公式解决一些生活实际问题。
三、教学目标(知识,技能,情感态度、价值观)
1、利用学生已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。
2、使学生经过“感知——动脑——观察——合作探究”等系列活动.逐渐培养学生的抽象思维能力。
3、通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生体会图形转化的神奇和美。
四、教学策略选择与设计
1、注重情境创设,有意识地激发学生学习知识的.兴趣
数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。
2、 注重实践操作,有意识地培养学生获取知识的能力
学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,敢于放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既沟通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。
3、 注重学法指导,有意识地引导学生应用转化的方法
本节课中,在求圆面积公式时,不是教师灌输式地教会学生S =πr,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现《圆的面积公式》的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。
4、 注重媒体应用,有意识地突破学生学习知识的难点
利用计算机和动画课件,辅助课堂教学,有其直观、形象而又生动的特点,它能使静态的画面动态化,抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用了多媒体课件演示,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其他教学手段无法比拟的。
五、教学环境及资源准备
用多媒体课件,圆形卡片辅助教学
六、教学过程
1、什么是圆的面积?
(1)涂出一个圆的面积
(2)用自己的话说什么是圆的面积?
2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?
3、能不能用剪、拼的方法把圆转换成我们学过的图形?
4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?
5、学生汇报后,课件演示。
6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、
7、转化后的长方形的长和宽与原来的圆有什么关系?
小组合作学习,讨论以下两个问题:
1) 转化后长方形的长相当于什么?宽相当于什么?
2) 你能从计算长方形的面积推导出计算圆面积的公式吗?
8、汇报讨论结果。
9、运用新知识,解决问题。
1)r=5cm,求圆的面积
2)课始主体图中的问题
总结
小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。
总之,这节课,我力图从学生已有的知识背景出发,采取观察操作、合作探究的学习方式,帮助学生再实践活动中理解概念,掌握知识形成技能,让课堂充满活力,让学生真正成为学习的主人。
圆的面积教案4
教学目标:
1、在复习巩固圆面积、扇形面积的计算的基础上,会计算弓形面积;
2、培养学生观察、理解能力,综合运用知识分析问题和解决问题的能力;
3、通过面积问题实际应用题的解决,向学生渗透理论联系实际的观点.
教学重点:扇形面积公式的导出及应用.
教学难点:对图形的分解和组合、实际问题数学模型的建立.
教学活动设计:
(一)概念与认识
弓形:由弦及其所对的弧组成的图形叫做弓形.
弦AB把圆分成两部分,这两部分都是弓形.弓形是一个最简单的组合图形之一.
(二)弓形的面积
提出问题:怎样求弓形的面积呢?
学生以小组的形式研究,交流归纳出结论:
(1)当弓形的弧小于半圆时,弓形的面积等于扇形面积与三角形面积的差;
(2)当弓形的弧大于半圆时,它的面积等于扇形面积与三角的面积的和;
(3)当弓形弧是半圆时,它的面积是圆面积的一半.
理解:如果组成弓形的弧是半圆,则此弓形面积是圆面积的一半;如果组成弓形的弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积;如果组成弓形的弧是优弧,则它的面积等于以此优弧为弧的扇形面积加上三角形的面积.也就是说:要计算弓形的面积,首先观察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确.
(三)应用与反思
练习:
(1)如果弓形的弧所对的圆心角为60°,弓形的`弦长为a,那么这个弓形的面积等于_______;
(2)如果弓形的弧所对的圆心角为300°,弓形的弦长为a,那么这个弓形的面积等于_______.
(学生独立完成,巩固新知识)
例3、水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m.求截面上有水的弓形的面积.(精确到0.01m2)
教师引导学生并渗透数学建模思想,分析:
(1)“水平放着的圆柱形排水管的截面半径是0.6m”为你提供了什么数学信息?
(2)求截面上有水的弓形的面积为你提供什么信息?
(3)扇形、三角形、弓形是什么关系,选择什么公式计算?
学生完成解题过程,并归纳三角形OAB的面积的求解方法.
反思:①要注重题目的信息,处理信息;②归纳三角形OAB的面积的求解方法,根据条件特征,灵活应用公式;③弓形的面积可以选用图形分解法,将它转化为扇形与三角形的和或差来解决.
例4、已知:⊙O的半径为R,直径AB⊥CD,以B为圆心,以BC为半径作 .求 与 围成的新月牙形ACED的面积S.
解:∵ ,
有∵ ,
, ,
∴ .
组织学生反思解题方法:图形的分解与组合;公式的灵活应用.
(四)总结
1、弓形面积的计算:首先看弓形弧是半圆、优弧还是劣弧,从而选择分解方案;
2、应用弓形面积解决实际问题;
3、分解简单组合图形为规则圆形的和与差.
(五)作业 教材P183练习2;P188中12.
圆的面积教案5
设计说明
1.利用圆内知识间的内在联系,解决实际问题。
学生在掌握了圆的面积计算公式的推导过程之后,能够利用公式解决实际问题。教材中根据圆的周长求圆的面积,对学生来说,有一定的难度,学生要在已有的圆的周长知识的基础上,求出圆的半径,再利用公式求出圆的面积。让学生体会到了知识间是环环相扣的,提高了学生利用所学知识解决实际问题的能力。
2.重视图示的作用。
结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。
课前准备
教师准备 PPT课件
学生准备 圆片 剪刀
教学过程
一、创设情境,激发兴趣
师:南湖公园的草坪上安装了许多自动喷水头,喷射的距离为3米,喷水头转动一周形成的是什么图形?(圆)
师:喷水头转动一周可以浇灌多大的面积呢?这个面积就是谁的面积?(圆的面积)
师:同学们,上节课我们学习了圆的面积计算公式的推导过程,今天这节课,我们继续研究圆的面积。利用圆的面积计算公式来解决生活中的实际问题。[板书:圆的面积(二)]
设计意图:创设问题情境,让学生在生活中发现问题,激发学生探究新知的兴趣,为新知的学习做好铺垫。
二、探究新知,建构模型
1.课件演示自动旋转喷灌装置在灌溉农田的生活情境,并引导学生讨论“喷水头转动一周形成什么图形?喷水头转动一周能浇灌多大面积的农田?圆的面积是指哪一部分?”,结合提出的几个问题,引导学生区分圆的周长和面积。
师:怎么求出浇灌的面积呢?(生汇报:根据S=πr2得出3.14×32=3.14×9=28.26m2,强调要先算“平方”)
教师小结:已知圆的半径求圆的面积时,可以直接利用圆的面积计算公式进行计算。
2.课件出示教材16页例题,认真读题,想一想题中给出的已知条件有哪些。(羊圈的形状是圆、羊圈的周长是125.6m)
(1)想一想,要求羊圈的面积,首先要知道圆的哪一部分?(半径)
(2)该如何求出圆的半径呢?同桌说一说。(出示课堂活动卡) (学生反馈:根据圆的周长计算公式可知周长除以圆周率再除以2就可以求出圆的半径)
(3)根据这个解题思路让学生独立完成。[全班反馈:半径:125.6÷3.14÷2=20(m) 面积:3.14×202=1256(m2)]
3.探究推导圆的面积计算公式的其他方法。
(1)引导学生观察所拼成的图形,想一想拼成的三角形的底相当于圆的哪一部分,拼成的三角形的高相当于圆的哪一部分。(学生反馈:拼成的三角形的'底相当于圆的周长,拼成的三角形的高相当于圆的半径)
(2)茶杯垫片剪开后,虽然形状变了,但剪开前后的面积并没有改变。根据三角形的面积计算公式,推导出圆的面积计算公式。
圆的面积=三角形的面积=底×高÷2=2πr×r÷2=πr2
设计意图:学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,激发研究圆的面积的兴趣。引导学生探究不同条件下求圆的面积的方法,发展学生的发散思维和积极探究的能力。用拼三角形的方法探究圆的面积计算公式,再一次体现了“化曲为直”的数学思想。
圆的面积教案6
教学目标
1、使学生理解圆的面积的含义.经历体验圆的面积公式的推导过程,理解和掌握圆的面积公式.
2、使学生能够正确地计算圆的面积,培养学生解决简单的实际问题的能力,渗透类比、极限的思想。
3、通过圆的面积公式推导过程,培养学生的合作精神和创新意识,培养观察、猜想、验证的实验方法与态度。
教学重点
圆面积的公式推导的过程。
教学难点
理解圆经过无数等分剪拼后可以拼成一个近似的长方形。并且发现拼成的长方形的长相当于圆周长的一半。
教具、学具准备
有关圆面积的课件,彩色圆形纸片(每小组1个),剪刀(每组2把).学生每人准备一个圆形物品。
教学过程
一、创设情境,提出问题
【课件演示】花园里新建了一个圆形花坛,为了让花坛更漂亮,管理员叔叔打算给花坛铺上草坪,需要多少平方米的草坪呢?这实际上是要解决什么数学问题?
揭示课题:圆的面积
二、充分感知,理解圆的面积的意义。
提问:什么叫圆的面积呢?请大家拿出准备好的圆形纸片,用你喜欢的方式感受一下圆的面积,告诉大家圆的面积指的是什么?
课件显示:圆所占平面的大小叫做圆的面积。
你认为圆面积的大小和什么有关?
三、自主探究,合作交流。
1、引导转化:
回忆学过的一些平面图形的`面积的推导过程,这些图形面积公式的推导过程有什么共同点?那么能不能把圆也转化成学过的平面图形来推导面积计算公式?
2、动手尝试探索。
(1)分小组动手操作,剪一剪,拼一拼,看能拼成什么图形?
(2)展示交流并介绍:你拼成了什么图形?在拼的过程中你发现了什么?
如果我们再继续等分下去,拼成的图形会怎么样?
小结:随着等分的份数无限增加,可以把圆剪拼成一个近似的长方形。
你能否根据圆与剪拼成的长方形之间的关系想出圆的面积公式?
3、学生合作探究,推导公式
圆的面积教案7
教材分析:
初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。
学情分析:
学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
教学目标:
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。
4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
教学重点:
通过观察操作,推导出圆面积公式及其应用。
教学难点:
极限思想的渗透与圆面积公式的推导过程。
教学过程:备注:
活动一:创设情景,提出问题
1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的草呢?
2、圆的面积--含义:圆所占平面的大小叫做圆的面积。
3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?
活动二:猜想比较:
出示图
师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?
活动三:自主探究,验证猜想
1、引导转化:
师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?
以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?
2、动手操作:
(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。
操作引导:A、剪--怎样剪?剪成几份?B、拼--怎样拼?拼成什么?
(2)展示交流并介绍,选出最合理的剪法。
(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?
想象一下,平均分成64份、128份、256份......会是什么情形?(课件演示)
(4)小结:平均分的`份数越多,边越直,拼成的图形越接近于长方形。
3、自主推导
(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。
(2)学生展示、介绍自己的推导过程
(3)教师板演圆面积的推导过程
4、情景延续:
(1)如果绳长为5米,计算圆的面积和周长。
(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?
5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)
活动四:实践运用,体验生活
1、量出自己带来的圆形物体的直径,并计算出面积。
2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。
活动五:全课小结
通过本节课的学习你有哪些收获?
板书设计
圆的面积教案8
教学目标
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2.能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)
(3)圆柱的'底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)
(2)底面积:3.14×2×2=12.56(平方分米)
(3)表面积:56.52+12.56=81.64(平方分米)
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)
2计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
圆的面积教案9
教学目标:
1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。
2、理解圆的面积公式的推导过程,感受转化的数学思想。
3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。
教学重难点:
重点:理解和掌握圆面积的计算方法。
难点:圆面积公式的推导。
准备:圆形纸片
一. 创设情境。
S:同学们,请看这里?(展示课件动画)
S:现在小马有一个问题:我的这个活动范围是一个什么形状? X:是圆形。(板书:圆)
S:小马还有一个问题,我的活动范围占地多大?这个多大指的是圆
的什么量呢?
X:是圆的面积。
S:对了,就是圆的面积,我们现在就来一起学习:圆的面积。(板书课题)
二. 探索交流,学习新知。
1. 出示电子课本。
S:请大家请大家翻到课本67页的彩图,有一个问题:这个圆形草坪的占地面积是多少平方米?怎样计算一个圆的`面积呢?你认为怎么做,大胆来说一说。
X1:公式。
X2:转化成学过的图形来计算。
S:(好,转化成学过的图形来计算,看来这位同学预习的非常好,一下子就抓住了问题的重点。)要转化成学过的图形,这个方法不错,那咱们来回想一下,咱们以前学过哪些图形的面积?(单击课件)
X:长方形,正方形,三角形,平行四边形,梯形等等。
(单击课件)
S:但是这么多学过的图形,转化成哪一个比较好呢?大家来选一选。 X:长方形,正方形,平行四边形。
S:喔,这三个图形比较简单,所以我们应该尽量转化成简单的图形来做。请大家看黑板上的电子课本(电子课本)
S读:在硬纸上画一个圆。。。。。大家附页1中的圆都准备好了
吗?
X:准备好了。
S:请大家举起来展示一下。好的请放下,老师想问大家,通过剪纸拼图,你发现了什么?
X:(学生自由回答)
S:同学们回答的都很好,现在我来演示一下,大家看看还有没有新的发现。
(课件演示)
2. 讲解课件。
4份时S问:这个像是咱们以前学过的图形吗?
X:不像。
S:不像没关系,咱们继续分,再分成8份,这次呢?
X:有点像平行四边形了。
S:继续分。(演示到32份)
S:这下更像一个平行四边形了,但是,这还没完,咱们来回顾一下刚才我们的拼图过程。(单击课件)
S:咱们从圆开始,先是4份,它完全是一个不规则的四不像,再分成8份,还是不像,然后依次16份,32份,还可以继续往下分的份数越来越多。。。。。最后,它会无限地接近一个什么形状呢? X:平行四边形。
X:长方形。
S:到底是长方形还是平行四边形。
S:启发:平行四边形和长方形的区别在哪里?平行四边形的这两条边是斜的,而长方形是竖的。大家从这个4份的图开始看可以观察到,这条边的倾斜度越来越小,最后它就会变得无限接近于90度的竖线,而这个图形也会近似的什么图形?
X:长方形。
(板书:长方形)
S:它不是真正的长方形,而是一个无限接近于长方形的近似长方形。 正如课本68页最上面的这句话。
3. 电子课本P68
S:如果分的。。。。。。长方形。同时我们的小精灵又给我们提出了一个问题:拼成的。。。。。关系?
S:请大家注意看我的课件演示。(讲解)
板书:长方形的面积= 长 *宽 圆的面积=圆周长的一半 * 半径 =C*r 2
=2π
2r*r
=πr*r
2 =πr
2即 S=πr
S:从这条公式我们可以看出,要想求出圆的面积,只要知道什么就可以了?
X:半径。
S:同学真聪明。好的,现在我们已经掌握了圆面积的计算公式了,要不要试一试这条公式好不好用?
S:来看一下咱们这节课刚开始看到的这个圆形花坛,原来它的直径有20m,要想求出它的面积,先要求出什么来?
X:半径。
学生先做题,再用课件演示答案。
三. 拓展练习。
1. 回答(尽量不要动笔)。
2. 计算(78.5 m2)
S= πr2
2 = 3.14×5
= 3.14×5×5
=3.14×25
=78.5 (m2)
四. 回顾总结。
谁愿意和大家分享你的学习成果?(学生自己总结)
老师补充:1.化圆为方。
2. S= πr2
3.计算圆面积的必要条件是什么(半径)
板书:
1. 化圆为方。
圆的面积教案10
学材分析
教学重点:
面积计算公式的正确运用。
教学难点:
面积公式的推导过程。
学情分析
学生对圆面积公式的推导过程理解有一定的难度。
学习目标
1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2.会用圆面积的计算公式,正确计算圆的面积。
导学策略
导练法、迁移法、例证法
教学准备
圆的面积模型、圆规、投影仪、投影片
教师活动
学生活动
一.引入
1.什么叫做圆面积?
2.出示大小略有不同的.两个圆,让学生比较哪个圆的面积大?大多少?(学生口答后把两圆重叠,比较大小。)相差多少呢?
3.引出课题。
二.推导
1.问:小正方形面积怎样计算?(半径半径)圆面积与小正方形面积的3倍谁大谁小?圆面积与小正方形面积的4倍呢?2倍呢?
2.师生共同操作:拿出一张正方形纸,按要求对折4次(注意第4次折的折法,是按角对分地折),然后拿尺量出一等腰三角形剪一刀,展开,得到一个近似于圆的纸片。
3.教师操作:拿一张正方形纸,对折5次,剪一刀展开。与前一次剪的作比较,使学生知道,随着折的次数不断增加,剪下的图形也就越接近圆。
4.分析推导。师生共同拿出剪好的图形分析:这个图形等分成若干块,每一块都是什么形状?(等腰三角形)这个图形的面积怎么求?随着折的次数不断增加,剪下的图形的面积也就越接近什么图形的面积?
板书:图形面积=等腰三角形面积n=底高2n=Cr2n
=2rn
圆的面积=r2
边板书边提问:等腰三角形的底是多少?(C)等腰三角形的高相当于圆的什么?(半径r)
5.在上面推导的基础上,让学生分4人小组动手把准备的圆分成相等的16个小扇形,再拼成其他图形,推导出圆面积公式。教师巡视,取学生拼成的各式各样的图形,贴在黑板上,选其中两个进行分析。
三.巩固
试一试。
四.总结
五.作业
学生口答
师生共同操作
师生共同操作
教学反思
已经是第2次教毕业班了记得第1次教的时候,还是幼儿园的院长一早每天都要过去一下,课前准备就不够充分,上课就照本宣科。而现在教这个知识的时候,不仅教具演示而且学生实际操作,所以教学效果就好多了,可以说连中下生都能灵活应用这个知识。
圆的面积教案11
教学内容:
圆的面积。
教学目标:
1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。
3. 渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
学情分析:
本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。
学法指导:
教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。
教具准备:
多媒体课件,圆片。
学具准备:
把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。
教学设计:
一、复习旧知,导入新课
1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)
2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)
3.件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。
提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)
这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)
二、动手操作,探索新知
1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?
2. 推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr × r S=πr2 师小结公式
S=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
3. 利用公式计算。
(1)用新的'方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)
(2)出示例3,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成第95页做一做的第1题。
(4)看书质疑。
三、运用新知,解决问题
1. 求下面各圆的面积,只列式不计算。(CAI课件出示)
2. 测量一个圆形实物的直径,计算它的周长及面积。
3. 课件演示
用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、布置作业
1. 第97页的第3题和第4题。
2. 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物、直径(厘米)、半径(厘米)、面积(平方厘米)
板书设计:
圆的面积
长方形的面积= 长× 宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2
圆的面积教案12
教学目标:
1、通过教学使学生理解并掌握圆的周长和面积计算方法。
2、培养学生分析问题和解决问题的能力,发展学生的空间观念。
3、灵活解答几何图形问题。
教学重点:认真审题,分辨求周长或求面积。
教学过程:
一、复习。
1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。
C=r2
3.1473.1432
=21.98(厘米)=3.149
=28.26(平方厘米)
2、分辨面积与周长有什么不同?
(1)概念
圆的周长是指圆一周的长度
圆的面积是指圆所围成的平面部分的大小。
(2)计算公式
求圆的周长公式:C=d或C=2r
求圆的面积公式:S=r2
(3)使用单位
计算圆的周长用长度单位
计算圆的面积用面积单位
二、练习。
1、判断下面各题是否正确,对的`打,错的打3。
(1)计算直径为10毫米的圆的面积的列式是3.14(102)?。()
(2)半径为2厘米的圆的周长和面积相等。()
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)()
(4)面积:3.1462=3.1412=37.68()
2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。
⑴半圆的周长是多少厘米?(2)半圆的面积:
3.14223.142+22
r=2cm=3.144=6.28+4
=12.56(平方厘米)=10.28(cm)
3、一个圆的周长是25.12米,它的面积是多少:
已知:C=25.12米求:S=?
r=25.12(23.14)S=r2
=4(米)=3.1442
=50.24(平方米)
4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?
已知:R=7厘米=0.7分米r=0.5分米求:S=?
S环=(R2-r2)
3.14(0.72-0.52)
=3.140.24
=0.7536(平方分米)
三、巩固发展.
1、思考题p71(8)
一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)
(1)围成长方形:31.42=15.7(m)(长和宽的和)
长宽=面积
当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.
(2)围成圆形
直径:31.43.14=10(m)
半径:102=5(m)
面积:3.1452=78.5(m2)
(3)比较:长方形面积:61.6m2正方形面积:61.6225m2圆面积:78.5m2
围成圆的面积最大。
2、思考题p71(9)、(10)
四、作业。
课本P71第6、7题。
教学追记:
学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。(2)求圆面积公式是S=r2,求圆周长的公式是C=d或C=2r。(3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。
圆的面积教案13
一、教学目标:
1、首先带动课堂气氛
2、教会学生什么是面积。
3、学习圆柱体侧面积和表面积的含义。
4、能够求圆柱的侧面积和表面积的方法。
二、教学重点:
动手操作展开圆柱的侧面积
三、教学难点:
圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
四、教具准备:
圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。
五、教学过程:
(一)、创设情境,引起兴趣。
出示:牛奶盒,纸箱,可比克。
提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)
(2)制作这些包装盒,至少需要多大面积的材料?(指名说)
师:谁能说说上一节课你学过圆柱体的哪些知识?
生:........
师:请同学们拿出你自制的圆柱体模型,动手摸一摸
生:动手摸圆柱体
师:谁能说一说你摸到的是哪些部分?
生:.......
师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积
(二)、探索交流,解决问题。
圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题)提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?
研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)(展开的形状可能是长方形、平行四边形、正方形等)
1、独立操作利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。
2.操作活动:
(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?
(2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流
3.小组交流能用已有的知识计算它的面积吗?
4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)
这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
板书:
长方形的面积=长×宽
↓↓↓
圆柱的侧面积=底面周长×高
所以,圆柱的侧面积=底面周长×高
S侧=C×h
如果已知底面半径为r,圆柱的.侧面积公式也可以写成:S侧=2∏r×h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
(四)、练习
求圆柱的侧面积(只列式不计算)
1。底面周长是1.6米,高是0.7米
2。底面直径是2分米,高是45分米
3。底面半径是3.2厘米,高是5分米
(五)研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)
2、动画:圆柱体表面展开过程
3、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积×24.一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)
(六),巩固应用,内化提高
1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同?多媒体出示:水管,水桶,糖盒提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)
2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?
六、教学结束:
布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。
圆的面积教案14
一、教学目标
【知识与技能】
掌握圆的面积计算公式,并能利用公式正确解决简单问题。
【过程与方法】
通过操作、观察、比较等活动,自主探索圆的面积计算公式,渗透转化的数学思想方法。
【情感、态度与价值观】
感受数学与生活的联系,激发学习兴趣。
二、教学重难点
【教学重点】
圆的面积计算公式。
【教学难点】
圆的.面积计算公式的推导过程。
三、教学过程
(一)导入新课
创设情境:呈现校园中的圆形草坪,提问学生如何求解圆形草坪的占地面积。引导学生通过已有认知,认识到解决这个问题实际就是求这个圆的面积,从而引出课题。
(二)讲解新知
提出问题:之前的图形面积公式是如何推导的?
学生通过回忆,讨论,得到是通过转换成学过的图形来推导得到的。
追问:能否将圆的图形转换成之前的图形?
组织学生动手操作、合作探究,四人为一小组,讨论分享自己的思路与剪拼过程,然后请各组的代表进行全班交流。
预设1:将圆平均分成4份,剪切拼接之后,没有得到之前图形;
预设2:将圆平均分成8份,剪切拼接之后,得到一个近似平行四边形;
预设3:将圆平均分成16份,剪切拼接之后,得到一个近似长方形。
老师在此基础上进行展示:大屏幕展示将圆平均分为32份,64份,128份,256份……的动图,让学生观察其特点。
学生能够发现圆平均分的份数越多,拼成的图形越接近于长方形。
进一步追问:观察原来的圆和转化后的这个近似长方形,发现他们之前有哪些等量关系?
预设1:长方形的面积等于圆的面积;
预设2:长方形的长近似等于圆周长的一半;
预设3:长方形的宽近似等于圆的半径。
圆的面积教案15
教学内容:六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学 - 圆的面积(一)。
教学目的:
1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。
教学重点:理解和掌握圆面积的计算公式的推导过程
教学难点:圆面积计算公式的`推导
教学过程:
一 、创设情境,提出问题
( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)
生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?
二、引导探究,构建模型
A:启发猜想
师:羊吃到草的最大面积最大是圆形:1、这个圆的面积有多大猜猜看;2、试想圆的面积和哪些条件有关?3、怎样推导圆的面积公式?(生试说)
B:分组实验,发现模型
学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:1、你摆的是什么图形?2、你摆的图形与圆的面积有什么关系?3、图形各部分相当于圆的什么?4、你如何推导出圆的面积?
请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况,小学数学教案《数学 - 圆的面积(一)》。
三、 应用知识,拓展思维
1师:要求圆的面积必须知道什么?
2 运用公式计算面积
A完成羊吃草的面积
B完成课后“做一做”
C一个圆的直径是10厘米,它的面积是多少平方厘米?
D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物直径(厘米)半径(厘米)面积(平方厘米)
3应用知识解决身边的实际问题(知识应用)
下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?
四 归纳总结,完善认知
今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?
【圆的面积教案】相关文章:
圆的面积教案07-31
人教版圆的面积教案02-19
关于圆的面积教案11-08
小学数学圆的面积教案03-13
数学教案圆的面积04-15
《圆的面积》说课稿01-16
圆的面积说课稿06-08
《圆的面积》说课稿05-20
圆的面积教案15篇(通用)07-31