分数乘法教案

时间:2024-07-20 18:29:32 教案 我要投稿

有关分数乘法教案范文锦集9篇

  作为一名教师,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么写教案需要注意哪些问题呢?下面是小编为大家整理的分数乘法教案9篇,仅供参考,希望能够帮助到大家。

有关分数乘法教案范文锦集9篇

分数乘法教案 篇1

  本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。下表是全单元教学内容的编排。

  分数与整数相乘

  用乘法求几个相同分数的和(例1)

  用乘法求整数的几分之几是多少(例2)

  求一个数的几分之几是多少的实际问题(例3) 练习八

  分数乘分数

  分数乘分数(例4、例5)

  分数连乘(例6) 练习九

  倒数

  倒数的意义,求倒数的方法(例7) 练习十

  整理与练习

  教材在编排上有以下特点。

  第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。

  乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式101/2和102/5,联系现实的数量关系体会这些算式的具体含义,得出求一个数的几分之几是多少,可以用乘法计算的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。

  第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。

  先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。

  整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。

  分数乘分数先教学基础知识,再培养计算技能。例4和例5要把求一个数的几分之几是多少的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。

  第三,编排倒数知识,为分数除法作准备。

  分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

  一、 例1着重教学分数与整数相乘的算法。

  首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。

  例1的第(1)个问题求3个相同分数的和。在代表1米绸带的线条图上,已经表示出做1朵绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是求3个3/10是多少,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一部分学生会列乘法算式33/10或3/103。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式33/10和3/103都可以。让学生研究分数乘整数的算法,把分子相加、分母不变加工成分子与整数相乘,分母不变,获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□□/10,经历分子相加转化成分子与整数相乘的过程,建构了新的计算方法。

  例1的第(2)个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决相同分数连加的问题比较简便,巩固运算的意义和方法。这道例题还指导了分数乘法中的约分,兔子卡通先把分子与整数相乘,再把积约分化简。大象卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法则计算,再化简结果。后一种方法由于先约分,算得的积是最简分数,而且相乘也更简单。要指导学生理解并喜欢大象卡通那样的算法,对下面继续教学分数乘分数有好处。

  二、 例2着重教学用乘法求一个数的几分之几是多少。

  10朵绸花的`1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级(下册)认识分数里曾经解答过。那时的解答是通过102、1052这些整数乘除运算进行的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出求一个数的几分之几是多少,用乘法计算这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。

  在例2之前,乘法只用于求相同加数的和。教学例2之后,乘法还可以求一个数的几分之几。这是乘法概念的扩展。为了帮助学生理解乘法的新含义,例2在编写时注意了以下三点:

  首先是加强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出具体而形象的解释。一方面让学生在体验10朵的1/2的意义时,想到102=5这种算法。另一方面又利用十分熟悉的102促进对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及1052的计算过程,体会10的2/5的含义。

  然后是讲述新知识。教材说:求10朵的1/2是多少,可以用乘法计算。并写出算式101/2。还说求10朵的2/5是多少,可以用102/5。在分数意义的平台上,指出分数乘法的实际应用。利用101/2和102/5这两个实例,概括出求一个数的几分之几是多少,用乘法计算。这个结论发展了原来的乘法概念,使乘法有了新的应用领域。

  沟通新旧算法的联系,更好地理解分数乘法。如果比较算式101/2和102,能够发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式102/5和1052都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可对比的内容,让学生反复体验分数乘法。

  练一练加强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受一个数的几分之几的意义。再列式121/3、204/5计算,进行较抽象的思考并用数学方法解决求一个数的几分之几的问题。两者结合,加强了分数乘法的概念。第2题用求一个数的几分之几描述图示的数量关系,在现实问题数学问题数学方法的过程中,进一步体验求一个数的几分之几是多少,用乘法计算。

  例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以101/2、102/5都可以让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。

  三、 例3用分数乘法解决实际问题。

  例2以及练习八第6~11题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为比一个数多(或少)几分之几是较难理解的数量关系,而这些关系又普遍存在于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。

  解答例3的关键是理解红花比黄花多1/10、绿花比黄花少2/5的含义。从本质上讲,它们仍然是一个数的几分之几,但是比较难懂。教材用条形图呈现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过红花比黄花多的是多少朵的1/10这个问题,引导学生仔细研究图意,正确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。

  比一个数少几分之几是比一个数多几分之几的变式,安排在试一试里教学。在例3的条形图上,如果把表示黄花的直条平均分成5份(每2格看成1份),绿花比黄花少这样的2份。所以,绿花比黄花少2/5的含义是: 绿花比黄花少的朵数相当于黄花的2/5。教材要求学生仿照红花比黄花多1/10那样,在条形图的直观支持下,分析并理解数量关系。通过独立解决变式的问题,实现比一个数多几分之几向比一个数少几分之几的认知迁移。

  第44页第14题分析比一个数多(少)几分之几的意义是概念专项练习。在说分数的意义时,要先指出把什么看作单位1,平均分成多少份,然后指出什么是这样的几份。如皮球的个数比足球多2/5,应该把足球个数看作单位1的量,把它平均分成5份,皮球比足球多的个数相当于这样的2份。这题要把数量关系式补充完整,数量关系式可以视为一种数学模型。从解题角度上看数量关系式,它有助于列出算式或列出方程;从思维角度上看数量关系式,把文字叙述的数量关系改写成关系式,压缩了思维过程,精简了数学语言,表达了思考结果;从教学角度上看数量关系式,它能进一步加深理解概念,及时暴露认识的偏差。如果对比一个数多(少)几分之几的理解不正确,一定会在写出的数量关系式上有所表现。仍以皮球的个数比足球多2/5为例,如果在等号右边填出皮球的个数,就是概念错误造成的。解答第15~17题,都要以正确的数量关系为前提,教材编排第14题的意图是十分清楚的。

  四、 例4、例5构建分数乘法的计算法则。

  分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么可以这样计算却很不容易,是再次应用分数概念开展演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会分子相乘、分母相乘是合理的。

  构建分数乘法的计算法则,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的试一试里完成这个内容的教学。

  例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线部分各占1/2的几分之几,引出新的数学问题: 1/2的1/4、1/2的3/4。得出这两个数学问题要仔细观察每个图里把1/2平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的部分占1/2的1/4,右图中画斜线的部分占1/2的3/4。第二项活动要列出1/2的1/4、1/2的3/4的算式。应用初步形成的分数乘法概念,从求一个数的几分之几用乘法计算推理得出1/2的1/4可以用1/21/4计算,1/2的3/4可以用1/23/4计算。在写两道算式时,体会一个数不仅是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以1/21/4=1/8、1/23/4=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,分母相乘的得数是积的分母。

  例5继续体会分数乘分数的算法。已给出了两道算式2/31/5和2/34/5,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会正确画图和看到算式的积。如2/31/5是求2/3的1/5是多少,要把表示2/3的那个部分平均分成5份,用斜线画出其中的1份。斜线部分占长方形的2/15,2/15就是2/31/5的积。又如2/34/5是求2/3的4/5是多少,要把表示2/3的那块涂色部分平均分成5份,用斜线画出其中的4份,由此得到2/34/5的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感受积的分子2和8是两个乘数的分子的乘积,积的分母15是两个乘数的分母的乘积。

  两道例题的教学线索不同,认知程度也不同。例4经历看图写式得积的过程,感受分子相乘、分母相乘的可能性。例5通过看式画图得积体验分子相乘、分母相乘的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法则。

  第55页应用整数都能写成分母是1的分数这个知识,把2/113和45/6都改写成分数乘分数的形式,使分子相乘的积作分子,分母相乘的积作分母也适用于分数乘整数的计算,成为分数乘法的计算法则。

  五、 例6教学分数连乘的算法和技巧。

  例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,由于二班做的朵数是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析3/4的意思,理解这里是把二班做的朵数看作单位1。通过画图就能很快知道应先算二班做的朵数。

  例题先分步列式解答,再列综合式解答。教学要以综合算式为主,因为在综合算式里要讲分数连乘的算法。关于分数连乘计算有两点内容:一是各个乘数的分子连乘的得数是积的分子,各个乘数的分母连乘的得数是积的分母。二是要尽量先约分,再相乘。就是说,要把分子、分母之间能够进行的约分都完成以后,相乘就简单了。两点内容学生都能接受,先充分地约分可能会不大适应。教学不必在为什么这样约分上纠缠,学生有计算结果应是最简分数的认识,能够理解计算过程中要尽可能地约分。教学要清楚地展示约分活动,如整数135和分母9之间的约分,分子8和分母4的约分。在练一练里还要指导不相邻的分子与分母的约分,如22/275/119/10中的分母27和分子9的约分,帮助学生逐渐掌握约分的技巧。

  六、 例7教学倒数的知识。

  倒数的知识主要是两点: 一点是倒数的概念,另一点是求倒数的方法。前一点是基础知识,后一点是计算分数除法所需要的基本技能。建立倒数概念之后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。

  教学从寻找乘积是1的分数开始。在8个分数中能找到3对乘积是1的分数,这项貌似游戏的活动凸显了倒数是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字叙述强调两个数互为倒数,还以3/8和8/3为例,帮助学生体会互为倒数的意思指甲是乙的倒数,乙也是甲的倒数,这是倒数概念的又一个内涵。

  求已知数的倒数分三个层次教学: 先求3/5、2/5等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会了互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。写整数的倒数,从概念出发,寻找与整数相乘等于1的那个分数,体会如果把整数看作分母是1的分数,那么它的倒数也是调换分子、分母位置得到的那个数。教材要求学生理解0没有倒数,并作出相应的解释。这是因为0和任何数相乘都得0,不存在与0相乘能得到1的数。

  第51页第4题里有四组数。第(1)组数都是真分数,它们的倒数都是假分数。第(2)组数都是大于1的假分数,它们的倒数都是真分数。第(3)组数的分子都是1,它们的倒数都是整数。第(4)组数都是整数,它们的倒数都是几分之一的数。让学生发现这些规律,是为了巩固倒数概念,熟练掌握求倒数的方法。

分数乘法教案 篇2

  设计说明

  本节课是在学生学习了分数乘法的意义和计算方法的基础上进行教学的。围绕教学重点,以探究为主线设计教学过程,通过观察、对比、讨论、交流来理解分数乘法的意义,探究分数乘法的计算方法。本节教学在设计上主要有以下两个特点:

  1.重视数形结合在学习中的作用。

  数形结合是学生获取数学知识的有效手段之一,它能促进学生对抽象数学知识的理解。上课伊始,就充分地调动了学生动手操作的积极性,通过画图的方式初步感知一个数的几分之几是多少;在新课的教学中,再次利用数形结合的方法,帮助学生在自主探索和合作交流的过程中理解分数乘法的意义并获得广泛的数学活动经验。

  2.注重从不同的问题情境中引导学生从不同的角度理解分数乘法的意义。

  在教学过程中从生活情境中提出不同的问题,引导学生根据已有的知识经验或画图法去解决问题,从中理解分数乘法的意义。

  课前准备

  教师准备 PPT课件

  学生准备 圆形卡片

  教学过程

  第1课时 求一个数的几分之几是多少

  ⊙创设情境,激趣导入

  1.动手操作。

  (1)你能从桌面上的12根小棒中拿出它的吗?呢?

  (2)说一说你是怎么想的。

  2.引导发现。

  从刚才的操作中,你发现了什么?

  3.交代学习目标。求一个数的几分之几是多少。

  设计意图:通过动手操作,使学生初步感知分数乘整数的'意义,为理解整数乘分数的意义作铺垫。

  ⊙类比推理,明确意义

  1.获取信息,提出问题。

  课件出示问题:奇思早上吃了6块饼干,笑笑吃的饼干数是奇思的,淘气吃的饼干数是奇思的。

  (1)从题中你获得了哪些数学信息?

  (2)你能提出哪些数学问题?

  预设

  ①笑笑吃了多少块饼干?

  ②淘气吃了多少块饼干?

  ……

  2.分析、解决问题。

  (1)讨论解题策略。

  师:要求笑笑吃了多少块饼干,这道题应该如何解答呢?请大家在小组内讨论、交流一下。

  (学生独立思考,小组交流)

  (2)学生试做。

  (指导学生通过画图的方法帮助思考)

  (3)汇报,并说出思考过程和解答方法。

  方法一

  生:笑笑吃的饼干数是奇思的,也就是说把奇思吃的6块饼干看作单位“1”,再把单位“1”平均分成2份,其中的1份是笑笑吃的饼干数。

  师:说得真好!把6块饼干看作一个整体,6块饼干的是3块饼干。

  方法二

  生:把每块饼干都分成2个,6块饼干的就相当于6个,也就是3块饼干。

  师:这也是一个很好的方法。我们知道了6块饼干的是3块饼干。

  师:那么这道题应该如何列式计算呢?(6个列式为6×)

  设计意图:引导学生借助“画图”的方法来理解数学问题,得到解决数学问题的策略的方法,渗透了数形结合思想,让学生通过实践得出“画图”是一种很好的解决问题的方法。

  3.拓展分数乘整数的意义。

  师:综合以上两种方法,你们有什么发现?

分数乘法教案 篇3

  教学目的:使学生通过复习和分数乘法的计算、解答分数乘法应用题以及求倒数,培养学生综合运用知识的能力,发展学生的思维。 .

  教学过程

  一、基训

  A、1、填》、《、=A》B》0

  4/5A/B( )A/B

  4/5B/A( )B/A

  A/54/B( )4/5

  2、一个真分数乘以一个假分数,结果大于真分数,对吗?

  3、A、B互为倒数,那么1/A、1/B也互为倒数,对吗?

  B、 1.分数乘以整数的意义是什么?

  2.一个数乘以分数的'意义是什么?一个数乘以分数的计算法则是什么?

  3.计算带分数的乘法应注意些什么?

  4.分数乘法的简便运算可以应用哪些运算定律?

  5.解答分数乘法应用题的关键是什么?

  6.倒数的意义是什么?

  学生回答这些问题时,只要意思说得正确就可以了。有些问题还可以问一些与之相

  关的问题,如运算定律的表达式以及字母可以表示什么数等等。

  二、综合练习

  1.找1。

  甲是乙的35 。乙是甲的35 。

  甲比乙的35 多1。乙比甲的35 少1。

  甲的35 和乙同样多。

  学生独立判断,集体订正。让学生说说是怎样判断的。教师可再补充几题:

  2.做口算练习。

  3.求下面各数的倒数。

  2/7 1/9 6 20 0.6

  学生独立解答,教师巡视,发现问题及时纠正。

  4.小红体重42千克,小云体重40千克,小明的体重是小红和小云体重和的1/2,三人共重多少?

  5.已知a4/3=11/12b=3/3c,a、b、c都不是0,谁大?

  三、小结(略)

  四、补充作业。

分数乘法教案 篇4

  教学内容:第45页例题4、5

  教学目标:

  1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。

  2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

  教学重点、难点:

  分数乘分数的计算法则。

  对策:

  使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

  一、 复习

  1、计算下列各式

  1/15╳5= 2╳2/3 = 7/8 ╳14= 15/6 ╳24=

  2、说说整数与分数相乘的计算方法?先约分再计算还是先计算再约分方便?

  二、 新授

  1、出示例题4题目和图。

  2、理解题目意思。

  3、你知道左边图中画斜线的部分占1/2的几分之几?是这张纸的几分之几?你是怎样想的?

  4、右边呢?

  5、你能看图用算式来表示结果吗?填在书上。组织交流。

  6、总结:求一个分数的几分之几是多少,也可以用乘法计算。

  7、探究:观察这两个算式,猜才分数与分数相乘是怎样计算的?

  学生说出自己的猜想。

  验证猜想,教学例题5。

  (1)出示例题5

  (2)在图中画斜线表示计算结果,再填空。

  (3)组织交流:你发现积的分子、分母与两个因数的分子、分母各有什么关系?

  (4)总结得出:分数与分数相乘,用分子相乘的积作分子,分母相乘的积作分母。

  三、巩固

  1、出示 1/42/3 8/93/4

  2、学生独立完成,指名板演

  3、可能出现两种:先乘再约分 或先约分再相乘

  引导学生比较这两种方法谁更好?如果是24/7755/8呢?再次体会到先约分再计算比较简便。

  4、介绍简便书写格式,发现可以在算式上直接约分,再计算,提高速度。

  四、比较

  出示2/113和45/6,先计算,再比较,分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?

  所以不管上分数乘整数还是分数,都可以看作是分数乘分数的计算方法来计算。

  五、巩固提高

  您现在正在阅读的苏教版《分数乘法》第四课时教学设计文章内容由收集!本站将为您提供更多的'精品教学资源!苏教版《分数乘法》第四课时教学设计1、第46页上的练一练

  先独立计算在书上,指名板演,再组织交流。

  2、第48页上的第1题

  读题先在图中表示出来,再列式计算。组织交流想法。

  3、第48页上的第3题

  先独立判断,将不对的改正过来。组织交流:是否正确?错在哪里?怎样改?最后是多少?

  4、第48页上的第4题

  先独立计算,再组织交流:上下两题有什么相同的地方?结果怎样?

  六、布置作业: 练习九 2、5

  课前思考:

  教学例4和例5时,我想如果借助投影仪依次呈现长方形图,可能会对学生思考问题有帮助,特别是对于一些学习困难生来说,这样便于他们直观地看出所求部分占了这张纸的几分之几。当然,最后还是要让学生从直观图中抽象出本质的东西,即认识到分数与分数相乘的计算方法。

  在试一试的教学中,要分三个层次进行。第一层次是计算分数乘分数时用先约分再计算的方法;第二层次尝试用分数乘分数的方法计算分数乘整数;第三层次学习直接在题中约分的方法来计算分数乘法。估计这么多的计算方法一下子呈现在学生面前,会使一部分学生不知所措。课中教师要多关注学生学习情况,及时调整教学行为。

  课前思考:

  例4的教学可分三步进行,第一,看图理解1/2的1/4和1/2的3/4表示的意义,联系图弄清分别是这张纸的几分之几。第二,进一步明确求1/2的1/4或1/2的3/4是多少,也可以用乘法。第三,前两步的思考过程完成教材上的填空,建立关于分数乘分数计算方法的初步猜想。

  例5可以根据例4的猜想,算出算式的积,再通过画图验证。教学时让学生观察比较几个算式的因数和积,通过交流归纳出分数乘分数的计算方法。

  在介绍简便书写格式,发现可以在算式上直接约分再计算,学生可能在整数乘分数时会把整数同分子约分,教学时要进行强调。

  课后反思:

  本节课在教学时,我借助直观的图形,不仅让学生掌握分数与分数相乘的计算方法,更重要的是让学生理解分数乘分数的含义。并在例题教学之后增加了一个画一画环节----(1)教师写一个分数乘分数的算式,让一个学生上黑板画图表示算式的意义,要求边画边说为什么怎样画;(2)再写一个分数乘分数的算式,让全体学生独立画图表示,再同桌交流,最后指名交流。这样学生对分数乘分数的意义有了更深的认识。

  在第48页第4题练习时,加强了分数乘法与分数加法的对比,强化计算方法区别,防止学生对两种计算出现混淆。

  课后反思:

  反思本节课的教学,在例4的教学中由于要借助直观图来思考1/2的1/4和1/2的3/4是这张纸的几分之几,所以忽略了指导学生理解1/2的1/4和1/2的3/4所表示的意义,这是今天这节课上的一处败笔。因为对于分数乘分数的计算方法的推导和理解、运用,对于学生来说反而不存在太大的问题。

  从学生作业情况来看,遇到整数乘分数时,往往出现错误,分析原因是计算时不会把整数改写成分母是1的分母来计算,出现分子和分子约分的现象;还有些学生约分时仍存在错误,这样就造成乘法计算错误。

  估计明天的课上计算分数连乘时问题会更多,教学时要思考对策。

  课后反思:

  通过教学,学生能理解分数乘分数的意义,掌握分数乘分数的计算方法,并通过学习分数乘分数的计算方法适用于分数与整数相乘,体会数学知识的内在联系,感受数学知识和方法的应用价值。

  对于能约分的可以直接在题目上约,课堂上进行了讲解和示范,但在做作业时考虑到有部分学生约分时容易出错,我还是让学生写出了分母和分母相乘,分子和分子相乘的那一步,再约分,最后计算。从作业的反馈情况来看学生的计算的正确率也比较高

分数乘法教案 篇5

  教学内容:

  课本第14、15页的例1和例2,完成做一做和练习四的第1~5题。

  教学重点:

  学会找单位1

  教学难点:

  依题意画出线段图

  教学目的:

  1.使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

  2.培养学生分析能力,发展学生思维。

  教学过程:

  一、复习

  1.先说下列各算式表示的意义,再口算出得数。

  2.列式计算。

  (1)20的是多少?

  (2)6的是多少?

  让学生列式计算解答,再指名说说算式的意义,并指出把哪个数看作单位1。

  二、新授。

  1.教学例1。

  出示例1:学校买来100千克白菜,吃了,吃了多少千克?

  (1)指名读题,说出条件和问题。

  (2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。

  先画一条线段,表示100千克白菜。

  吃了,吃了谁的?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?

  教师边说边画出下图:

  (3)分析数量关系,启发解题思路。

  引导学生说出:吃了,是吃了100千克的,所以把100千克看作单位1,要求100的是多少,根据一个数乘以分数的意义,直接用乘法计算。

  (4)学生列式计算:=100(20)?=80

  (5)再让学生分析一下数量关系。

  (6)练一练:完成第18页做一做第1题。

  评讲订正时,让学生分析一下数量关系。

  2.教学例2。

  出示例2:小林身高米,小强身高是小林的,

  小强身高多少米?

  (1)明确题意,指名读题,说出条件和问题。

  (2)让学生画出线段图并标明条件和问题。

  ①要画几条线段表示题里的数量关系?

  ②引导学生根据题里的条件,确定谁的身高要画得长一些,谁的身高画得短一些。

  ③第一条线段表示谁的身高?画了第一条线段表示小林的身高,该怎样画第二条线段表示小强的身高。

  启发学生:根据小强身高是小林的,要把表示小林的线段平均分成8份,在它的下面画出其中7份的长度代表小强的身高。

  教师边启发边画出如下线段图:

  (3)分析数量关系,启发解题思路。

  启发学生思考:小强身高是小林的,就要把小林的身高看作单位1,要求小强的身高,就要求出小林身高的`是多少,即求的是多少,根据分数乘法的意义,用乘法计算。

  (4)让学生列式计算。

  (5)如果把上题改成下面的题:

  小强身高米,小林身高是小强的倍,小林身高多少米?

  问:哪条线段画得长一些?怎样画?

  把谁看作单位1为什么?

  怎样列式?

  教师边启发边画出如下线段图:

  (6)教师说明:

  一个数是另一个数的几分之几,可以是真分数,也可以是带分数。这里是带分数,把化成假分数,上题也可以改成小林身高是小强的

  指出:在这种情况下乘得的积大于原来的被乘数。

  (7)做一做。

  完成课本14页做一做的第3题。

  三、巩固练习

  1.完成课本第14页做一做的第3题。

  学习列式计算后,指名让学生分析数量关系。

  2.完成练习四的第5题。

  说明:一个数是另一个数的几分之几,不可以是真分数,也可以是带分数,还可以是整数。

  订正时指名分析。

  四、全课小结。

  今天我们学习的分数乘法一步应用题,应根据一个数是另一个数的几分之几分析数量关系,应用一个数乘以分数的意义来解答。

  五.作业。

  练习四的第1~4题。

分数乘法教案 篇6

  教学内容

  先约分再计算结果的分数乘法

  教材第5页的内容、练习一的第7~13题,第8页例5。

  教学目标

  1.通过学习,理解分数乘分数的计算法则也适用于分数和整数相乘,加深对分数乘法计算法则的理解。

  2.进一步提高学生计算的准确性和灵活性。

  3.培养学生良好的书写习惯。

  重点难点

  正确掌握分数和整数相乘的约分方法,灵活计算。

  教具学具

  口算卡,练习题投影片。

  教学过程

  一、导入

  1.说出下面各算式的意义。

  二、教学实施

  1.揭示课题。

  老师:我们已经会计算分数乘分数了,而整数也可以看作分母是1的假分数,所以我们也可以用分数乘分数的法则来计算分数乘整数的算式。

  板书课题:分数乘整数的约分方法

  2.出示例4。

  (1)明确题意。

  请学生读题,并找出已知条件和问题。

  (2)理解题意。

  少千米,用什么方法计算?为什么?

  学生甲:应该用乘法计算。因为是在求一个数的几分之几是多少。

  学生乙:已知速度和时间,求路程,用乘法计算。

  老师:同学们从不同角度说明了这道题为什么用乘法计算,有的同学想到了分数乘法的意义,有的同学想到了“路程、速度和时间”这三者之间的关系,真的很棒。

  学生互相交流,得出结论。

  (3)计算。

  提问:怎样计算更加简便?

  明确:能约分的可以先约分再乘。

  (5)分析错因。

  提问:为什么第三种答案与其他两种不同呢?错在哪里?

  学生自由发言。

  追问:分数和整数相乘怎样约分?小结:因为整数都可以看作分母是1的分数,所以分数乘分数的法则也适用于分数乘整数。

  3.巩固练习。

  (1)完成教材第5页的“做一做”。

  学生可以先说意义再计算,集体订正答案时,请学生说出计算方法。

  (2)完成教材第6页练习一的第7题。

  老师对掌握程度不同的学生可以有不同的要求,引导学生找出当一个数分别乘一个比1大的数、比1小的数和等于1的数时,积与第一个因数之间的大小关系。

  (3)完成教材第6页练习一的第8~13题。

  学生独立完成后,集体订正答案。

  4.出示例5。

  (1)明确题意。

  请学生读题,并找出已知条件和问题。

  (2)探究算法。

  老师:我们已经学会分数乘分数、分数乘整数的计算方法,那么分数乘小数怎么算呢?

  板书:分数乘小数的计算方法

  学生1:可以把2.1转成分数进行计算。

  三、课堂作业新设计

  1.在○里填上“>”“<”或“=”。

  四、思维训练

  1.先计算下面各题,说一说发现了什么规律。参考答案

  (2)略

  板书设计

  分数乘整数的约分方法

  分数乘分数的.简便算法是先约分,后计算,计算结果必须是最简分数。

  运用约分对分数乘分数进行简便运算时,约分后分子和分母必须只有公因数1,计算后的结果才是最简分数。

  分数乘小数的计算方法。计算小数乘分数时,可以把小数转化成分数进行计算,即分子与分子相乘,分母与分母相乘,然后约分就可以了;也可以把分数化成小数,按照小数乘小数的计算方法进

  行计算;在计算小数乘分数时,如果小数能和分数的分母约分,可以先约分再计算,这样可以使计算简便。

  备课参考教材与学情分析

  本部分内容主要教学分数乘法在乘的过程中的简便的书写格式。教材一方面把分数乘法的两种形式集中呈现,加强它们之间的对比和联系,一方面提出分数和整数相乘怎样约分的问题,让学生知道除了像例4那样进行约分,也可以把分数的分母与整数直接约分。这部分内容是在学生学过分数乘整数的基础上进行教学的,它是后面学习分数除法以及分数乘除法应用题的基础。

  课堂设计说明

  1.加强两种形式的乘法的对比练习。

  学生已经理解了分数乘整数和分数乘分数的意义,通过对比练习可以找到两种形式的乘法之间的联系。

  2.引导学生观察教材的约分过程,想一想与例2的约分形式有什么不同。特别要注意提醒学生要先观察能否约分,并且注意提醒他们不能把整数与分数的分子约分。

分数乘法教案 篇7

  教学目标

  1.使学生理解、掌握题中的数量关系。根据一个数乘以分数的意义掌握求一个数的几分之几是多少的一步计算的分数乘法应用题的解题方法。

  2.渗透事物之间普遍联系的思想,培养学生利用已有知识迁移到新知识的能力。

  教学重点和难点

  1.使学生能够用线段图正确表达题意,并在此基础上进一步理解题中的数量关系。

  2.在搞清数量关系的前提下,根据一个数乘以分数的意义,正确解答求一个数的几分之几是多少的一步分数乘法应用题。

  教学过程

  (一)复习准备

  1.谈话、提问。

  我们已经学习了分数乘法的计算方法,这两道题你能否不计算就比较出哪个算式的乘积大?

  为什么呢?

  分5份后取其中的2份是多少。)

  当一个数乘以分数时求的是什么?

  (一个数乘以分数就是求这个数的几分之几是多少。)

  2.口述下列算式的意义。

  求一个数的几分之几是多少怎样列式呢?

  3.列式。

  (二)学习新课

  1.出示例1。

  2.分析题意。

  (1)读题,找出已知条件和所求问题。

  (2)分析已知条件。

  ①谈话提问:

  题中有两个已知条件,其中学校买来100千克白菜是已知学校买来

  那么它表示什么呢?请你们以小组为单位通过讨论下面的问题得出结论。

  ③汇报讨论结果。

  均分成5份,吃了的占其中的4份。)

  ④那么我们应把谁看作单位1?(100千克)

  ⑤怎样用线段图表示?先画什么?再画什么?求吃了多少千克,是求哪部分?

  3.列式解答。

  (1)根据刚才的分析,你能用已学过的整数乘除法来解答吗?

  10054=80(千克)

  1005求的是什么?再乘以4呢?

  (2)刚才是用了整数乘除法的解答方法,怎样直接用分数计算呢?

  所以把谁看作单位1?(100千克)

  根据一个数乘以分数的`意义应怎样列式?

  答:吃了80千克。

  4.课堂练习。

  队的有多少人?

  (1)读题,找出已知条件和问题。

  (3)请你们以小组为单位进行分析,并画出线段图,解答出来。

  (4)反馈。

  说一说你们小组的分析思路及解答方法。

  是多少。)

  5.小结。

  刚才我们解答的两道题,都是已知单位1是多少,求它其中的一部分即求它的几分之几是多少。解答这类应用题的关键是什么?

  (分析含有分率的句子,找准单位1,再根据一个数乘以分数的意义列式解答。)

  6.下面我们来看这样一道题,看看它与上面的题有什么不同?

  (1)出示例2。

  (2)读题,找出已知条件和问题,并确定从哪儿入手分析。(小强身高

  (3)分析、画图。

  ①你怎样理解这个条件?(把小林身高看作单位1,平均分成8份,小强的身高是这样的7份。)

  ②这道题中涉及到几个数量?哪几个数量?(小林的身高、小强的身高。)

  ③为了区别,画图时要用两条线段来表示。先画谁呢?(小林的身高)再画谁呢?(小强的身高)怎样表示?

  (4)看图列式。

  少。)

  ②怎样列式解答?

  7.改动上题,你能独立分析吗?

  米?

  (2)画图分析解答。

  (3)提问反馈:

  ①把谁看作单位1?

  ②小林身高怎样用线段图表示?

  ③求小林身高就是求什么?

  求一个数的几倍,我们也可以理解成求这个数的几分之几是多少。

  (三)课堂总结

  例1、例2有什么相同点和不同点?

  (四)巩固反馈

  (画图,解答)

  球价格多少元?

  3.对比练习:

  少元?

  (五)布置作业

  20页第1~5题。

  课堂教学设计说明

  本节教案的设计着重让学生掌握分析方法,解题思路。培养学生分析问题的能力。

  例1的讲授,通过让学生分析已知条件,以线段图为手段找到题中的数量关系。在明确数量关系的基础上得出,求问题就是在求一个数的几分之几是多少。从而很自然的由旧知识迁移到新知识。

  例2的讲授,既要让学生明确两例题的区别,又要让学生统一到都是求一个数的几分之几是多少。为了防止学生出现思维定势,在练习的设计上,通过变换关键句使学生灵活分析解答,易于学生把握解题的关键。

分数乘法教案 篇8

  教学目标

  1.进一步理解分数乘整数的意义。

  2.掌握分数乘整数的计算法则。

  3.能够熟练准确地计算分数乘整数的计算题。

  教学重点

  分数乘整数的计算方法,能正确计算。

  教学难点

  理解先约分再计算能使计算简便。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、复习分数乘整数的意义及计算法则

  二、出示例题

  1.出示3/4×6

  教师引导学生能不能先约分再计算。

  学生得出结论后教师讲解先约分后计算的格式。

  你会填吗?

  1/6+1/6+1/6+1/6=1/6×()

  3/4+3/4+3/4+3/4+3/4

  =3/4×()

  2/25+2/25+2/25

  =2/25×()

  在计算分数乘整数时,用分数的分子(),分母()。

  学生先用计算法则进行计算后进行约分。

  学生进行计算并比较两种方法那种方法简单。

  复习巩固分数乘整数的计算方法。

  进一步应用分数乘整数的计算方法,体验先约分再计算。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  2.练习

  完成课本第3页的做一做

  三、综合练习

  1.练一练第1题

  2.教师指导完成练一练第2题

  学生完成后还可以估一估一个月、一年能滴多少水。

  四、布置作业

  完成练一练第3、4、5题

  学生独立完成做一做

  学生通过涂一涂,可以得到结果为10/15,再约分得到2/3。学生也可以先约分再计算。

  学生根据老师的指导进行计算,并解释结果的实际意义。

  借助图形语言,加深学生对分数乘整数的.意义的理解。

  巩固分数乘整数的计算方法,培养学生的节约意识。

  板书设计:

  分数乘整数

  复习题:出示例题3/4×6

分数乘法教案 篇9

  教学内容:

  分数乘法练习一

  教学目标:

  1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  2、知识目标:复习分数乘以整数和分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以整数和一个分数乘以另一个分数的结果。

  3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  重点难点:

  学生能够熟练的计算出分数乘以分数和分数乘以整数的结果。

  教学方法:

  师生共同归纳和推理。

  教学准备:

  教学参考书、教科书。

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数乘法运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?这些分数乘法运算有什么不同?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。分数乘以整数,整数乘以分子,分母不变。)

  二、课堂练习

  学生做第1题,让学生用学过的分数乘以整数的知识求1000克牛肉中的蛋白质和脂肪的含量各是多少?

  学生做第2题,注意让学生用分数乘以整数的知识求出全年我市空气质量为优的天气是多少天?培养学生从小保护环境的环保意识。

  学生做第3题,让学生计算整数乘以分数和分数相乘的'算式。

  学生做第4题,让学生能够学会比较整体1的几分之几是多少?

  学生做第5题,教师注意让学生求整体的几分之几是多少?

  学生做第6题,让学生用整数乘以分数的知识来解决生活中有关分数的生活问题,培养学生一方有难,多方支援的人道主义思想。

  学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。

  三、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

【分数乘法教案】相关文章:

分数乘法教案05-18

分数乘法教案02-02

分数乘法教案15篇02-10

(经典)分数乘法教案15篇05-24

分数乘法教案[汇编15篇]10-20

[精]分数乘法教案15篇10-20

分数乘法数学教案02-13

分数乘法教案[实用15篇]08-08

分数乘法说课稿01-15

分数的乘法教学反思12-19