鸡兔同笼教案范文集锦7篇
作为一位兢兢业业的人民教师,往往需要进行教案编写工作,借助教案可以有效提升自己的教学能力。快来参考教案是怎么写的吧!以下是小编为大家整理的鸡兔同笼教案7篇,欢迎大家分享。
鸡兔同笼教案 篇1
【教学目标】
1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
【重点难点】
用假设法和列方程的方法解决“鸡兔同笼”问题。
【教学指导】
1.要注重解题策略的多样化教学中,教师通过组织学生采取讨论,自主探索等方式,多手段、多层面、多角度地探索问题,引导学生运用列表法、画图法、假设法、代数法等方法分析和解决问题,从而使学生获得分析问题和解决问题的基本方法,体验解决问题策略的多样性,发展创新意识。在注重解决问题策略多样化的同时,教师还应注重解决问题策略的自主优化(如列表法中的从两边开始,从中间开始,依据数据跳跃猜测等),并注重不同策略间的相互联系和影响,注重解决问题策略的局限性和一般性。
2.要注重逻辑思维能力的培养让学生在参与观察、猜想、证明、归纳等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初随意、无序的猜想到表格中的有序、有目的的猜想;从一般验证到表格中数据变化规律的发现;从列表法(8只兔0只鸡或8只鸡0只兔这两种情况中)很快自然联想到假设法(通过假设——计算——推理——解答的过程,掌握假设法的独特的特点)、代数法。学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。
3.要注重数学思想的渗透“数学广角”是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。本节课作为本册教材“数学广角”中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数据替代《孙子算经》原题中的大数据的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,既渗透了函数的思想和方法又强调了解题策略的优化;用“假设法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。这些对于学生而言,无疑奠定了可持续发展的坚实基础。
4.要注重数学文化的传承鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,我们把《孙子算经》中关于鸡兔同笼问题的原题和《孙子算经》中用“抬腿法”这种特殊而灵巧的方法解决这一问题的过程,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味。
【知识结构】
第1课时 鸡兔同笼(1)
【教学内容】
教材第103~105页例1及“做一做”、教材第106页练习二十四第1~3题。
【教学目标】
1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
【重点难点】
用多种方法解决“鸡兔同笼”问题。
【教学准备】
课件、列表法的表格卡片。
【情景导入】
1.师:同学们,今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)
2.这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。鸡兔同笼问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。你们有没有信心把这节课的内容学好呢?
【新课讲授】
(一)出示情景,获取信息
1.出示“鸡兔同笼”画面。为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”
2.我们一起来看看被关在同一个笼子里的鸡和兔。鸡和兔是两种不同的动物,但我们从数学的角度思考,它们有什么相同点和不同点呢?学生理解:相同点——鸡和兔都只有1个头;不同点——鸡只有2条腿,而兔有4条腿。
(二)列表法
1.我们先来猜猜,笼子中可能会有几只鸡几只兔呢?在猜测时要抓住哪个条件?(鸡和兔一共是8只。)
2.那是不是抓住了这个条件就一定能猜对呢?怎样才能确定猜的对不对呢?(把鸡的腿和兔的腿加起来看等不等于26条腿。)
3.现在就请同学们,把你们猜测的数据填在答题卡上。师巡视,可能会出现如下四种情况:① 随意猜,直到猜对为止;② 从鸡的只数开始尝试,直到符合26条腿为止;③ 从兔的只数开始尝试,直到符合26条腿为止;④ 对半分开始尝试,不断调整,直到符合26条腿为止。
4.我们把这种方法叫做列表法。(板书:列表法)
(三)直观画图法
1.师:刚才我们同学介绍了用列表法来解决这个问题,还有别的方法吗?谁愿意来给大家讲一讲?
2.生1:还可以用画图——先画好8个圆圈代表鸡和兔的.8个头,再给每只动物先安上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。因为每只兔少算了2条腿,所以一次增加2条腿,这样一只鸡就变成了一只兔,要把10条腿安完,就要把5只鸡变成兔。 所以在这个笼子里鸡有3只,兔有5只。(指名该生上台演示。)问:你们听懂他的方法吗?请同学们在练习本上画一画。
3.生2:我也是用画图法——先画好8个圆圈代表鸡和兔的8个头,但我是先给每只动物安上4条腿(也就是都看成兔。),这样一共有32条腿,多了6条腿。因为每只鸡多画了2条腿,所以一次减少2条腿,这样一只兔就变成了一只鸡,要去掉多的6条腿,就要从3只兔的身上各去掉2条腿,这样3只兔变成了鸡。所以在这个笼子里鸡有3只,兔有5只。(指名该生上台演示。)
师:画图的方法非常便于观察、非常容易理解。
4.你们觉得用猜想列表法或直观画图法解决鸡兔同笼问题怎么样?(
生:我认为有局限性,当头和腿的数目较大时,用这两种方法会很麻烦。)
5.是呀!假如鸡和兔不是同关在一个笼子里,而是同关在一个养殖场里,鸡和兔共有1000只,它们共有2700条腿。问这个养殖场里的鸡和兔分别有多少只?如果用列表的方法或画图的方法来解决就太麻烦了。看来我们还有必要继续研究新的解题方法。
(四)思考交流你还能用什么办法来解决这个问题呢?
学生讨论后交流。
A、假设法现在请同学们一起来看看XXX同学表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡)
①假设笼子里的8只全是鸡,那么笼子里就只能有多少条腿?
②与实际的腿数不符,腿的条数少算了多少条?
③假设全是鸡,是把4条腿的兔当成2条腿的鸡,这样每只兔就少了多少条腿?
④少算的10条腿是把多少只兔当成了鸡来算?
⑤鸡的只数怎么算?
B、列方程解在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)
要用列方程的方法就必须找到等量关系式。
通过得到的信息能写出哪些等量关系式呢?(兔的只数+鸡的只数=8;兔的腿数+鸡的腿数=26)(课件出示)
这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设其中一个未知数为x,再用含有字母的式子表示出另一个未知数。让我们来试试吧。
小结:请同学们回忆一下,在解决鸡兔同笼问题时,可以用哪些方法?(列表法、画图法、假设法或列方程。)
(五)现在我们就用刚才学到的这些方法来解决《孙子算经》中的原题,你会用列表法和画图的方法解决吗?
【课堂作业】
完成教材第105页“做一做”。运用列表法和画图法解决这两道题,然后交流订正。
【课堂小结】
通过这节课的学习,你有什么收获?小结:鸡兔同笼问题可以用猜测列表法、假设法等多种方法解决,但数字较大时可以用列方程的方法。
【课后作业】
1.完成教材第106页练习二十四第1~3题。
2.完成练习册本课时的练习。
鸡兔同笼教案 篇2
预设:
学生1:列表法能很清晰地解决这个问题。
学生2:因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。
教师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。
学生小组交流汇报。
预设:
学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。
学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。
【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。
4.数形结合理解假设法。
教师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。
(1)假设全是鸡。
教师:我们先看表格中左起的第一列,8和0是什么意思?
32-26=6(只)。(把鸡当成兔来算,2只脚的鸡当成4只脚的兔算,每只鸡就多了2只脚,6只脚是多算了鸡的脚数。)
4-2=2(只)。(假设全是兔,就是把2只脚的鸡当成4只脚的兔。所以4-2表示一只鸡当成一只兔,多算了2只脚。)
6÷2=3(只)鸡。(那要把多少只鸡当成兔来算,就会多算6只脚呢?就看6里面有几个2,也就是把几只鸡当成了兔来算,所以6÷2=3就是现在鸡的只数了。)
8-3=5(只)兔。(用鸡兔的总只数减去鸡的只数就是兔的只数,8-3=5只兔。)
(3)提出假设法概念。
刚才我们通过假设都是鸡或都是兔来解决例1的,所以把这种方法叫做假设法。这是解决“鸡兔同笼”问题的一种基本方法,也是算术方法中较为普遍的`一般方法。
(板书:假设法)
【设计意图】此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,可以让学生更加直观地感受假设法的优越性。
(三)知识运用
学生独立完成古代趣题。
【设计意图】运用已学的技能去解决古代“鸡兔同笼”问题,创设课堂教学文化氛围,提高学生探究数学的热情。
(四)全课小结
这节课我们一起用列表法和假设法研究了古代著名的“鸡兔同笼”问题。你学会了吗?
鸡兔同笼教案 篇3
教学目标:
1、在“鸡兔同笼”的活动中,经历自主探索、合作交流的过程,体会列表举例、作图分析等解决问题的不同策略。
2、能解决有关“鸡兔同笼”鸡与兔的数量问题及其相类似的数学问题,提高解决实际问题的能力。
3、在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和自信心。
教学重点:
能解决“鸡兔同笼”鸡与兔的数量问题及与其相类似的数学问题。
教学难点:
能用不同的策略解决相关的实际问题。
教学关键:引导学生学会用假设、举例、列表、作图等方法解决问题。
教具:多媒体课件
教学过程:
一、联系现实,激趣导入
1、师:同学们,你们喜欢歌谣吗?老师这里有一首歌谣,大家一起读一读。
生:一只鸡一个头,两条腿,一只兔子,一个头,四条腿;
师:接下来的歌谣不完整,谁能把它填完整呢?
两只鸡 个头, 条腿,两只兔子, 个头, 条腿,三只鸡三只兔子一共 个头, 条腿...…
师:你是怎么知道的?
生:我把兔子的腿数乘兔子的只数然后加上鸡的腿数乘鸡的只数。
[设计意图:从学生们非常感兴趣的话题入手,让学生读歌谣、填歌谣,能深深吸引学生的积极性和探索欲望。]
2.这节课,我们就一起来研究有关“鸡兔同笼”的问题。
二、自主探索,尝试解决
1、猜一猜:出示:鸡兔同笼,有20个头,那么鸡、兔各有多少只?
(1)、指名读题
(2)、理解题意:
师:20个头表示什么?
生:20个头表示鸡与兔的总头数。
师:鸡与兔各有多少只?大家猜猜看?跟同桌说一说。
(3)、同桌说一说:
(4)、学生汇报,教师填表
生1:我猜鸡有3只,兔子有17只。
生2:我猜鸡有5只,兔子有15只。
生3:我猜鸡有16只,兔子有4只。
……
师:请同学们仔细观察一下表格,鸡的只数在变化,兔子的只数也在变化,什么没有变?
生:鸡兔的总只数没有变。
强调鸡兔的总只数不变
[设计意图:通过这样的设计,目的是为了让学生猜测,引出对下边例题的思考,体现思维的灵活性。]
2、自主探究
出示:鸡兔同笼,有20个头,54条腿,那么鸡、兔各有多少只?
(1)、指名读题
(2)、引导观察:
师:这两道题有什么不同呢?
生:第2个问题多了一个条件“54条腿”
(3)、理解题意:
师:20个头,54条腿是什么意思呢?
生:20个头表示鸡与兔的总只数。54条腿表示鸡与兔的总腿数。
师:你想用什么方法来解决鸡兔各有多少只?请小组的同学一起讨论。讨论前老师提个小小的要求:
①、每个小组老师都有一份材料
②、小组长组织小组成员讨论,小组长并做好记录
3、反馈交流,教师适当引导
(1)、逐一列表法:
生1:我先假设鸡1只,兔子19只,算出总腿数78条,接着假设鸡2只,兔子18只,算出总腿数76条……我一直算到鸡13只,兔子7只总腿数54条为止。
师:像这样把每一种情况一一举例,直到寻找到所求的答案的方法,我们把它叫做逐一列表法。(板书:逐一列表法)谁还有不同的方法?
(2)、跳跃列表法
生2:我先假设鸡有1只,兔子有19只,算出总腿数78条,比题目的54条多很多。接着我就假设鸡有5只,兔子有15只,算出总腿数70条,还是多。我就假设鸡有10只,兔子有10只,算出总腿数60条,还是多。我再假设鸡有15只,兔子有5只,算出总腿数50条,比54条少,说明鸡的只数应在10与15之间。我再假设鸡有13只,兔子7只,算出总腿数54条。
师:像这种“5只5只增减”,估计鸡与兔的可能范围,以减少列举的次数,我们把这种方法叫做跳跃列表法。(板书:跳跃列表法)还有其他方法吗?
(3)、折中列表法
生3:我先假设鸡有10只,兔子也是10只,算出总腿数60条,比54条多,我再假设鸡有12只,兔子8只,算出总腿数56条,还是多一点,所以我就假设鸡有13只,兔子有7只,算出总腿数54条。
师:由于鸡与兔的只数共20只,所以各取10只,然后在举例中根据实际数据的情况确定举例的方向,这样可缩小举例的范围,这种方法叫做折中举例法。(板书:折中列表法)
像同学们刚才的这几种解法,我们把它称为列表法。
[设计意图:让学生小组讨论,尝试列表解决问题,调动每个学生的学习积极性,同时对列表的方法不做统一规定,让学生自由发挥,培养了学生的发散思维]
4、画图法(板书:画图法)
师:除了列表法,我们还可以通过画图来解决问题。先画20个圆圈表示20个头,再假设20只都是鸡,在每个圆的下面画2条竖线表示2条腿,总共画出40条腿,还剩下14条腿,刚好可以给7个圆各添上2条腿,所以兔子有7只,鸡有13只。
5、归纳算法
解决“鸡兔同笼”有多种方法,你喜欢哪种方法?
三、巩固练习
生活中有许多类似“鸡兔同笼”的数学问题,你会解答吗?
(1)、出示:停车场上共停放12辆三轮车和自行车,两种车轮子总和为31个,三轮车和自行车各有几辆?
(2)、学生独立解决,全班交流。
[设计意图:通过学生的独立解决,旨在加深学生对鸡兔同笼问题的的理解。此外,不同层次的问题体现了不同学生的发展。也让学生体会到数学就在我们身边。]
四、全课
通过本节课的学习,你学会了什么?(板书:解决问题的不同策略)
五、拓展延伸
书P81“你知道吗?”
师:我国古代数学名著《孙子算经》中就记载了“鸡兔同笼”的有关问题,可见古代劳动人民的智慧,我们为之感到骄傲和自豪。
[设计意图:在教学时,对学生渗透爱国主义教育,激发学生努力学习数学热情,使他们感到学数学不是枯燥乏味的,而是风趣幽默的.一门学科。]
教学反思:
反思本次教学活动,我发现了成功与遗憾共存。
成功之处在于:
1、在导入新课时我采用创设情境的方式导入,学生的积极性一下子就被调动起来了。让学生读歌谣、把歌谣补充完整,学生不仅觉得有趣,同时也复习了计算腿数的方法。
2、新授时我让学生自主探索、尝试解决鸡兔同笼的问题,然后引导学生认识三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法。由于学生的认知水平不同,我没有统一要求,允许不同的学生有不同的解题方法。而且在这个环节中,我给予学生思考的时间也比较充分,因此部分学生对列表法掌握得还蛮可以的。在教学列表法后,我又引导学生用画图的方式去试着解这种类型的问题。
3、练习时,选择与学生生活密切联系的例子,如:停车场上停着自行车和三轮车,让学生自主解决,不仅体会到数学与日常生活的联系,而且获得成功的体验,增强学习数学的兴趣和自信心。
遗憾之处在于:
1、我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型。
2、练习时,如能引导学生巧妙综合运用三种列表法,把课上得更精彩、生动一点就更好了。
鸡兔同笼教案 篇4
数也可以求出来。
6、小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
* 古人是怎样解决“鸡兔同笼”问题的?
1、假如让鸡抬起一只脚,兔子抬起两只脚,还有94÷2=47只脚。
2、这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1。
3、这时脚的总数与头的总数之差47-35=12,就是兔子的只数。
三、巩固练习
课本105页“做一做”的1、2题。
四、课堂总结:
师:通过今天的学习,你有哪些收获?
板书设计: 鸡兔同笼
化繁为简
列表法
假设法:1)假设都是鸡
2)假设都是兔
教学反思:人教版四年级下册第九单元数学广角中—《鸡兔同笼》
教材分析:
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
学情分析:
“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。
教学目标:
1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。
教学重点:会用画图法、列表法和假设法解答“鸡兔同笼”问题。
教学难点:用合理的方法解答生活中的“鸡兔同笼”问题。
教具准备:多媒体课件、表格等。
教学过程:
一、创设情境、揭示课题。
1.播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?
2.播放视频,介绍:20xx年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。
这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著, 今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。(板书课题)
2、我们先从简单一些的'问题入手,来探讨解决这类问题的方法,好吗?大家请看。
出示题目:鸡兔同笼一共有8个头,一共有26条腿。 鸡和兔各有几只?
二、合作探究、学习新知:
活动一:探究用猜测列表法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流
1.师:请大家自由读题,你们都知道了什么信息?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?
师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?
学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。
(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。
(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。
(汇报交流)
小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。
活动二:探究用假设法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流。
小组1:假设全都是鸡:2×8=16(条)26-16=10(条) 10÷2=5(只)??兔子 8-5=3(只)??鸡 谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”
师:除了可以假设都是鸡,还可以怎样假设呢?
小组2:引导学生说出都是兔,并演示。
师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?
师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
3、发散思考、加深理解。
下面我们来帮陈赫找到他房间的密码,解放他吧!
出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?
师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?
生:是什么样的假设法,让我们先睹为快!
师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?
生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。
生:鸡的只数为:35-12 = 23(只)。
师:还有别的做法吗?怎样解答?
生:把每只鸡的翅膀看成是两条腿。这样每只头对应的是4条腿。共有140条腿,多出46条腿,多出的是23只鸡的腿,那么,兔的只数
鸡兔同笼教案 篇5
学情分析:
鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的'比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。
教学目标:
1.知识与技能:使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。
2、过程与方法:通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。
3、情感态度与价值观:使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:
尝试用不同的方法解决“鸡兔同笼”问题,体会用列表法和假设法解决问题的优越性。
教学难点:
理解用假设法解决“鸡兔同笼”问题的算理。
教学过程:
一、以史激趣,导入新课:
同学们,你们知道吗?数学是思维的体操,它可以让我们的头脑越来越聪明。我们中国人自古以来就喜欢数学并且研究数学,早在1500年前就有一部数学著作《孙子算经》,那里面记载了许多有趣的数学名题,今天我们就一起研究其中的鸡兔同笼问题。(板书:鸡兔同笼)
二、独立探索,构建新知:
(课件出示例题,指名读)鸡兔同笼,有20个头,54条腿,鸡兔各有多少只?
你从这道题中,找到了什么数学信息?
(鸡的只数+兔的只数=20只,一只鸡2条腿,一只兔4条腿,鸡的腿数+兔的腿数=54条……)
这样一道1000多年前的数学名题要大家短时间内找到答案,确实不容易,就让我们先来猜测猜测。(板书:猜测)
谁先来猜一猜,鸡可能多少只?兔可能多少只?(鸡8只,兔12只)
能说说你猜测的依据吗?(鸡的只数+兔的只数=20只)
有了猜测的依据,还有谁想继续猜?(……)
给老师一个机会,我猜鸡是1只,那兔有几只?(19只)
怎么知道我猜得对不对?(通过计算来验证)
(板书并验证)计算的腿的条数是78条和实际的腿的条数不相符,说明我的猜测怎么样?(失败了)
虽然我的猜测失败了,但如果继续猜测下去,我的这次失败的猜测和验证对以后的猜测有什么启示和帮助吗?(因为78条腿比54条腿多,这就说明兔的只数多了,再猜测应该减少兔的只数,增加鸡的只数。)
现在,就请同学们在你的练习本上,继续老师黑板上的猜测,如果你有更简单的猜测方法,也可以重新列举一个猜测。
鸡兔同笼教案 篇6
教学目标:
1、知识与技能
让学生学会“列举法”,并运用“列举法”解决问题。
2、过程与方法
让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。
让学生养成“尝试”的数学思维与方法。
3、情感态度与价值观
利用发现的规律,解决生活中的实际问题,体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和信心。
了解中国数学历史,渗透数学文化的思想。
教学重点:
让学生学会“列举法”,并运用“列举法”解决“鸡兔同笼”问题及相类似的数学问题。
教学难点:
让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。
教学关键:
让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略——列表。
教具准备:
三个表格,卡片。
教学过程:
一、导入
1、师:一只鸡有几条腿?一只兔有几条腿?(生齐答)
2、师:(出示卡片:三只鸡两只兔)这个笼子里一共有几个头?(生齐答)一共有多少条腿?(让生独立计算后,再指名说说计算的方法)
3、谈话导入:今天我们就一起来学习“鸡兔同笼”。(师板书课题:鸡兔同笼)
二、授新课
1、师:老师想考考你们,你们看
(师出示:鸡兔同笼,一共有8个头,20条腿,鸡、兔各有多少只?
师:请你赶快猜一猜吧!生:独立思考后全班交流。
(此时,学生很容易猜出,师首先肯定学生的各种想法,再说:我把
这题的数字变大一些,你能猜出鸡、兔各有多少只吗?
2、师(出示题目):鸡兔同笼,共有20个头,54条腿,鸡、兔各有多少只?
(1)a、让生齐读题目
b、师让生独立思考后再与同桌交流。
c、指名汇报(当学生猜不出答案时,师:我给大家带来了一位好朋友,它可以帮助我们解决这个问题,你看)师边说边出示表格)当学生猜出正确答案时,师追问:说说你是怎样想的?根据生的回答完成表格
d、 此时,师明确告诉学生:像这样依次尝试的方法我们就叫它一一列举法。(师板书:一一列举法)
e、 观察这个表格,你发现了什么?(指名生说)
(2) 小结:对于发现的同学及时给予表扬,你真是个善于发现的孩
子。
a、我们再来观察一下这个表格,我们从1开始假设时就有78
条腿和答案的.54条腿相比,怎么样?我们能不能让列举的次数更少一些?现在就请你们四个人为一小组开始讨论:(讨论后再请小组汇报)
b、根据生的回答,师板书:
c、 师小结:你真是个爱动脑筋的孩子,真聪明!那我们也给
这个表格取一个形象的名字,就叫它跳跃式列举法(师板书:跳跃式列举法)
(3) 师:还有别的列举法?
a、 学生可能会说出取中列举法,师就问让其说清楚,明白。
学生可能说不出时,师出示(先假设鸡和兔各占一半,再列表),再让生试填表格3,最后集体订正。
b、像这样,从中间开始列举的方法叫取中列举法(师板书:取中列举法)
3、 观察比较这三种列举法,你喜欢哪种?为什么?(指明生说,师再小结)
4、师:在我们的实际生活中,还有很多类似鸡兔同笼的问题,
大家有信心运用所学问题解决实际问题吗?
三、
1、试一试
完成81页练一练第2、3题。(先独立完成再集体订正。)
2、 深化练习:一次数学竞赛,共10道题,每做对一道可得8分,每做错一道扣5分,小英最后得41分,她做对了几道题?(此题有时间就做,没时间就不做。)
四、课堂小结:
通过这节课的学习,你学会了什么?(先请生说,师再总结。)
鸡兔同笼教案 篇7
教学目标:
1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。
2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。
3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。
教学重点:会用假设法和方程法解答“鸡兔同笼”问题。
教学难点:明白用假设法解决“鸡兔同笼”问题的算理。
教学用具:
多媒体课件。
教学过程:
一、创设情境,引入新课。
1、引入:
同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?
这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。
为便于研究,我们先从简单的生活问题入手,请看下面问题。
●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?
【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。
二、自主学习、小组探究
对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。
温馨提示:
①用列举法怎样解决问题?
②你能用画图的方法解答吗?
③如果把这些票都看成学生票或都看成成人票如何解答?
④回顾列方程解决问题的经验,怎样用方程解决问题?
学生自己根据提示用自己喜欢的方法解决问题。
先把自己的想法在小组内说一说,再共同协商解决。
教师巡视,要注意发现学生的不同解法,同时参与小组的指导。
三、汇报交流,评价质疑
对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。
1.列举法。
可以有目的的先展示这种方法。(多媒体展示。)
学生票数(张)成人票数(张)钱数(元)
2525250
2426252
2327254
2228256
2129258
2030260
质疑:有50张票,是否有必要一一列举,你是如何列举的?
(引导学生通常先从总数的中间数列举。)
质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?
(引导学生根据数据特点确定调整方向、调整幅度。)
师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)
2.假设法
(1)假设全是成人票:
①为了便于学生理解,展示假设为成人票,学生试画的分析图。(图略)
②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。
(学生试着列算式,请两个学生到黑板上去板演。)
预设板演:
50×6=300(元)300-260=40(元)40÷(6-4)=20(张)
50-20=30(张)
③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?
预设回答:
假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。
而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。
(2)假设全是学生票:
如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)
总结方法归纳抽象出这类问题的模型。
学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价).
成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价).
3、方程法:
除了以上两种方法,还有别的计算方法了吗?
学生汇报列方程的方法。
(1)找出相等的数量关系。
(学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260
元)
(2)根据等量关系列式:
设成人票有x张,则学生票有(50-x)张。
列方程为:6x+4(50-x)=260
(解略)
4.学生比较以上几种方法解题方法。
四、抽象概括,总结提升。
让学生结合自己解决问题的.经验,用自己的语言进行总结。
列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。
画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的。
假设法:适合所有的这类问题,但比较抽象,不好理解。
方程法:适用面广,便捷,容易理解。
师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。
【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。
五、巩固应用,拓展提高
1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)
温馨提示:
A.先让学生认真读题,(同桌讨论)。
B.然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。
2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?
处理方法:
①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。
②小组内交流算法。
③全班交流。
【设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的各种解法,培养学生的实践应用能力。
3、巩固练习:回应解决例题,引导学生用合适的方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)
【设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。
3、全课小结:
回顾总结,引发思考
本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。
师总结:
这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。
【鸡兔同笼教案】相关文章:
鸡兔同笼教案07-14
《鸡兔同笼》教案05-20
《鸡兔同笼》教案07-22
【热】《鸡兔同笼》教案15篇05-22
鸡兔同笼教案【常用15篇】07-14
鸡兔同笼教案模板汇编8篇04-22
鸡兔同笼教案模板汇总8篇08-25
鸡兔同笼教案集合8篇07-09
《鸡兔同笼》说课稿12-21