高二年级数学优秀教案

时间:2023-03-13 18:31:38 教案 我要投稿
  • 相关推荐

高二年级数学优秀教案

  作为一名辛苦耕耘的教育工作者,就不得不需要编写教案,借助教案可以让教学工作更科学化。那么你有了解过教案吗?下面是小编帮大家整理的高二年级数学优秀教案,欢迎阅读与收藏。

高二年级数学优秀教案

高二年级数学优秀教案1

  教学目标

  1、知识与技能

  (1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;

  (2)能熟练运用正弦函数的性质解题。

  2、过程与方法

  通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

  3、情感态度与价值观

  通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

  教学重难点

  重点:正弦函数的性质。

  难点:正弦函数的`性质应用。

  教学工具

  投影仪

  教学过程

  创设情境,揭示课题

  同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

  探究新知

  让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

  (1)正弦函数的定义域是什么?

  (2)正弦函数的值域是什么?

  (3)它的最值情况如何?

  (4)它的正负值区间如何分?

  (5)?(x)=0的解集是多少?

  师生一起归纳得出:

  1、定义域:y=sinx的定义域为R

  2、值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)

  再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为—1,1

高二年级数学优秀教案2

  学习目标

  (1)会用坐标法及距离公式证明Cα+β;

  (2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

  (3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

  学习重点

  两角和与差的正弦、余弦、正切公式

  学习难点

  余弦和角公式的推导

  知识结构

  1、两角和的余弦公式是三角函数一章和、差、倍公式系列的`基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

  2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

【高二年级数学优秀教案】相关文章:

高二数学教案02-28

大班优秀数学教案02-21

大班数学优秀教案05-30

快乐数学大班教案优秀04-02

六年级上册数学优秀教案02-07

小学二年级数学优秀教案01-29

四年级下册数学优秀教案02-14

数学二年级下册优秀教案02-17

大班数学优秀教案15篇02-14