《小数的性质》教案15篇
作为一位优秀的人民教师,就难以避免地要准备教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么教案应该怎么写才合适呢?下面是小编精心整理的《小数的性质》教案,仅供参考,欢迎大家阅读。
《小数的性质》教案1
教材分析:
人教版四年级下册“小数的意义和性质”这一单元共有“五个板块”的内容:小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算和小数的近似数,其中小数的意义的理解是本单元的关键。这一单元涉及到的内容比较多,而且知识点比较散,所以这一单元的复习有一定的难度。
学情分析:
根据学生平时的作业情况,笔者出了相应的前测卷,了解了学生对本单元知识的掌握情况。通过前测分析,发现:本单元知识学生的错误主要集中在小数的意义、小数的近似数和小数与单位换算这三块内容,其中学生对小数的意义的理解和掌握很不乐观,情况如下:
图1第一幅图的错误率居然达到了25、53%,第二幅图的错误率是36、17%,图2的错误率也是25、53%。图1第一幅图和图2的错误率是我没有预想到的,测试前我以为这样的基本的题、常见的题,学生的掌握情况会比较好,但是前测的结果让我吃了一惊。图1第一幅图错误的学生大部分填了1、4,第二幅图大部分填了0、3。细细分析图1这么高的错误率,我们会发现:学生只是关注到了涂色部分的份数而没有关注到分成的总份数,实质上学生对小数的意义没有真正地理解。至于图2,我发现学生说不出1到2这一大段表示多少,也就是说学生对这样的题学生没有真正地理解后去做,有些无从下手。
教学目标:
1、通过对本单元知识系统地整理和复习,让学生进一步理解和掌握本单元知识,沟通小数和分数、小数和整数之间的联系,形成新的认知结构。
2、通过介绍0.3、分析错例、猜数等方式,让学生感受复习与整理的方法,提高学生的学习能力。
3、在学习中,让每一位学生享受到表达的乐趣和成功的喜悦,让学生产生学习数学的信心。
教学重点:通过整理和练习,巩固本单元知识。
教学难点:通过整理和练习,对知识的进一步领悟。
教学预设:
一、梳理知识
1、回顾知识。
(1)揭题:同学们,今天这节课我们一起对小数的意义和性质这一单元进行整理和复习。(出示课题:小数的意义和性质整理和复习)
(2)引导回顾:回忆一下,这一单元我们学了哪些知识?
根据生说师相机板贴知识点。
2、整理知识。
(1)提出问题:那现在我写一个小数(板书:0.3),你能用学过的知识来介绍它吗?
(2)明确要求:在你的介绍中不出现这个数,但让别人一听就明白你在介绍它。(出示课件)
(3)回答一生,理解要求
评价:这样的介绍符合要求吗?
(4)知识归类:他用到了这儿的什么知识?
3、独立思考
(5)思考:他是从意义的角度来介绍的,那还有不一样的介绍吗?
(6)记录:看来已经有很多同学想到了,别急,把你想到的记录在学习单第1题的框里。
学生记录。
师巡视并引导:想到一种的再想想还有没有不同的介绍方法,比一比谁想到的方法最多。
(7)汇报,根据生说师相机板书内容。
预设:
①意义:3个0.1;画图;十分位上是3,个位是0等。
②大小比较:比0.2大比0.4小的一位小数。
③小数点的移动规律:如3的小数点左移一位是几。
④近似数:如0.29保留一位小数。
⑤单位换算:如300千克等于几吨。
(8)总结:一个0.3大家居然想到了这么多,这是我们全班同学的智慧,把掌声送给自己。
【设计意图:通过“介绍0.3”,让学生自主地对本单元知识进行梳理。这样的学习任务,对学生来说是具有挑战性的,可以很好地激发学生的学习主动性;这样的`学习任务,可以在较短的时间内完成教学目标,提高教学效率。在“思考介绍方法”和“汇报介绍方法”的过程中,让每一位学生都享受到表达的乐趣和成功的喜悦,感受到“如果你有一种思想,我有一种思想,彼此交换,我们每个人就有了两种思想,甚至多于两种思想”。】
二、查漏补缺
1、过渡:刚才我们用一个0、3对这单元的知识进行了梳理,这节课除了梳理,我们还需要查漏补缺,我对你们的作业和练习情况进行了整理。猜一猜,我们班哪块知识错误最多?(出示课件)
2、根据生说,课件相机出示相应内容并分析。
预设:
(1)小数与单位换算。
①出示错例。
②说妙招:的确,这块内容错误比较多。那做这类题目谁有妙招?
学生总结方法,师板书。
③做一做:那让我们用这个妙招一起来做一做这几题。在学习单第2题的框里写一写过程。
④汇报,师相机书写过程。
(2)小数的近似数。
①出示错例。
②分析错误:这题错误稍微有点多,主要有两种错误,(出示错例)你能帮忙分析一下错误原因吗?
生分析原因。
③引导总结:对于做这样的题你有什么要提醒大家的?
(3)小数的性质与大小比较。
①课件:恭喜你们,你们做得很棒!
②沟通联系:同学们做得这么棒,这个问题肯定难不倒大家,那小数的大小比较跟整数的大小比较有什么相同的地方?
③同桌交流:想好的跟同桌说一说。
④汇报。
(4)小数点的移动规律。
①课件:恭喜你们,你们做得很棒!
②沟通联系:小数点的移动规律其实我们早就用到过了,一起来看。
出示题,做题,问:仔细观察,你有什么发现?
(5)小数的意义和读写法。
①课件出示:找0、4题
②学生判断:图2、
③激疑:图1为什么不可以?(0.04)图3呢?(0.8)
④总结:都涂了4格,为什么表示的小数却不一样?
图1得出4/100,图2得出4/10,图3:通过再分得到了8/10,所以这个4格其实表示的是0.8。所以我们不仅要看涂的份数,还要看分的总份数。
⑤沟通联系:那问题又来了,出示问题:小数和分数有着怎样的联系?
⑥做错题:相信现在大家不会犯这样的错误了吧!这题应该是(1.04)这题呢?总份数不是10份的要先平均分成10份,是0.6。
【设计意图:这个环节根据学生错误情况,让学生对本单元易混淆和出错的知识进行有针对性的练习,查漏补缺。在练习过程中,让学生说出自己解题的思考过程,总结解题的方法,分析错误的原因,有助于加深学生对本单元知识的理解和掌握,提升思维能力;让学生沟通小数与整数、小数与分数之间的联系,有助于学生从整体上理解和掌握知识之间的内在联系,促进学生认知结构的优化。而且本环节让学生自主选择研究内容,可以很好地激发学生学习的积极性。】
三、巩固提升
1、猜数。
(1)大家学得这么棒,奖励大家玩一个猜数的游戏,(出示课件:猜猜我心中想着几)它就装在这个信封里。
(2)第一猜:给大家第一条信息:它在1与2之间(课件出示直线),会是几呢?
生猜。
师:有多少种可能?(无数种)
(3)第二猜:那再给你第二条信息:它保留一位小数约是1、7,可能是几?
生猜,师相机板书。
师:那这个数最小是几?
最大是几?(1、74,1、749……)(师板书)
师:这些数都有可能吗?为什么?(只要看百分位,跟后面的数没关系。)
师:那找得到这个最大的数吗?(找不到)
师:那有多少种可能?(无数种)
(4)第三猜:那再给你一个信息:它是一个两位小数。
生猜,师判断:大了,小了。
(5)揭晓答案:1.66
2、找位置。
(1)那你能在这条线上找到1、66的位置吗?
(2)那要准确地找到它,谁有好方法?
3、说关系。
(1)出示1、0、1、0、01。
(2)问:1、0、1、0、01之间有着怎样的关系?
【设计意图:通过“猜数”和“找位置”等活动,激发学生的参与热情,对本单元知识进行综合练习,加深学生对小数的意义的理解和掌握,提升对小数的近似数、小数的大小比较等的认识,直观地理解1、0、1、0、01之间的关系,提升学生的思维能力。在“猜数”活动过程中,让学生初步感知到近似数的取值范围;在“找位置”活动过程中,培养学生的数感,感知“找小数位置”的步骤:先确定这个小数在哪两个相邻的整数之间,再确定它在哪两个相邻的一位小数之间……感知“找小数位置”的方法:可以从左往右,也可以从右往左等。】
四、课堂小结
这节课我们是怎么复习的?对你以后的学习有什么启示?
【设计意图:通过小结,让学生回顾这节课复习与整理的方法,提升学生的学习能力。】
374650285750小数的意义和性质整理和复习
小数的意义和性质整理和复习
742950228600意义和读写
意义和读写
板书(部分):
63500057150
742950114300性质和大小比较
性质和大小比较
74295025400小数点的移动规律
小数点的移动规律
768350273050单位换算
单位换算
768350203200近似数
近似数
教学反思:
这一单元涉及到的内容比较多,且知识点比较散,对于这一单元的复习,怎样对知识进行梳理?怎样可以做到高效?怎样能让学生形成新的认知?通过对这一节课的研究,感悟到上好复习课,可以从以下3个方面去展开。
1、制定任务,高效梳理。
学习任务好比承载教学内容的“舟”,复习课学习任务的选择要符合知识内在的逻辑,又要构建整体的学习框架。“介绍0.3”这一任务无疑是一具有挑战性的任务,学生需唤醒所有有用的知识,这充分地调动了学生的学习积极性和主动性。这个“0.3”,承载了本单元涉及的五块内容,学生通过“介绍0.3”,一个单元的知识点以各种方式表达了出来,高效地完成了本单元的知识梳理。
2、基于学情,有效复习。
复习的功能之一是查漏补缺,也就是说,要针对学生学习困难和错误进行复习。这一单元知识多又散,一节课中不可能做到面面俱到,通过前测,了解了学生的学情。
小数的读写、性质与大小比较、小数点移动引起小数的大小比较,这些内容学生基本上没有问题,所以这节课中对这些内容的处理相对比较简单,如大小比较知识只是让学生沟通了小数大小比较与整数大小比较的联系;小数点的移动规律也只是让学生沟通了跟以前知识之间的联系。
本节课的重点放在小数的意义、小数与单位换算、小数的近似数等内容上。如“找0.4”题,通过让学生思考“为什么都涂了4格,表示的小数却不一样”,通过比较、分析、总结,让学生感悟到“不仅要看涂的份数,还要看平均分成的总份数,平均分成10份、100份、1000份……的才能直接写成小数”,从而进一步理解了小数的意义以及小数与分数的联系。又如“单位换算”这块内容错误比较多,所以让学生经历了“说妙招——用妙招——说思路”这样一个过程,帮助学生掌握这块内容。
这样针对学生错误的复习过程,极大地节省了时间,提高了课堂效率,并有效地对本单元内容进行了复习。
3、精选练习,合理拓展。
复习课除了查漏补缺,还要使学生进一步地熟练技能、拓展思维,本节课的练习设计关注恰当的拓展性。如:有关“小数与近似数”的题学生常碰到如“一个两位小数保留一位小数约是3.5,这个小数最大是(),最小是()”这样的题,所以学生以为“近似数是3.5的数只有两位小数这几个数”。针对这样的情况,教学中,通过让学生猜“近似数是1.7的数”,通过找符合要求的最小数和最大数,让学生从这种固定思维中走了出来,感悟到“近似数是1.7”的数有无数个,并初步感知近似数的取值范围。又如:找1.66的位置,学生经历了“说大概的位置——找确切位置”的过程,并在找确切位置的过程中,让学生用“顺着”和“倒着”等不同的方法来找,从而拓展了学生的思维。
《小数的性质》教案2
教学内容:
教科书第58-59页例1—例3,及“做一做”。
教学目标:
1.初步理解小数的基本性质,会运用小数的基本性质进行小数的化简和改写。
2.运用猜测、检验、观察、对比等方法,探索并发现小数的性质。
3.培养学生动手操作的能力。
教学重点、难点:
1.教学重点:让学生理解和掌握小数的性质。
2.教学难点:让学生抽象概括小数的性质。
教学过程:
一、 创设问题情境,鼓励大胆猜测。
1.通过商品标价2.50元和3.00元这两个小数尾末有零来引起思考,自然地引出两个问题:0.1米、0.10米、0.100米,它们大小相等吗?0.30和0.3呢?
2.猜一猜。
二、 利用工具,检验猜测。
师:老师给每个学习小组准备了一些工具(一把米尺,一张数位顺序表,两张方格纸),请你们利用这些工具来检验刚才的猜测是对还是不对。先请你们四人一组,选一选、议一议:你们选择哪种工具,准备怎样来验证?
学生动手操作、检验:
⑴ 学生利用直尺验证:0.1米是1分米,0.10米是10厘米,0.100米是100毫米,他们在尺子上所表示的长度都是相等的,所以0.1米=0.10米=0.100米。
⑵ 学生利用数位顺序表验证:把0.30和0.3写在数位顺序表中,从数位顺序表中看出,它们的位数虽然不同,“3”所处的'位置相同,所以0.30=0.3。
⑶ 学生利用正方形图验证:0.30是百分之三十,0.3是十分之三。从平均分成100份的正方形图中取其中的30份,就表示0.30。从平均分成10份的正方形图中其中3份,就表示0.3。从图中很明显的看出0.30=0.3。启发学生想一想:十个百分之一是一个十分之一,三十个百分之一是三个十分之一,所以0.30=0.3。
三、 观察比较,探究规律。
从刚才的操作中,我们已经知道:0.1米=0.10米=0.100米,0.30=0.3。下面请大家观察这两个等式,什么不变,什么变了?为什么数变了后数的大小不变?
四、 概括总结,揭示性质。
⑴ 谁能用一句话归纳出这个规律?这个规律就叫做“小数的性质”。
⑵ 请大家一起读“小数的性质”
五、 学生质疑。
六、 运用性质,化简改写。
⑴ 学了小数的基本性质有什么用呢?请大家自学课本例3。想一想:什么叫化简?什么叫改写?它们的根据分别是小数性质中的哪一句?并举例说明。
⑵ 教学例4
出示例4:不改变数的大小,把0.2、4.08、3改成小数部分是三位的小数。
①问:0.2和4.08各是几位小数,要把它们改成三位小数应在小数的哪部分添上“0”?各应添上几个“0”?为什么?
②问:整数3改写三位小数,在3的后面添上三个“0”写作3000,对吗?为什么?那么应该怎样写?
③学生汇报结果,师板书:0.2=0.200,4.08=4.080,3=3.000。
七、 巩固提高,升华知识。
⑴ 完成课本“做一做”的题目。
⑵摆数游戏:每个小组利用老师发给的五张数字卡片,按要求摆数:
①用五张卡片摆一个数,这个数中的两个“0”都能去掉。
②用五张卡片摆一个数,这个数中的两个“0”一个能去掉,一个不能去掉。
想一想:怎样摆才能既不重复又不遗漏。
八、 交流收获,反思评价。
通过这节课的学习,你有什么收获?学会了哪些解决问题的方法?这些方法对今后的学习有什么帮助?
九、 布置作业:
练习二十一的第1—6题。
十、 板书设计:
小数的性质
例1:比较0.1米、0.10米、0.100米的大小
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
例2:0.70=0.7 105.0900=105.09
例3:0.2=0.200 4.08=4.080 3=3.000
《小数的性质》教案3
教材分析
本单元内容包括小数的意义和读写法,小数的性质和小数的大小比较,小数点位置移动引起小数大小的变化,小数和复名数的相互改写、求一个小数的近似数和把较大的数改写成用“万”、“亿”作单位的数。
小数的意义是本单元的一个重点。这里教材把认数范围扩展到三位小数,加强了小数与分数的联系,使学生明确小数表示的书分母是10、100、10000……的分数,了解小数的记数单位以及单位间的进率,从而清楚地了解小数为什么可以仿照整数的写法。小数的性质也很重要。学生知道小数末尾添0、去0不改变小数的大小,就加深了对小数的理解。它还是小数四则计算的基础。应用它可以对小数进行化简,也可以根据具体运算的需要,在小数末尾添上0或者把整数改写成小数的形式。小数大小的比较也有助于加深学生对小数意义的理解。小数的性质已经涉及到小数大小的比较问题,但只是说明在什么情况下两个小数相等的。小数点位置的移动引起小数大小的变化是小数的又一性质。它是进行小数乘除法计算的基础,同时也是学习小数和复名数相互改写的基础。小数和复名数的相互改写以及求小数的近似数在实际中有广泛的应用,其中把较大的数改写成用“万”、“亿”作单位的数是本单元所学的几部分知识的综合应用。
学情分析:
这部分内容是学生在学生熟练地掌握了整数的四则运算,以及在四年级上学期学习了分数的初步认识的基础上进行教学的。这部分内容是学生系统学习小数的开始。通过这部分内容的学习,使学生进一步理解小数的`意义和性质,为今后学习小数的四则运算打好基础。学生在学习小数和复名数的相互改写时,需要综合运用前面学过的计量单位和进率、小数的性质、小数点位置的移动引起小数大小的变化等知识,因此要求学生逐一扎实地学习。求一个数的近似数和把一个数改写成用“万”、“亿”作单位的数容易混淆,需注意区别。
教学要求:
1、使学生理解小数的意义,认识小数的记数单位,会读、写小数,会比较小数的大小。
2、使学生掌握小数的性质和小数点位置移动引起小数大小变化的规律。
3、使学生会进行小数和十进复名数的相互改写。
4、使学生能够根据要求会用“四舍五入法”保留一定的小数数位,求出小数的近似数,并能把较大的数改写成用万或亿作单位的小数。
教学重点:小数的意义和小数点移动引起小数大小变化的规律。
教学难点:小数和复名数的相互改写。
教学关键:正确理解小数的意义及小数和复名数的相互改写。
《小数的性质》教案4
课题:比大小(二)
内容:小数的性质
课时:1
教学准备:
教学目标:1、通过“在方格纸上涂一涂,比较两个小数的大小”的活动,经历用几何模型研究小数的过程。
2、用直观的方式体会小数的末尾添上0或去掉0,小数的大小不变的规律。
3、在寻找小数大小的比较方法中,培养数感,获取数学学习方法。
基本教学过程:
一、 一、创设问题情境
1、比较大小。1.26( )2.03 0.23( )0.31
2、0.2( )0.20
二、自主探究,创建数学模型
1、思考一下,0.2和0.20谁大?你是怎样想的?
2、我们一起验证一下,在图上涂一涂,再来比一比。学生在书上涂一涂,比一比,再说一说。
3、0.2和0.20怎么会相等呢?这是不是一种巧合?
4、在下面两幅图中涂出相等的两部分,并写出相应的分数和小数。
在小组内交流你的涂法和想法。你发现了什么?
三、巩固与应用
1、第10页试一试1、2。
2、第11页练一练1。
3、第2、3题。
4、阅读。《你知道吗?》
四、总结。
这节课你发现了什么?
教学反思:学生通过图一图、比一比,发现小数的.末尾添上0或去掉0,小数的大小不变这一规律。并能熟练的应用这一规律。
《小数的性质》教案5
小数的性质是小数四则运算的基础。根据小数的性质,可以化简小数,也可以不改变小数的大小,在小数末尾添上一个或几个“0”,或者把整数改写成小数的形式。在教学设计中,我采用让学生合作探究的形式,学生通过动手、动口、动脑,联系生活与实践来学习数学,经过教学实践,取得良好的效果。具体教学如下:
一、创设开放式问题情境,激发兴趣,让学生成为发现者。
教育心理学认为:学生的世界有一种强烈的要求——自己是探索者、发现者。为探究新知,我创设的认识冲突,目的在于迎合学生“好奇”、“好胜”的心理需求,把学生引入“未知—已知—未知—已知”的思维境界,所以在新课的导入,我联系生活实际,让学生感知小数的性质在生活中的运用。
上课开始,我对学生说:“同学们,前几天,老师去超市买毛巾和手套。发现了一个奇怪的现象:第一个超市毛巾、手套的标价分别是6.5元、8元;第二个超市毛巾、手套的标价分别6.50元,8.00元,你能告诉老师该买哪个超市的毛巾和手套吗?既然两个超市的毛巾和手套价格一样,为什么写法却不一样呢?”通过这样设疑,让学生发现了问题,激发了学生强烈的研究兴趣。这样既培养了学生的创造性思维,又为他们创设了一个主动探索和追求成功的意境,体现数学自身的乐趣。
二、开放合作式教学过程,主体主动参与,让学生成为研究者。
开放式课堂教学的核心是使学生成为学习的主人,让他们主动参与到知识的形成过程中去,自主合作学习,体验研究与成功的乐趣。为此,我设计三个层次:第一层次先请全班学生用手势比划一个新生婴儿的身长?再让学生猜一猜哪位医生说得对?
第一位医生说:“婴儿身长0.5米。”
第二位医生说:“婴儿身长0.50米。”
第三位医生说:“婴儿身长0.500米。”
最后让学生拿出示先准备的米尺小组合作讨论、验证。
学生在上述讨论、观察、感知、验证的基础上,初步了解小数的数位增加了,但小数的.大小却没有变。
第二层次:每位学生出示先准备的两个大小一样的正方形,分别涂出它的0.3和0.30,从中你发现了什么?
学生通过动手实践,发现了0.3=0.30,感受到了成功的喜悦后,我继续引导学生:0.3=0.30从左往右观察你发现了什么?从右往左观察你发现了什么?你能把这两个规律合成一句话吗?
第三层次:为了使学生更好地理解,运用小数的性质,我设计了两个基础练习:一是有关小数性质概念的判断题;二是思考一些具体的数末尾的“0”能否去掉。
这三个层次的教学,我为学生了一个思考与合作,交流与创新的空间,充分调动了学生的积极性,让学生感受到学习数学的乐趣。
三、着眼知识的应用过程,完善知识的形成过程。
学生经过实践得到了理论的认识,还必须回到实践中去。在发生、发展中认识真理,在应用过程中检验和发展真理。故此,我让学生带着思考题自学小数性质的作用,并解决课前提出的问题,完成知识的形成过程。
四、组织形式多样的练习,让学生享受数学思维的快乐。
围绕小数性质的内容,我组织多种形式的练习加强学生对小数性质的理解运用。最后,我让学生玩一个游戏:每位学生手中都发有一张卡片,卡片上写有不同位数的小数;老师宣读数,持有与宣读的数相等的卡片数的同学们互为朋友,一同去操场活动。
通过离场的游戏,我让学生在积极思维的状态中,结束新课,让每一个学生学习到不同的数学,享受到不同的成功。
这一节课,学生在一系列探究活动中,学习兴趣浓厚,参与面广,理解和掌握了小数的性质,并会应用小数的性质解决一些问题。让学生通过质疑、讨论、猜测、观察、实践等活动感受到知识的内在联系,经历了“做”数学的过程,体验了数学发现的乐趣和艰辛,获得了积极良好的情感体验,并获得从事数学探究活动的经验。
《小数的性质》教案6
教学内容:
苏教版五年级上册,第37--38页,例4、例5、例6。
教学目标:
1.在现实情境中通过观察、猜想、验证、比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质解决实际问题。
2.经历从现象中发现问题、提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。
3.在经历变与不变的过程中挖掘数学内涵,感悟数学思想,发展学生的数学思维。
教学重点:
理解小数的性质,并能应用性质解决实际问题。
教学难点:
感悟小数性质中不变与变化的数学辩证思想,发展学生思维。
教学流程:
一、情景导入。
创设数学王国中数字“0”去做客的情景,发现数字“0”引起整数的变化。
二、自主探究。
1.以数字“0”前往小数家中做客的情景,引出问题:0.4是不是等于0.40.
2.在独立验证的基础上,小组讨论交流,为什么0.4=0.40?
3.借助:0.4=0.40=0.400,引导学生逐步概括出小数的性质。
4.深入研究小数的性质:
(1)从小数末尾添上“0”的情况去推断与思考去掉“0”的情况。
(2)在小数的末尾添上“0”或去掉“0”,小数的大小不变,但是小数的哪些方面发生了变化?让学生先讨论,在交流举例。
(3)质疑:为什么在整数的.末尾每添上一个“0”,整数就要扩大10倍,而在小数的末尾添上若干个“0”,小数的大小不变?
5.添上两笔,让4、40、400三个数相等。
6.探讨:从0.4到0.04,小数的大小有没有发生变化?从而让学生更深刻的理解“小数的末尾”这一关键词眼。
三、练习应用。
1.出示超市里某些食品的价格表,上面哪些小数里的“0”可以去掉?为什么?
总结:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
质疑:为什么有些小数能化简,但是价格表中仍然写成两位小数?
2.把下面物品的价格写成用“元”作单位的两位小数。
总结:利用小数的性质,可以把小数或者整数改写成指定位数的小数。
3.初步感知小数改写的作用。
四、课堂总结。
通过这节课的学习,你有了哪些新的收获?
《小数的性质》教案7
教学目标
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重难点
教学重点:让学生理解并掌握小数的性质。
教学难点:能应用小数的性质解决实际问题.
教学工具
ppt课件
教学过程
出示课件在括号里填上适当的数
1元=( )角=( )分 1分米=( )厘米=( )毫米
3米=( )分米=( )厘米 5元=( )角=( )分
(一)、创设情境,引导探索
1师:老师了解到商店的一把勺子的标价是3.00元,在日常生活中说是多少钱呢?(3元),3元和3.00元是什么关系呢?(3=3.00元)出示一副手套的标价是2.50元,我们把2.50元平时说成是多少钱?(2.5元)
师:为什么2.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。
二、探究新知、课中释疑
1.教学例1。让学生动手操作量出三张长0.1米 0.0—1米 0.001米的纸条。
你发现这三张纸条的长度是怎样的?
(1)课件出示1分米、10厘米、100毫米的线段图
请比较一下它们的大小。学生略加思考后马上提问,要求说说你是怎么知道的。(即想的过程)
演示:重合法比较1分米、10厘米、100毫米的大小。
板书并演示:1分米=10厘米=100毫米
(2)导入例1:
你能把它们改写成用米做单位的小数的形式吗?
根据学生回答归纳演示:1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
学生很快回答后课件演示。并在他们之间加上等号。
我们还可以用重合法比较一下。(课件演示)
(3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米 0.1=0.10=0.100
提问:这说明了什么问题?
请大家仔细观察这个等式,可以从左往右看,再从右往左看,有什么变化?在这个小数的什么位置(强调是末尾,不是后面)?多(少)0还可以怎么说?
导:想想0.30表示什么意思?0.3呢?应该涂多少格?
学生涂完色问:你为什么这样涂?之后演示涂色过程。
问:谁涂的面积大?0.30和.0.3的大小怎样?你是怎么知道的?
直观比较法:看上去都一样大;
(在原板书下再板书:0.30=0.3)
(5)从数位顺序表上可以看出,在小数的末尾添零或是去零,其余的`数所在数位不变,所以小数的大小也就不变。
师:小数中间的零能不能去掉?能不能在小数中间添零?
生:不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。
师:那整数有这个性质吗?(要强调出小数与整数的区别)
(6)判断下面的说法对吗?
(1 在一个数的末尾添上“0”或去掉“0”,小数的大小不变。
(2) 在小数点的后面添上“0”或去掉“0”,小数的大小不变。
(3)在小数的末尾添上“0”或去掉“0”,小数的大小不变。
(4)把小数的末尾的“0”去掉,它的计数单位就发生了变化。
(五)、总结
师:什么叫小数的性质?
十二、作业设计
完成教科书第64页第一题。
板书
小数的性质
观察:1分米=10厘米=100毫米
0.1米=0.10米=0.100米
0.1=0.01=0.001 0.3=0.30
小数的基本性质:小数的末尾添上或去掉“0”,小数的大小不变。
《小数的性质》教案8
教学内容:教材第5960页小数性质和数的改写、练一练,练习十一第6~10题。
教学要求:
1、使学生进一步认识小数的性质和小数点移动引起小数大小变化的规律,能应用小数的性质把小数改写成指定小数位数的小数或把小数化简。
2、使学生能比较熟练地把一个数改写成万或亿作单位的数,或根据要求截取一个数的近似值。
教学过程:
一、揭示课题
1、口算。
指名口算练习十一第6题。
2、揭示课题。
这节课,我们复习小数的性质和数的改写。(板书课题)通过复习,要进一步认识小数的基本性质和小数点移动引起小数大小变化的.规律,能比较熟练地进行数的改写。
二、复习小数的性质
1、复习小数的性质。
(1)提问:小数的性质是什么?(板书小数的性质)谁能举例说明小数的性质?学习小数的性质有什么应用?
(2)做练一练第1题。
让学生先写出各数,然后指名回答,老师板书。
(3)做练习十一第7题。
出示卡片指名口答。 追问:为什么20末尾的0不能去掉?0.020里小数点后面的。去掉,会改变小数大小吗?为什么?
2、复习小数点移动引起小数大小变化的规律。
(1)提问:移动小数点的位置,小数大小会发生怎样的变化?(板书:小数点右移一位、两位、三位小数分别扩大10倍、100倍、1000倍左移一位、两位、三位小数分别缩小10倍、100倍、1000倍)
(2)做练一练第2题。
让学生观察每组数的排列,然后指名口答。追问:如果把一个数扩大或者缩小10倍、100倍、1000倍怎样移动小数点?
(3)做练练第3题。
让学生在练习本上依次写出各题得数,然后指名口答结果,老师板书。
(4)做练习十一第8题。
小黑板出示。指名一人板演,其余学生做在课本上。集体订正。
三、复习数的改写
1、复习数的改写。
(1)做练一练第4题。
让学生把第(1)、(2)题做在课本上。提问第(1)题的结果,老师板书。提问:怎样把一个较大的数改写成万或亿作单位的数?为什么要这样改写?提问第(2)题的结果,老师板书。提问:怎样写出一个数的近似数?指出:为了读写方便,我们常常把一个多位数改写成万或亿作单位的数。改写时只要在万位或亿位数的右下角点上小数点,并相应地添上万或亿作单位,也就是先把一个数缩小一万倍或一亿倍,再写上万或亿作单位,这样原数的大小不变。有时,根据需要往往要写出一个数的近似数。写近似数一般是看保留位数的后一位,用四舍五人的方法求出近似数,并注意近似数要用约等号。
(2)把3.24956保留一位小数、两位小数、三位小数各是多少?
指名一人板演,其余学生做在练习本上。集体订正,要求说明怎样想的。强调保留三位小数时要写出末尾的0,以表示精确度。
2、做练习十一第10题。
让学生做在课本上。小黑板出示第10题,学生口答练习结果,老师板书。注意讲清第(3)题怎样想的。追问:0.5万就是多少?0.6万呢?0.38亿呢?
四、课堂小结
这节课复习了哪些内容?谁来说说小数的性质和小数点移动
引起小数大小变化的规律?怎样把较大的数改写成万或亿作单位的数?怎样写出一个数的近似数?
五、课堂作业
练习十一第9题。
《小数的性质》教案9
教学目标
1.使学生对数的整除的有关概念掌握得更加系统、牢固.
2.进一步弄清各概念之间的联系与区别.
3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.
4.掌握分数、小数的基本性质.
教学重点
通过对主要概念进行整理和复习,深化理解,形成知识网络.
教学难点
弄清概念间的联系和区别,理解易混淆的概念.
教学步骤
一、铺垫孕伏.
教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,
在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)
揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.
二、探究新知.
(一)建立知识网络.【演示课件“数的整除”】
1.思考:哪个概念是最基本的概念?并说一说概念的内容.
反馈练习:
在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除数能除尽除数的有( )个;被除数能整除除数的有( )个.
教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?
教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.
2.说出与整除关系最密切的概念,并说一说概念的内容.
反馈练习:下面的说法对不对,为什么?
因为15÷5=3,所以15是倍数,5是约数. ( )
因为4.6÷2=2.3,所以4.6是2的倍数,2是4.6的约数. ( )
明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.
3.教师提问:
由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.
根据一个数所含约数的个数的不同,还可以得到什么概念?
互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?
互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.
4.讨论互质数与质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.
5.教师提问:
如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?
只有什么数才能做质因数?
什么叫做分解质因数?
只有什么数才能分解质因数?
6.教师提问:
谁还记得,能被2、5、3整除的数各有什么特征?
由一个数能不能被2整除,又可以得到什么概念?
(二)比较方法.
1.练习:求16和24的最大公约数和最小公倍数.
2.思考:求最大公约数和最小公倍数有什么联系和区别?
(三)分数、小数的基本性质.
1.教师提问:
分数的基本性质是什么?
小数的基本性质是什么?
2.练习.
(1)想一想,小数点移动位置,小数大小会发生什么变化?
(2)
(3)下面这组数有什么特点?它们之间有什么规律?
0.108 1.08 10.8 108 1080
三、全课小结.
这节课我们把数的'整除的有关知识进行了整理和复习,进一步弄清了各概念之间的
联系和区别,并且强化了对知识的运用.
四、随堂练习
1.判断下面的说法是不是正确,并说明理由.
(1)一个数的约数都比这个数的倍数小.
(2)1是所有自然数的公约数.
(3)所有的自然数不是质数就是合数.
(4)所有的自然数不是偶数就是奇数.
(5)含有约数2的数一定是偶数.
(6)所有的奇数都是质数,所有的偶数都是合数.
(7)有公约数1的两个数叫做互质数.
2.下面的数哪些含有约数2?哪些是3的倍数?哪些能同时被2、3整除?哪些能同时被2、5整除?哪些能同时被3、5整除?哪些能同时被2、3、5整除?
18 30 45 70 75 84 124 140 420
3.填空.
在1到20中,奇数有( );偶数有( );质数有( );合数有( );
既是质数又是偶数的数是( ).
4.按要求写出两个互质的数.
(1)两个数都是质数.
(2)两个数都是合数.
(3)一个数是质数,一个数是合数.
5.说出下面每组数的最大公约数和最小公倍数.
42和14 36和9
13和5 6和11
6.0.75=12÷( )=( ) :12=
五、布置作业
1.把下面各数分解质因数.
24 45 65 84 102 475
2.求下面每组数的最大公约数和最小公倍数.
36和48 16、32和24 15、30和90
六、板书设计
数的整除分数、小数的基本性质
数学教案-数的整除 分数、小数的基本性质
《小数的性质》教案10
一、 说教材
1.教学内容:苏教版小学数学第九册第三单元认识小数第三课时,“小数的性质”(课本第34-3 5页,例5—例6)。
2.教材所处地位:本节是系统学习小数的开始,为后面学习小数四则计算做了必要的准备,起铺垫作用。
3.教学目标:
(1)让学生在现实的情景中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质化简或改写小数。
(2)学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。
4. 教学重点:掌握小数的性质。
5. 教学难点:理解小数的性质。
二、说教法
通过直观、推理让学生充分感知,然后经过比较归纳,最后概括小数的性质,从而使学生从形象思维逐 步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。
三、说学法
通过本节教学使学生学会运用直观的教学手段理解掌握新知识,学会有顺序地观察问题、对比分析问题、 概括知识及联想的方法。
四、教学程序
(一)情景导入激趣揭题
(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0. l00米、0.10米、0.1米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)
这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)讲授新课
1、教学例5,初步感知
(1)出示例五情景图,两位同学购买学习用品后在交流购物情况,你从图中能获取哪些信息?(小明:“我买1枝铅笔用了0.3元”。小芳:“我买1块橡皮用了0.30元”。)
(2)提出问题:橡皮和铅笔的单价相等吗?为什么?你能想办法证明吗?先独立思考,有想法后4人小组交流。
(3)全班交流,归纳方法:
①用具体钱数解释:0.3元和0.30元都是3角,所以0.3元=0.30元
②结合计数单位理解:0.3是3个0.1,0.30也可以看作3个0.1,所以0.3=0.30
③用图表示:把两个同样大小的正方形分别平均分成10份、100份,其中的.3份、30份分别用0.3、0.30表示。因为阴影部分大小相同,所以0.3=0.30。
(4)感知与体验:同学们想出了多种办法都能证明0.3元=0.30元,说明这两个小数确实相等。
教师引读0.3元=0.30元,谈话:从左往右看,小数末尾有什么变化?小数的大小怎样?你有了什么想法?使学生初步体验小数的末尾添上“0”,小数的大小不变。
2、教学“试一试”,加深体验
比较0.100米,0.10米和0.1米的大小。
首先让学生拿出事先准备好的米尺(10厘米以上),在米尺上找出100毫米、10厘米、1分米是同一点,说 明:100毫米=10厘米=1分米。
请同学们看米尺想,独立填写下表,集体讲评。
板书:因为100毫米=10厘米=1分米
所以0.100米 =0.10米=0.1米
在这里应用直观演示法,变抽象为具体。
A.从左往右看,是什么情况?(小数的末尾去掉“0”,小数大小不变)。
B.从右往左看是什么情况?(小数的末尾添上“0”,小数大小不变)。
C.由此,你发现了什么规律?(小数的末尾添上“0”或去掉“0”,小数的大小不变)。
在这里应用了比较法,便于发现规律,揭示规律,总结性质。
小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。
为了帮助学生对小数性质的理解,教师强调指出:为什么在小数的末尾添“0”或去“0”,小数的大小就不变 呢?(因为这样做,其余的数所在数位不变,所以小数的大小也就不变。举例说明)小数中间的零能不能去掉?能不能在小数中间添零?(都不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。举例 说明)整数是否具有这个性质?(没有,理由同上第二点)。
3、教学例6
(1)示情景图,让学生观察,并从图中能看出哪些信息。
(2)根据题目的要求各自在书上填空。
(3)提问:3.05元中的“0”为什么不可以去掉?
根据这个性质,通常可以去掉小数末尾的“0”,把小数化简。
试一试
不改变小数的大小,把0.4、3.16 、 10改写成三位小数。
0.4= 3.16= 10=
改写这三个数时应用了什么知识?为什么给三个数填上的“0”的个数不同?10是整数怎样把它改写成大小不变的三位小数?
强调:改写小数时一定要注意下面三点:
A.不改变原数的大小;
B.只能在小数的末尾添上“0”;
C.把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添“0”。
(三)巩固练习
1. 练一练第1题
完成后观察每组中的两个数,你有什么发现?
(0.1和0.10,0.2和0.20,0.3和0.30每组里的两个数对应于数轴上的同一个点,说明小数的性质确实存在的。0.1=0.10,数轴上这个点还可以用哪些小数来表示)
2.练一练第2题
为什么0.5和0.50的大小相等,而0.5和0.05的大小不等?
(四)课堂作业:练习六第3题----第5题
(五)总结延伸
通过本课的学习,你有什么收获和大家分享?我们是怎样探索小数的性质的?
在整数的末尾添上或去掉0,整数的大小发生了很大的变化,而在小数的末尾添上或去掉0,小数的大小却不变,但是通过在小数的末尾添上或去掉0,我们就给一个小数找到了许多大小不变的朋友,0就是这样一个奇妙的数字。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。
附板书设计:
小数的性质
例5 0.3元=0.30 元
比较0.100米、0.10米和0.1米的大小。
因为100毫米=10厘米=1分米
所以0.100米=0.10米=0.1米
0.100=0.10=0.1
小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。
例6 2.80元=2.8元 4.00元=4元 10.50元=10.5元
《小数的性质》教案11
教学目标:
1、理解并掌握小数的性质,正确理解“小数末尾”的含义,并会用小数的性质将小数化简和把一个数改为指定小数位数的小数。
2、在引导学生发现小数性质的过程中,培养学生的观察,概括和语言表达能力。
3、在数学探究活动中树立学习数学的信心和兴趣。
教学重点:小数的性质。
教学难点:理解小数的性质。
教具学具准备:课件、练习纸。
教学过程:
一、创设情境,激发兴趣
师:同学们,今天我们请位老朋友和大家一起上课,看看他是谁?(出示孙悟空图片)孙悟空的兵器是什么?(金箍棒)我们知道孙悟空的金箍棒,能长能短,变化无穷,下面我们来让它变一变,金箍棒现在长度是1米,我在1的末尾添上1个0,变成10米,我来喊“金箍棒”,你们喊“变”,看它怎么变(动画演示金箍棒1米变成10米);在10的末尾添1个0,变成100米(动画演示金箍棒10米变成100米)。有意思吧!现在把100末尾的两个0去掉,变成1米(动画演示金箍棒100米变成1米);用小数来试一试,输入0.1米,在0.1的末尾添上1个0,变成0.10米(动画演示金箍棒0.1米变成0.10米),啊,怎么没反应。再在0.10的末尾添上2个0,变成0.100米(动画演示金箍棒0.10米变成0.100米),啊,还是没反应,这是怎么回事?谁想说说看。
生1:法术失灵了。
生2:0.1,0.10,0.100米这三个长度一样长。
老师板书:0.1米,0.10米,0.100米
二、主动探素,体会领悟
1、初步感知小数的性质。
师:如果你认为这三个长度相等,用你学过的知识解释一下,它们为什么相等,如果你对这三个长度相等有疑问,就把你想到的东西写下来。
拿出老师提供的空白练习纸,把你的想法写下来。
(1)学生动手写下来。
(2)学生汇报。
生1:因为0.1米=1/10米=1分米,0.10米=10/100米=10厘米,0.100米=100/1000米=100毫米,而1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。
生2:因为0.1米里有1个1分米,0.10米里有10个1厘米,0.100米里有100个1毫米,而1个1分米、10个1厘米、100个1毫米相等,所以0.1米=0.10米=0.100米。
老师适时板书:0.1米=0.10米=0.100米。
(3)观察0.1=0.10=0.100初步认识小数的性质。
师:0.1米=0.10米=0.100米,三个数的单位相同,也就是0.1=0.10=0.100(板书),看一看,你发现了什么?和你同桌说一说。
生1:在小数的后面加上一个0或加上两个0,小数大小是一样。
生2:在小数的末尾添上0,小数大小不变。
生3:在小数的末尾去掉0,大小是一样的。
2、深化认识小数的性质。
(1)纯小数中比一比
师:确实是这样的,是不是其它小数也有这样的特点呢?这样吧,你在心中想一个这样的数,拿出1号练习纸,把你想的小数表示出来,比一比它们是否有这样的特点,当然你也可以用其它的办法比一比。
练习纸:
两个大小相等的正方形,一个平均分成10份,另一个平均分成100份。
三个大小相等的正方体,分别平均分成10份、100份、1000份。
生动手写小数,涂一涂,比一比,师适时板书。
(2)混小数中比一比
师:同学们,你们写的小数是不是也有这样的特点?下面看看大屏幕上的小数是不是有这样的特点?
出示一组混小数,让学生写小数,比一比。
师:大屏幕上的涂色部分应该用哪两个小数来表示?
生:1.2和1.20
师:它们相等吗?
生:看涂色部分是一样大的。
师动态演示两个阴影部分相等。师:你还能举出这样的例子吗?
生举例:如1.5=1.50,2.6=2.60
师:还能说吗?(能)这样的数说得完吗?(不能)能说这么多,你能说出这么多这样的小数,说明你发现了某种规律,这样吧,你把你的发现和你的同桌说一说。
(3)小结小数的性质,揭示课题。
生1:小数的后面无论添上几个0,它都不变。
生2:小数的末尾添上0,去掉0,大小都不变。
根据学生的.汇报完善,归纳,总结出小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
师:这就是我们今天来学习的内容:小数的性质(板书课题)
3、探究小数性质的内涵
师:下面请看到大屏幕,
这是我们熟悉的数位顺序表,如果一个整数,在它的末尾添上0,那它表示的大小就不同了,如5,变成50,同样在整数的末尾去掉0,它表示的大小也不同了,如700;如果是一个小数,在它的末尾添上0,或去掉0,它的大小就不变,如0.3变成0.30,0.300,15.20xx变成15.2。(借助数位顺序表,动画演示添0,去0的过程)
4、教学小数性质的应用
(1)化简小数
师:现在脑子里想一个数,想一想,哪些0可以去掉,哪些0不能去掉?
生汇报,如:109.900中末尾的2个0可以去掉。
师:通过刚才的学习,我们可以把小数末尾的0去掉使小数更简洁,这个过程我们称为把小数化简(板书:化简),
出示例3,化简小数:0.70 105.0900
生独立完成,汇报,师讲评。
0.70=0.7 105.0900=105.09
(2)改写小数
师:根据小数的性质我们可以去掉小数末尾“0”,也可以在小数末尾添上“0”,有时我们需要把一个数改写成指定小数位数的小数。(板书:改写)
出示教学例4,不改变数的大小,把下面各数写成三位小数。
0.2 4.08 3
三、应用新知、解决问题。
1、做一做
(1)化简下面各数。
0.40 1.850 2.900 0.080 12.000
(2)不改变数的大小,把下面各数写成三位小数。
0.9 30.04 5.4 8.18 14
2、辨一辨:
因为0.2=0.20,所以0.2和0.20没有区别。
3、填一填
把0.9改写成计数单位是千分之一的数是(),把800个0.001化简是()。
四、总结交流
通过本节课的学习,你有什么收获?
板书设计:
小数的性质
小数的末尾添上“0”或去掉“0”,小数的大小不变。
1分米10厘米100毫米
0.1米=0.10米=0.100米
0.1=0.10=0.100
0.3=0.30
1.2=1.20
《小数的性质》教案12
教学目标:
【知识与技能】
1.通过观察比较,知道小数部分的末尾添上0或去掉0,小数的大小不变。
2.能运用小数的性质,对小数进行改写和化简。
【过程与方法】
1.通过先独立思考,再小组讨论的教学手段,让学生经历自主探索的过程。
2.用图形面积相等和推算等方法比较小数0.3和0.30的大小,从而让学生自己发现得出小数的性质。
3.引导学生初步领略解题过程中常用的转化的方法。
【情感、态度与价值观】
1.经历验证的过程,培养合理的思维。
2.培养培养学生发散性思维能力。
教学重点:
小数性质的应用。
教学难点:
小数性质归纳的过程。
教学用具准备:
教具、学具、多媒体设备。
教学过程设计:
一、情景引入
1.
板书:三个1,判断相等吗?
接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,问:这三个数相等吗?(不相等)
你能想办法使它们相等吗?(添上长度单位米、分米、厘米或分米、厘米、毫米)
1米=10分米=100厘米 1分米=10厘米=100毫米。
2.(1)你能把它们改用米作单位表示吗?
0.1米= 0.10米 = 0.100米
(2) 改写成用米作单位表示后,实际长度有没有变化?(没有变化)说明什么?(三个数量相等)
3.引入新授:0添在一个数的哪里可以不改变数的大小呢?这节课我们就来研究这一方面的知识。
[灵活运用学生学过的知识,从中找到三个相等的数量,发现问题,从而揭示课题]
二、探究新知
1. 出示例1:比较0.30与0.3的大小。
(1)你认为这两个数的大小怎样?(让学生先猜一猜)
(2)可以用什么办法来证明?(给学生独立思考的时间,可以进行小组讨论合作,老师提供两个大小一样的正方形,数射线)
学生汇报:
0.3就是
, 把这个正方形看作整数1,这个正方形平均分成了10份,取这样的三份,就是
, 0.30就是
,把另一个正方形平均分成了100份,取这样的30份,就是
,从图形上发现
=
,所以 0.3=0.30。
推算10个0.01是0.1
30个0.01是0.3
所以0.3=0.30
把0.3和0.30标在数射线上,发现0.3=0.30。
(3)从比较中中发现了什么?
(小数部分的末尾(后面)添零,它的大小不变。小数部分的末尾(后面)去掉零,它的大小不变。)
末尾和后面哪个更好?
(4)这就是今天我们要学习的小数的性质。(出示课题:小数的性质)
板书:小数部分的.末尾添上0或去掉0,小数的大小不变。
2. 利用小数的性质举例。
[通过先独立思考,再小组讨论的教学手段,用图形面积相等和推算等方法比较小数0.3和0.30的大小,从而让学生自己发现得出小数的性质。]
三、巩固练习
1. 根据小数的性质,遇到小数末尾有0的时候,一般可以去掉末尾的0,这过程就是把小数化简。
利用小数的性质化简下面各小数:
6.0=( ) 3.500= ( ) 3.340=( )
这样做的根据是什么?(把小数末尾的0去掉,小数的大小不变)
2. 判断:不改变小数大小,下面哪些0可以去掉,哪些0不可以去掉?
0.730 36.070 108.800 10.0
3. 有时根据需要,利用小数的性质来改写小数。
不改变大小,把下面各数改写成三位小数
8.01= 9.8= 6=
改写小数时你想提醒同学们需要注意什么?
(1)不改变原数的大小;
(2)只能在小数的末尾添上0;
(3)把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添0。
4. 当小数部分的位数不同时,可以怎么比较小数的大小?
比较3.14与3.141
(把3.14改写成3.140,就可以从高位起依次比较每个数位上的数字。01 所以3.143.141)
比较下面每组中两个小数的大小:
5.28( )5.2 0.61( )0.612 6.37( )6.375
[通过一系列练习,使学生明确了小数性质的两大运用:把小数改写和化简。]
四、课堂小结
今天我们学习了什么?
生活中你有没有用到过小数的性质?(价格标签)
《小数的性质》教案13
【教学内容】
【教学目标】
【教学重点 】重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点 、数大小变化的规律。
难点:用“四舍五入”法按要求求出小数近似数。
【教学过程】
一、揭示课题
这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。
二、复习小数的意义
1、做期末复习第8题(1)、(2)、(3)。
(1)学生在书上填写,集体订正。说一说0.5、0.023的意义。
(2)说一说小数的意义是什么?
问:一位小数、两位小数、三位小数……各表示几分之几的数?
2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?
(2)填空。
0.1里面有( )个0.01。 10个0.001是( )。
10个0.1是( )。 0.1里有( )个0.01。
三、复习小数的性质和小数的大小比较
1、练习。
(1)把下面小数化简。
4.700 16.0100 8.7100 14.00
(2)不改变数的大小,把下面的数写成两位小数。
4.2 13.121
①学生做,指名板演,集体订正。
②问:做题时是根据什么来做的?什么是小数的性质?
2、做期末复习第9题,第1竖行两题。
(1)学生在书上做,指名板演,集体订正。
(2)让学生说一说怎样比较两个小数的大小。
3、做期末复习第10题。
(1)先把这些数排列起来,找出最大、最小数,并和其他数一起,写好序号。
0.1 0.012 0.102 0.12 0.021
(2)按要求从小到大排列。
四、复习小数点位置移动引起小数大小变化的规律
1、做期末复习第8题(4)、(5)。
(1)小数点向右移动,原来的'数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?
问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?
(2)学生练习,指名回答。
2、练习。
(1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。
(2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。
五、复习求小数的近似数和整数的改写
1、把下面小数精确到百分位。
0.834 2.786 3.895
(1)学生做,指名板演。
(2)让学生说一说怎样求一个小数的近似数。
2、(1)把下面各数改写成“万”作单位的数。
486700521000
(2)把下面各数改写成“亿”作单位的数。
460000000 7189600000
学生在练习本上做,指名板演,说一说怎样把一个较大数改写
成“万”或“亿”作单位的数。
3、把下面各数改写成“万”作单位的数,并保留一位小数。
67100209500
(1)学生在练习本上做,指名板演。
(2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?
4、做期末复习第9题剩下的两题。
(1)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。
(2)学生练习,集体订正。
(3)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以
了。
5、做期末复习第11题。
学生在书上做,并说明理由。
六、全课总结
这节课复习了什么内容?
怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?
【作业设计】
1、0.45表示( )。
2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。
3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是( )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。
4、在○里填“”、“”或“=”。
16.36○16.63 0.36万○3600
0.97○1.01 0.23亿○2100万
5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?
10000千克稻谷可出大米多少千克?
《小数的性质》教案14
设计说明
快乐教育理论认为人类的需要得到满足就是快乐。而快乐常常与兴趣联系在一起,兴趣使人产生钻研、探索、创新的愿望,从而激发快乐。基于此,本节课的教学设计突出以下几点:
1.创设情境,激发兴趣。
通过创设一个完整的故事情境,激发学生的学习兴趣,继而引出本节课所要探究的问题——小数的末尾添上“0”或去掉“0”,大小有变化吗?鼓励学生大胆猜想,并用多种方法进行验证,引导学生自主探究,培养学生发现问题、分析问题、解决问题的能力。
2.关注学生个体,自主获取新知。
《新课程标准》强调:学生是学习的`主体。本节课的教学充分发挥学生的主体作用,让学生通过对比,自己得出0.1 m=0.10 m=0.100 m,并通过观察归纳出小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。引导学生自学例3、例4,养成自主学习的良好习惯。
3.巩固应用,练习形式多样。
练习是巩固新知、形成能力、发展思维的重要手段。基于以上认识,本节课的练习题设置形式多样,梯度合理,既有基础练习,又有生活中的运用,使学生在轻松愉快的氛围中既巩固了基础知识,又深化了所学知识。
课前准备
教师准备 多媒体课件 正方形纸片 数位顺序表
学生准备 水彩笔 米尺
教学过程
⊙创设情境,课前质疑
师:小明的爸爸最近开了一家文化用品商店,想请大家帮忙设计价签,大家愿意帮这个忙吗?(出示中性笔和笔袋)每支中性笔2元5角,每个笔袋8元,价签该怎么写呢?(出示几种写法:2.5元、2.50元、8元、8.00元,引起争论)
师:我们在商店里看到的价签一般是这样的:2.50元,8.00元。2.5元和2.50元都表示2元5角吗?8元和8.00元相等吗?
生:2.5元和2.50元都表示2元5角,8元和8.00元相等。
师:为什么会相等呢?上完今天这节课你就明白了。(板书课题:小数的性质)
设计意图:给学生提供熟悉的生活情境,使学生产生亲切感,为构建新的认知结构打开切入口,同时引导学生针对生活化的问题情境做出数学猜想,以此猜想引领全课。
⊙探究新知
1.探究小数的性质。
(1)在括号里填上合适的单位名称,使等式成立。
1( )=10( )=100( )
①学生先在小组内讨论、交流,然后教师指名汇报。
预设
生1:1元=10角=100分。
生2:1 m=10 dm=100 cm。
生3:1 dm=10 cm=100 mm。
②出示课件,一边讲解一边动画演示。
因为1 dm=10 cm=100 mm,所以0.1 m=0.10 m=0.100 m。(板书:0.1 m=0.10 m=0.100 m)
(2)提问:根据0.1 m=0.10 m=0.100 m,你发现了什么?通过小组活动进行探究。(出示课堂活动卡)
《小数的性质》教案15
教学目标:
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重点:让学生理解并掌握小数的性质。
教学难点:能应用小数的性质解决实际问题.
教学过程:
(一)、创设情境,引导探索
1师:夏天的天气非常炎热,孩子们你们爱吃雪糕吗?老师对学校附近雪糕的价格做了一个小调查,你们想了解一下吗?老师了解到校门口左边的商店雪糕的价格是0.5元,右边一家则是0.50元,那你们去买的时候会选择哪一家呢?为什么?
师:为什么0.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来学习小数的性质。(板书课题:小数的性质)
二、探究新知、课中释疑
1.教学例1
比较0.1m 0.10m 0.100m的大小
师:想一想括号里填上什么单位,才能使等式成立?
1( )=10( )=100( )
生汇报(重点讲解:1分米=10厘米=100毫米)
你能把它们改写成用米做单位的小数的形式吗?
根据学生回答归纳演示: 1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米
4)观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
5)根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”,小数的大小不变。
是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。
2.教学例2
比较0.3和0.30的大小
1)师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)
2)师:想一下你用什么办法来比较这两个数的大小呢?(利用学具,小组讨论合作)
3)在两个大小一样的正方形里涂色比较。
汇报结论:0.3=0.30
4)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)
5)师:同学们,你们真了不起,通过动手操作验证得出了这个性质,这就是我们今天学习的内容-小数的性质(课件出示)
小数的性质:小数的末尾添上“0”或去掉“0”,小数的.大小不变。
6)认真读这句话,你认为那些字是非常关键或者必不可少的?为什么?
生:末尾,因为中间的0是不能随意去掉的,去掉后就改变了小数的大小。
3.小数的化简
师:根据小数的性质,当遇到小数末尾有0时,一般可以去掉末尾的0,这就是小数的化简,你想试试看看吗?(课件出示例3)
把0.70和105.0900化简.
105.0900中“9”前面的“0”为什么不能去掉?
(0.70=0.7;105.0900=105.09)
教师强调:末尾和后面不同。
师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)
4.小数的应用
1)师:利用小数的性质不仅可以化简小数,有时根据需要,可以在小数的末尾添上0;还可以在整数的个位右下角点上小数点,再添上0,把整数改写成小数的形式,这就是小数的改写,下面我们学习例4
2)不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数.学生独立完成,全班共同订正。
(0.2=0.200;4.08=4.080;3=3.000)
思考:“3”的后面不加小数点行吗?为什么?
3)师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)
三、巩固深化,拓展思维
师:同学们的表现真棒,为了加大难度,老师设计了闯关游戏,你们有信心接受老师的挑战吗?
挑战一:判断
挑战二:连线
挑战三:智力大比拼
四、课堂小结
这节课你有哪些收获?
五、布置作业.
完成练习十1-3题。
板书设计:
小数的性质
0.1米 = 0.10米 = 0.100米
0.3= 0.30
小数的性质:小数的末尾添上0或者去掉0,小数的大小不变 。
【《小数的性质》教案】相关文章:
《小数的性质》教案02-19
小数的性质说课稿06-25
《小数的性质》教学反思09-17
《小数的性质》教学反思02-25
小数的性质教学反思06-19
《小数的性质》数学说课稿08-26
《小数的意义和性质》教学反思09-24
小数的性质教学反思15篇03-27
小数的意义和性质教学反思03-10