初中数学教案(集合15篇)
作为一名老师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。我们该怎么去写教案呢?下面是小编帮大家整理的初中数学教案,仅供参考,大家一起来看看吧。
初中数学教案1
初中数学分层教学的理论与实践
天山六中裴焕民
一、分层教学的含义
分层教学是指教师在学生知识基础、智力因素存在明显差异的情况下,有区别地设计教学环节进行教学,遵循因材施教的原则,有针对性地实施对不同类别学生的学习指导,不仅根据学生的不同选择不同的教法、布置作业,还因材施“助”、因材施“改”、因材施“教”,使每个学生都能在原有的基础上得以发展,从而达到不同类别的教学目标的一种教学方法。
分层教学是“着眼于与学生的可持续性的、良性的发展”的教育观念下的一种教学实施策略。所谓分层教学(同班、同年级分层次教学)就是教师在教授同一教学内容时,对同一个班内不同知识水平和接受能力的优、中、差生以相应的三个层次的教学深度和广度进行合讲分练,做到课堂教学有的放矢,区别对待,使每个学生都在自己原来的基础上学有所得,思有所进,在不同程度上有所提高,同步发展。教师的教学方法应从最低点起步,分类指导,逐步推进,做到“分合”有序,动静结合,并分层设计练习,分层设计课堂,分层布置作业,引导学生全员参与,各得进步。
二、分层教学必要性分析
1、教学现状呼唤分层教学的实施
义务教育的实施使小学毕业生全部升入初中学习,这样,在同一班里,学生的知识、能力参差不齐。但是,应试教育留下的种种弊端抑制了各层次的学生的学习积极性和兴趣,整齐划一的教学要求,忽视了学生之间的差异。为了使教育面向全体学生,减轻部分学生过重的负担,使他们在原有的基础上有所提高,全面提高教学质量,又要使有特长的学生得到更进一步的发展。因此必须实施因材施教,根据不同的学生的具体情况,确立不同的教学目标,采取不同的教学方法,使其个性得到充分发展,为社会培养各种层次的有用之人。
2、新课程改革呼唤分层教学的实施
数学课程改革的核心是课程的实施,而教学是课程实施的基本途径。课程改革归根到底是要转变教师的传统教学观念:包括教学方式的转变——从“教”到
“引”;知识技能掌握理念的转变——从“满堂灌”、“书山题海”到“在亲身经历中体会、理解、掌握知识技能”,强调自我的情感体验;教材观的转变——从“教教材”到“用教材”,教材变成我们引导学生探究知识的工具之一;评价机制的转变——从“唯分数论”到“适合学生自身特点的发展”,这是实施分层教学的原动力,但也是现今新课程改革的一个难点。
在新课改中实施分层教学法的目的是逐步树立学困生学习的信心,激发中等生的学习潜力,扩大优生的学习面。为了适应当前素质教育的需要,我们要采用针对性的矫正和帮助,进行分层教学,分类指导,及时反馈,从中探索出一条教学改革的.新路子。
3、学生个体差异的客观存在
心理学的研究结果表明:学生的学习能力差异是存在的,特别是学生在数学学习能力方面存在着较大的差异这已是一个不争的事实。造成差异的原因有很多,学生的先天遗传因素及环境、教育条件都有所不同,还有社会因素(即环境、教育条件、科学训练),这些原因是对学生学习能力的形成起着决定性作用,所以学生所表现出的数学能力有明显差异也是正常的。
学生作为一个群体,存在着个体差异
(1)智力差异。每个学生因为遗传基因的不同,智力的差异是不可避免的。有的人聪明;有的人愚钝,有的人形象思维强;有的逻辑思维强;有的人记忆力超人,但推理能力较差;有的人记忆力较差,却推理能力过人。
(2)学习基础差异。不同的学生在小学的数学状况不一样:有的学生数学十分优秀,有的学生数学学习基本还没入门,两极分化相当严重。
(3)学习品质差异。有的学生学习数学十分认真,有一套自己的数学学习方法,学得轻松愉快;而有的学生因为没有入门,数学学得十分艰难,部分学生甚至对数学学习丧失了信心。
4、分层次教学符合因材施教的原则
目前我国大部分省市的数学教学采用的是统一教材、统一课时、统一教参,在学生学习能力存在差异的情况下,在教学过程中往往容易产全“顾中间、丢两头”。如不因材施教,就使部分学生就成了陪读、陪考。数学能力强的学生潜能得不到充分发挥,能力稍差的学生就可能变成了后进生。有研究结果表明:教师、
家庭、社会、学生、学校等方面的因素都有可能是形成后进生的原因,其中有50%的原因是来自教师在教学中的失误。我们的基础教育既要注意确保学生的共性需求,又要顾及学生的个性发展,所以进行分层教育确有必要。
5、分层次教学能够有效推动教学过程的展开
按照教育家达尼洛夫关于教学过程的动力理论之说,认为只有学生学习的可能性与对他们的要求是一致的,才可能推动教学过程的展开,从而加快学习成绩的提高,而这两者的统一关系若被破坏,就会造成学业的不良后果。学生的学习可能是由他们生理和心理的一般发展水平与对某项学习的具体准备状态所决定的,学生学习可能性的构成因素中既有相对稳定的因素,又有易变的因素。相对稳定的因素,决定了学生在一段时间内可能达到的学习水平的范围,决定了学业不良学生要取得学业进步只能是一个渐进的过程;易变的因素,使学生能在:一定的主客观条件下提高或降低自己的实际可能性水平,从而促进或阻碍学习可能性与教学要求之间矛盾的转化,加快学习成绩提高或降低的速度。由此可见,分层次教学是着眼于协调教学要求与学生学习可能性的关系的一种极好的手段,使它们之间能相适应,从而推动教学过程的展开。
三、分层教学研究的目的意义
捷克教育家夸美纽斯在十七世纪提出来的班级授课制以其大大提高教学效率、加强学校工作的计划性和实际社会效益风行了三百多年后,其固有的不利于学生创造能力的培养和因材施教等种种弊端与社会发展对教育的要求的矛盾越来越尖锐起来。随着科学技术的发展,社会日益进步,教育资源和教育需求的增长和变化,班级授课制在我国做出辉煌的贡献后逐步显现出其先天的严重不足。教师在班级授课制下对能力强的学生“吃不饱”,能力欠佳的学生“吃不消”普遍感到力不从心。分层教学在这种情况下应运而生,成为优化单一班级授课制的有利途径。
1.有利于所有学生的提高:分层教学法的实施,避免了部分学生在课堂上完成作业后无所事事,同时,所有学生都体验到学有所成,增强了学习信心。
2.有利于课堂效率的提高:首先,教师事先针对各层学生设计了不同的教学目标与练习,使得处于不同层的学生都能“摘到桃子”,获得成功的喜悦,这极大地优化了教师与学生的关系,从而提高师生合作、交流的效率;其次,教师在
备课时事先估计了在各层中可能出现的问题,并做了充分的准备,使得实际施教更有的放矢、目标明确、针对性强,增大了课堂教学的容量。总之,通过这一教学法,有利于提高课堂教学的质量和效率。
3.有利于教师全面能力的提升:通过有效地组织好对各层学生的教学,灵活地安排不同的层次策略,极大地锻炼了教师的组织调控与随机应变能力。分层教学本身引出的思考和学生在分层教学中提出来的挑战都有利于教师能力的全面提升。
四、分层教学的理论基础
1、掌握学习理论
布鲁姆提出的“掌握学习理论”主张:“给学生足够的学习时间,同时使他们获得科学的学习方法,通过他们自己的努力,应该都可以掌握学习内容”。“不同学生需要用不同的方法去教,不同学生对不同的教学内容能持久地集中注意力”。为了实现这个目标,就应该采取分层教学的方法。
2、教学最优化理论
巴班斯基的“教学最优化理论”的核心是:教学过程的最优化是选择一种能使教师和学生在花费最少的必要时间和精力的情况下获得最好的教学效果的教学方案并加以实施。分层教学是实现这一目标的有效方式之一。
3、新课标的基本理念
《数学课程标准》提出了一种全新的数学课程理念:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。面向全体学生,体现了义务教育的基础性、普及性和发展性。不仅为数学教学内容的设定指出方向,而且考虑到学生的可持续发展对数学的需求,并为学生学习数学可能产生的差异性留有充分的余地。
五、分层教学实施的指导思想及原则
首先,分层次教学的主体是班级教学为主,按层次教学为辅,层次分得好坏直接影响到“分层次教学”的成功与否。其指导思想是变传统的应试教育为素质教育,是成绩差异的分层,而不是人格的分层。为了不给差生增加心理负担,必须做好分层前的思想工作,了解学生的心理特点,讲情道理:学习成绩的差异是客观存在的,分层次教学的目的不是人为地制造等级,而是采用不同的方法帮助
他们提高学习成绩,让不同成绩的学生最大限度地发挥他们的潜力,以逐步缩小差距,达到班级整体优化。
在对学生进行分层要坚持尊重学生,师生磋商,动态分层的原则。应该向学生宣布分层方案的设计,讲清分层的目的和意义,以统一师生认识;指导每位学生实事求是地估计自己,通过学生自我评估,完全由学生自己自愿选择适应自己的层次;最后,教师根据学生自愿选择的情况进行合理性分析,若有必要,在征得学生同意的基础上作个别调整之后,公布分层结果。这样使部分学生既分到了合适的层次上,又保留了“脸面”,自尊心也不至于受到伤害,也提高了学生学习数学的兴趣。
其次,在分层教学中应注意下列原则的使用:
①水平相近原则:在分层时应将学习状况相近的学生归为“同一层”;
②差别模糊原则:分层是动态的、可变的,有进步的可以“升级”,退步的应“转级”,且分层结果不予公布;
③感受成功原则:在制定各层次教学目标、方法、练习、作业时,应使学生跳一跳,才可摘到苹果为宜,在分层中感受到成功的喜悦;
④零整分合原则:教学内容的合与分,对学生的“放”与“扶”,以及课外的分层辅导都应遵守这个原则;
⑤调节控制原则:由于各层次学生要求不一,因此在课堂上以学、议为主,教师要善于激趣、指导、精讲、引思,调节并控制止好各层次学生的学习,做好分类指导;
⑥积极激励原则:对各层次学生的评价,以纵向性为主。教师通过观察、反馈信息,及时表扬激励,对进步大的学生及时调到高一层次,相对落后的同意转层。从而促进各层学生学习的积极性,使所有学生随时都处于最佳的学习状态。
六、实施分层教学的策略与措施
(一)分层建组
把学生分层编组是实施分层教学、分类指导的基础。学生的分类应遵循“多维性原则、自愿性原则和动态性原则”,教师通过对全班学生平时的数学学习的智能,技能、心理、成绩、在校表现、家庭环境等,并对所获得的数据资料进行综合分析,分类归档。在此基础上,将学生分成好、中、差层次的学习小组,让
初中数学教案2
一、教学目标
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察能力,提高他们分析问题和解决问题的能力;
3.使学生初步养成正确思考问题的良好习惯。
二、教学重点和难点
一元一次方程解简单的应用题的方法和步骤。
三、课堂教学过程设计
(一)从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题。
例1 某数的3倍减2等于某数与4的和,求某数。
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3。
答:某数为3。
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4。
解之,得x=3。
答:某数为3。
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的`之一。
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
(二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2 某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42 500,
所以x=50 000。
答:原来有50 000千克面粉。
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:
(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿。
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);
(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。
例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式。)
解:设第一小组有x个学生,依题意,得
3x+9=5x-(5-4),
解这个方程:2x=10,
所以x=5。
其苹果数为3× 5+9=24。
答:第一小组有5名同学,共摘苹果24个。
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。
(设第一小组共摘了x个苹果,则依题意,得)
(三)课堂练习
1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?
2.我国城乡居民1988年末的储蓄存款达到3 802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。
3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。
(四)师生共同小结
首先,让学生回答如下问题:
1.本节课学习了哪些内容?
2.列一元一次方程解应用题的方法和步骤是什么?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;
(2)以上步骤同学应在理解的基础上记忆。
(五)作业
1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?
2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
3.某厂去年10月份生产电视机20xx台,这比前年10月产量的2倍还多150台。这家工厂前年10月生产电视机多少台?
4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?
5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元。求得到一等奖与二等奖的人数。
初中数学教案3
一、内容特点
在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
二、设计思路
整体设计思路:
无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。
具体过程:
首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的.活动,发展合情推理的能力。
第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些建议
1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。
3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。
4.淡化二次根式的概念。
初中数学教案4
学情分析:
高三(7)是我校理科重点班,该班的学生具有良好的数学功底,处于复习阶段的他们目标更明确,学习热情高,课堂投入,思考积极。就本节开课的内容而言,学生已掌握了“对称问题”本质属性,能够从图象和表达式上准确地理解对称问题。但也只是停留在就事论事的基础上,对问题的抽象、归纳概括,引申拓展还缺乏一定的能力和意识。对于周期概念,学生没有什么的问题。
教材分析:
1.对称问题是高中数学中比较难的问题,学生一般由于问题的抽象性,同时由于这中间存在关于点对称和关于直线对称这两类问题,而它们的数学表达式又是那么相似,学生如果没有真正理解很难分清谁是谁非。而且在高考的问题中经常会碰到,因此有必要加以澄清和深化理解。
2.对称问题和周期问题也存在一定的联系,本节可以通过足够的条件阐明这一联系的实质。
教学目标:
理解一个函数存在两次对称(可能关于两个点对称或两条直线对称或一个点加上一个对直线)时,如何判断函数具有周期性。
重点和难点:
具有两次对称问题的抽象函数具有周期性,而且要求求出周期。
教学方法:
从简单到复杂,以启发思想为指导,精讲重思,暴露学生的思维,使学生整节课都处于思考之中。
教学程序:
一、引入
师:当一个人站在一面镜子前,面对镜子一定的距离,那么在镜中的像有什么特征?
生:(物理常识)人和像关于镜子对称。
师:现在在此人的身后再放一面镜子,镜面对着人的背面,此时在此人面前的镜子中的像又是什么?
生:如果镜子够大的话,里面将是无数个排列的人。
师:道理何在?
生:首先是人在前面镜中的像连同人一起要在后面镜中成像,这一像反过来连同人又在前面镜中成像,这样反反复复,就得到了无数个人像,而且具有周期性(即图象重复出现)。
师:如果将人看成一段函数,将镜子看成一条对称轴,那么整个函数的图象应该是怎样的(图象具有什么特征)。
引入课题:对称+对称=?
二、探究
回顾:关于图象的对称问题分为两类:一类是关于点对称,另一类是关于直线对称,今天我们来研究一般的函数对称问题,我们从函数表达式来研究,对于直线对称:若f(x)关于x=a对称,则有f(x)=f(2a-x)或f(a+x)=f(a-x);对于点对称:f(x)关于(a,0)对称,则有f(x)=-(2a-x)或f(a+x)=-f(a-x)。
对于奇函数[f(x)=-f(-x)]和偶函数[f(x)=f(-x)],则是这两类对称中的特例。
延伸:若是f(a+x)=f(b+x),则函数关于什么对称(关于直线x=(a+b)/2对称)
提问:请同学们找几个关于直线x=a对称的函数的表达式?
生:f(4a-x)=f(6a+x)
下面研究当函数具有两次对称时,结果有什么特征?
问题设计:
①函数f(x)
(1)是偶函数
(2)关于x=a对称
分析:由条件(2),可得f(a+x)=f(a-x),又由条件(1),所以f(x+a)=f(x-a)。
(以x+a代替上式中的x),所以f(x)=f(2a+x),由周期定义f(x)=f(T+x),所以f(x)是以|2a|为周期的函数
②函数f(x)
(1)是奇函数
(2)关于x=a对称
分析:由条件(2),可得f(x)=f(2a-x)又由条件(1)f(x)=-f(-x),所以-f(-x)=f(2a-x),即-f(x)=f(2a+x),所以f(4a+x)=-f(2a+x)=f(x),可得函数f(x)是以|4a|为周期的函数,
以此类推,
③函数f(x)满足
(1)是偶函数
(2)关于(a,0)对称
④函数f(x)满足
(1)是奇函数
(2)关于(a,0)对称
⑤函数f(x)满足
(1)关于x=b对称
(2)关于x=a对称
⑥函数f(x)满足
(1)关于(a,0)对称
(2)关于(b,0)对称
⑦函数f(x)满足
(1)关于x=a对称
(2)关于(b,0)对称
(师生共同完成)
学生练习:见复习参考书
评教:
教材处理恰当
1.前面的课堂教学中已经讲了关于图象平移,伸缩的问题,对于对称问题在前面也分析了关于含绝对值的函数图象问题(y=|f(x)|,y=f(|x|))。
2.今天这堂课分析非绝对值的对称问题,主要是关于点对称和直线对称的问题。
3.下一节殷老师构思,将一个函数的对称变成两个函数的对称问题,即如:函数f(x)和函数f(-x)的关系;函数f(x)和函数f(2a-x)的关系;函数-f(x)和函数f(2a+x)的关系,即对照这堂课的内容,将一个函数变成两个函数,再寻找二者关系,以便通过其中一个函数来解决另一个函数问题。如:已知函数-f(x)的图象,画出函数f(2a+x)的图象及分析其性质。
(点评:对于教学任务的分析是一个教师的教学水平的重要标志,同样的一个教师对教材的处理各不相同,当然所得的结果也各不相同,我们评一节课好坏,同时也要关注这堂课的前述及后续,只有知道前后的内容,才能把握上课之人想法,教学思路,处理教材的能力,我认为这样的处理比较有逻辑性,能够帮学生梳理知识,使学生对知识的结构比较清晰,符合建构主义观点。这对高考复习内容较多的情况下更容易帮助学生的理解,体现上课老师对教材具有较高的处理水平。)
引入贴近生活
数学知识通常被学生认为是最没用的,枯燥乏味的,原因是学生在实际生活中的问题很少能够和数学联系起来,而通常这样的联系确定很难寻找,现在的新教材就加强了这一方面的联系,这堂课殷老师就以是实际生活中常见的照镜子一事引入,这里我觉点有两个地方比较不错:
(1)将数学知识和实际联系起来,因此说联系还是有的,主要我们没有仔细体会,没有这种思维习惯,这样有联系的问题学生就感兴趣,自然投入更多了;
(2)更为重要的是,这个引入不但引出了主题,还成功地解决了难点(抽象思维能力),如果是直接给出问题,学生可能不会想到结论是什么,但是由镜子引入,学生就很容易理解为什么函数具有周期性,为接下来从函数表达式上来分析埋下了垫脚石。对于问题情境的设置恰当与否,决定了能否激发学生的求知欲望,能否积极主动地参与到课堂教学中。
可改进之处:对于照镜子问题,在实际生活同时用两面镜子,可能不多,因此学生要推断也只凭想象再结合物理知识,可能有学生想出来,那么他对这一问题的理解就凭老师的讲解,还是存有疑惑,如果能现实操作,理解会更深,当然不可能真的取来两面大镜子,我们可借助于“几何画板”数学教学软件,它对于对称问题,操作简单,下面是本人做的图片:
(三)问题设计巧妙
函数f(x)满足
(1)是偶函数
(2)关于x=a对称
②函数f(x)满足
(1)是奇函数
(2)关于x=a对称
③函数f(x)满足
(1)是偶函数
(2)关于(a,0)对称
④函数f(x)满足
(1)是奇函数
(2)关于(a,0)对称
⑤函数f(x)满足
(1)关于x=b对称
(2)关于x=a对称
⑥函数f(x)满足
(1)关于(a,0)对称
(2)关于(b,0)对称
⑦函数f(x)满足
(1)关于x=a对称
(2)关于(b,0)对称
题组、变式训练是提高学生思维能力,分析问题解决问题能力的常用方法
(1)学生能通过辨析达到对问题真正理解,对于突破难点起关键作用。
(2)通过一连串的结论,使学生在以后拿到类似的问题,会引起重视,究竟是其中哪一种。
同时这里的问题设计遵循了由易到难,特殊到一般的过程,这和学生的思维认识规律相符合。
可改进之处:对于这类问题,当然有必要让学生理解,对于一连串问题的.理解经过思考和老师的分析是可以理解但是学生的抽象思维能力还是有待于提高的,到最后可能在头脑里的印象还是比较模糊了,谁是谁非。⑤⑥⑦三个例子均可让学生自己来演练,以便让每个学生有独立思考的机会。以提高学生独立解决问题的能力,和真正检测学生对刚才问题的理解程度。
(四)善于捕捉归纳
在教学中处处留心,总能发现点什么,对于平时的练习也是一样,通过平时作问题,从问题中发现规律,进行提练、归纳。这节课的问题设计来自殷老师平时的留心观察,这一点确实提醒我们这些年青教师,要善于观察、思考、发现问题,总结规律。
(五)分析透彻易懂
课堂45分钟的效率如何是学生学好每一门课程的关键,教师分析有没有到位,直接影响着学生的听课效率,讲得多并不是好事,讲少了怕学生听不懂,这是很多新教师关心的问题,老教师上课时知道讲到哪就够了,知道学生在哪儿可能有疑惑,就重点讲解,有些地方一带而过,这节课很多地方分析的非常清楚,比如在讲解,关于直线对称和点对称时
求表达式,他这样讲解f(x)关于x=a对称,为什么会f(x)=f(2a-x)
(1)两点关于x轴对称,纵坐标(函数值y)没变,所以f()=f()(f()表示函数值)
(2)横坐标原来为x,对称后变了,由中点坐标公式得,x1=2a-x,所以f(x)=f(2a-x),讲解关于点(a,0)对称时求表达式,由于纵坐标变为原来相反数,所以f()=一f(),同样横坐标也可以由中点公式得2a-x,所以f(x)=一f(2a-x),分析得很清楚。
(六)暴露学生思维
本节课应该说学生的思维还是比较活跃的,在老师的帮助下,学生表现比较积极、投入,课堂气氛活跃,学生能够根据自己的理解提出方案,对于问题的解答反映还是比较快的,但是也不排除有个别学生可能由于问题的抽象性,对于问题的本质缺乏充分的认识及自身理解水平的问题,对于问题的下一步是什么,如何思考没有想法。
可改进建议:由于课堂容量较大,教师可能考虑到时间的问题,对于后几个问题没有让学生有充分的时间思考,有些思维慢,或理解不够的学生可能跟不上,在下面没有反应,建议教师事先出张学案,将要研究的问题罗列出一张提纲,让学生在课前去思考,这样上课的听课效率可能会更好。
初中数学教案5
教学目标
1。进一步掌握有理数的运算法则和运算律;
2。使学生能够熟练地按有理数运算顺序进行混合运算;
3。注意培养学生的运算能力。
教学重点和难点
重点:有理数的混合运算。
难点:准确地掌握有理数的运算顺序和运算中的符号问题。
课堂教学过程设计
一、从学生原有认知结构提出问题
1、计算(五分钟练习:
(5)-252;(6)(-2)3;(7)-7+3-6;(8)(-3)×(-8)×25;
(13)(-616)÷(-28);(14)-100-27;(15)(-1)101;(16)021;
(17)(-2)4;(18)(-4)2;(19)-32;(20)-23;
(24)3.4×104÷(-5)。
2、说一说我们学过的有理数的运算律:
加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
二、讲授新课
前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?
1、在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行。
审题:
(1)运算顺序如何?
(2)符号如何?
说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果。带分数分成整数部分和分数部分时的符号与原带分数的符号相同。
课堂练习
审题:运算顺序如何确定?
注意结果中的'负号不能丢。
课堂练习
计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);
2、在没有括号的不同级运算中,先算乘方再算乘除,最后算加减。
例3计算:
(1)(-3)×(-5)2;
(2)[(-3)×(-5)]2;
(3)(-3)2-(-6);
(4)(-4×32)-(-4×3)2。
审题:运算顺序如何?
解:(1)(-3)×(-5)2=(-3)×25=-75。
(2)[(-3)×(-5)]2=(15)2=225。
(3)(-3)2-(-6)=9-(-6)=9+6=15。
(4)(-4×32)-(-4×3)2
=(-4×9)-(-12)2
=-36-144
=-180。
注意:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方。(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减。
课堂练习
计算:
(1)-72;(2)(-7)2;(3)-(-7)2;
(7)(-8÷23)-(-8÷2)3。
例4计算
(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4。
审题:(1)存在哪几级运算?
(2)运算顺序如何确定?
解:(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4
=4-(-25)×(-1)+87÷(-3)×1(先乘方)
=4-25-29(再乘除)
=-50。(最后相加)
注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1。
课堂练习
计算:
(1)-9+5×(-6)-(-4)2÷(-8);
(2)2×(-3)3-4×(-3)+15。
3、在带有括号的运算中,先算小括号,再算中括号,最后算大括号。
课堂练习
计算:
三、小结
教师引导学生一起总结有理数混合运算的规律。
1、先乘方,再乘除,最后加减;
2、同级运算从左到右按顺序运算;
3、若有括号,先小再中最后大,依次计算。
四、作业
1、计算:
2、计算:
(1)-8+4÷(-2);(2)6-(-12)÷(-3);
(3)3·(-4)+(-28)÷7;(4)(-7)(-5)-90÷(-15);
3、计算:
4、计算:
(7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5。
5、计算(题中的字母均为自然数):
(1)(-12)2÷(-4)3-2×(-1)2n-1;
(4)[(-2)4+(-4)2·(-1)7]2m·(53+35)。
初中数学教案6
一、教学目标
知识与技能目标
1.初步了解作函数图象的一般步骤;
2.能熟练作出一次函数的图象,掌握一次函数及其图象的简单性质;
3.初步了解函数表达式与图象之间的关系。
过程与方法目标
经历作图过程中由一般到特殊方法的转变过程,让学生体会研究问题的基本方法。
情感与态度目标
1.在作图的过程中,体会数学的美;
2.经历作图过程,培养学生尊重科学,实事求是的作风。
二、教材分析
本节课是在学习了一次函数解析式的基础上,从图象这个角度对一次函数进行近一步的研究。教材先介绍了作函数图象的一般方法:列表、描点、连线法,再进一步总结出作一次函数图象的特殊方法??两点连线法。结合一次函数的图象,教材以议一议的方式,引导学生探索函数解析式与图象二者间的关系,为进一步学习图象及性质奠定了基础。
教学重点:了解作函数图象的一般步骤,会熟练作出一次函数图象。
教学难点:一次函数及图象之间的对应关系。
三、学情分析
函数的图象的概念及作法对学生而言都是较为陌生的。教材从作函数图象的一般步骤开始介绍,得出一次函数图象是条直线。在此基础上介绍用两点连线得一次函数的图象,学生就容易接受了。在函数解析式与图象二者之间的探讨这部分内容上,不要作更高要求,学生能回答书中的问题就可以了。教学中尽可能的多作几个一次函数的图象,让学生直观感受到一次函数的图象是条直线。
四、教学流程
一、复习引入
下图是小红某天内体温变化情况的曲线图。你知道这幅图是怎样作出来的吗?把每个时间与其对应的体温分别作为点的横坐标和纵坐标,在直角坐标系中描出这些点,这样就可以作出这个图象。
二、新课讲解
把一个函数的自变量和对应的因变量的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
下面我们来作一次函数y = x+1的图象
分析:根据定义,需要在直角坐标系中描出许多点,因此我们应先计算这些点的横、纵坐标,即x与对应的y的`值。我们可借助一个表格来列出每一对x,y的值。因为一次函数的自变量X可以取一切实数,所以X一般在0附近取值。
解:列表:
描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。
连线:把这些点依次连接起来,得到y = x+1图象(如图)它是一条直线。
三、做一做
(1)仿照上例,作出一次函数y= ?2x+5的图象。
师:回顾刚才的作图过程,经历了几个步骤?
生:经历了列表、描点、连线这三个步骤。
师:回答得很好。作函数图象的一般步骤是列表、描点、连线。今后我们可以用这个方法去作出更多函数的图象。
师:从刚才同学们作出的一次函数的图象中我们可以观察到一次函数图象是一条直线。
(2)在所作的图象上取几个点,找出它们的横、纵坐标,验证它们是否都满足关系:y= ?2x+5
四、议一议
(1)满足关系式y= ?2x+5的x 、 y所对应的点(x,y)都在一次函数y= ?2x+5的图象上吗?
(2)一次函数y= ?2x+5的图象上的点(x,y)都满足关系式y= ?2x+5吗?
(3)一次函数y=kx+b的图象有什么特点?
一次函数y=kx+b的图象是一条直线,因此作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了。一次函数y=kx+b的图象也称为直线y=kx+b
例1做出下列函数的图象
教师点评:作一次函数图象时,通常选取的两点比较特殊,即为一次函数和X轴、 y轴的交点,在列表计算时,分别令X=0,y=0就可计算出这两点的坐标。正比例函数当X=0时,y=0,即与x 、 y铀的交点重合于原点。因此做正比例函数的图象时,只需再任取一点,过它与坐标原点作一条直线即可得到正比例函数的图象。从而正比例函数y=kx的图象是经过原点(0,0)的一条直线。
练一练:作出下列函数的图象:
(1)y= ?5x+2,???? (2)y= ?x
(3)y=2x?1,(4)y=5x
五、课堂小结
这节课我们学习了一次函数的图象。一次函数的图象是一条直线,正比例函数的图象是经过原点的一条直线。在作图时,只需确定直线上两点的位置,就可得到一次函数的图象。一般地,作函数图象的三个步骤是:列表、描点、连线。
六、课后练习
随堂练习习题6.3
五、教学反思
本节课主要介绍作函数图象的一般方法,通过对一次函数图象的认识,得到作一次函数及正比例函数的图象的特殊方法(两点确定一条直线)。让学生能够迅速找到直线与坐标轴的交点,这是本节课的难点。数形结合,找准这两个特殊点坐标的特点(x=0或y=0),让学生理解的记忆才能收到较好的效果。
初中数学教案7
一、教学目标:
1.知识目标:
①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2.能力目标:
①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3.情感目标:
①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法
启发引导式、讨论式和谈话法
四、教学过程
(一)复习提问
问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?
(二)新授
1.引入
结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2.数a的绝对值的意义
①几何意义
一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.
举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)
强调:表示0的点与原点的距离是0,所以|0|=0.
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义
把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的`绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
用字母a表示数,则绝对值的代数意义可以表示为:
指出:绝对值的代数定义可以作为求一个数的绝对值的方法。
3.例题精讲
例1.求8,-8,-的绝对值。
按教材方法讲解。
例2.计算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一个数的绝对值等于2,求这个数。
解:∵|2|=2,|-2|=2
∴这个数是2或-2.
五、巩固练习
练习一:教材P641、2,P66习题2.4A组1、2.
练习二:
1.绝对值小于4的整数是____.
2.绝对值最小的数是____.
3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。
六、归纳小结
本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。
七、布置作业
教材P66习题2.4A组3、4、5.
初中数学教案8
教学目标
1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2, 能区分两种不同意义的量,会用符号表示正数和负数;
3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点 正确区分两种不同意义的量。
知识重点 两种相反意义的量
教学过程(师生活动) 设计理念
设置情境
引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生
活中仅有这些“以前学过的数”够用了吗?下面的例子
仅供参考.
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多
地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解.
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.
这阶段主要是让学生学会正数和负数的表示.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的.量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量. 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习 教科书第5页练习
小结与作业
课堂小结 围绕下面两点,以师生共同交流的方式进行:
1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。
本课作业 教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。
作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要
初中数学教案9
一、指导思想
教育教学工作是一个头绪众多的系统工程,在纷繁的头绪中需要各项工作有序进展,尤为重要的是强化常规,做好细节,教学常规是对学校教学工作的基本要求,落实教学常规是学校教学工作得以正常有序开展的根本保证。只有搞好教学常规才有可能获得成功的教育。教师教学水平的高低体现于教学各个步骤的细节中,空洞地谈教学能力是苍白的,只有用教师的.备课情况、讲课细节、作业批改情况。教学常规培养着教师的基本功,决定着教师的教学能力,可以说教师的教学水平就是在这些常规细节中培养起来。
二、检查反馈
本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。
特点:
1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。
2、教学环节齐全,注重引语与小结,使教学设计前后呼应,环节完整。
3、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。
4、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。
不足:
1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。
2、个别教师教案过于简单。
作业方面的特点与不足
特点:
1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。
2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。
不足:
1、对于学生书写的工整性,还需加强教育。
2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。
初中数学教案10
教材分析
立体图形的翻折问题是高二《代数》(下)中立体几何的一个学习内容,它融会贯通于各种立体几何和几何体中,对学生进一步理解立体图形起着至关重要的作用。立体图形的翻折是从学生生活周围熟悉的物体入手,使学生进一步认识立体图形于平面图形的关系;不仅要让学生了解几何体可由平面图形折叠而成,更重要的是让学生通过观察、思考和自己动手操作、经历和体验图形的变化过程,使学生了解研究立体图形的方法。
教学重点
了解平面图形于折叠后的立体图形之间的关系,找到变化过程中的不变量。
教学难点
转化思想的运用及发散思维的培养。
学生分析
学生在前面已经对一些简单几何体有了一定的认识,对于求解空间角及空间距离已具备了一定的能力,并且在班级中已初步形成合作交流,敢于探索与实践的良好习惯。学生间相互评价、相互提问的互动的气氛较浓。
设计理念
根据教育课程改革的具体目标,结合“注重开放与生成,构建充满生命活力的课堂教学运行体系”的要求,改变课程过于注重知识传授的倾向,强调形成积极生动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。
教学目标
1、使学生掌握翻折问题的解题方法,并会初步应用。
2、培养学生的动手实践能力。在实践过程中,使学生提高对立体图形的分析能力,并在设疑的同时培养学生的发散思维。
3、通过平面图形与折叠后的立体图形的对比,向学生渗透事物间的变化与联系观点,在解题过程中,使学生理解,将立体图形中的问题化归到平面图形中去解决的转化思想。
教学流程
一、创设问题情境,引导学生观察、设想、导入课题。
1、如图(图略),是一个正方体的展开图,在原正方体中,有下列命题
(1)AB与EF所在直线平行
(2)AB与CD所在直线异面
(3)MN与EF所在直线成60度
(4)MN与CD所在直线互相垂直其中正确命题的序号是
2、引入课题----翻折
二、学生通过直观感知、操作确认等实践活动,加强对图形的认识和感受(引导学生在解题的过程中如何突破难点,从而体现在平面图形中求解一些不变量对于解空间问题的重要性)。
1、给学生一个展示自我的空间和舞台,让学生自己讲解。教师根据学生的讲解进一步提出问题。
(1)线段AE与EF的'夹角为什么不是60度呢?
(2)AE与FG所成角呢?
(3)AE与GC所成角呢?
(4)在此正四棱柱上若有一小虫从A点爬到C点最短路径是什么?经过各面呢?
(通过对发散问题的提出培养学生的培养精神及转化的教学思想方法,让学生体会折叠图与展开图的不同应用。)
2、让学生观察电脑演示折叠过程后,再亲自动手折叠,针对问题做出回答。
(1)E、F分别处于G1G2、G2G3的什么位置?
(2)选择哪种摆放方式更利于求解体积呢?
(3)如何求G点到面PEF的距离呢?
(4)PG与面PEF所成角呢?
(5)面GEF与面PEF所成角呢?
(学生会发现这几个问题可在同一个直角三角形中找到答案,然后让学生在折纸中找到这个三角形的位置,既而发现折叠过程中的不变量。)
3、演示MN的运动过程,让学生观察分析解题过程强调证PN垂直AB的困难性。与学生共同品位解出这道20xx高考题的喜悦的同时,引导学生用上题的思路能否更快捷地解出此题呢?
(学生大胆想象,并通过模型制作确认想象结果的正确性,从而开辟一条简捷的翻折思想解题思路。)
三、小结
1、画平面图,并折前图与折后图中的字母尽量保持一致。
2、寻找立体图形中的不变量到平面图形中求解是关键。
3、注意培养转化思想和发散思维。
(通过提问方式引导学生小结本节主要知识及学习活动,养成学习、总结、学习的良好学习习惯,发散自我评价的作用,培养学生的语言表达能力。)
四、课外活动
1、完成课上未解决的问题。
2、对与1题折成正三棱柱结果会怎样?对于2题改变E、F两点位置剪成正三棱柱呢?
(通过课外活动学习本节知识内容,培养学生的发散思维。)
课后反思
本课设计中,有梯度性的先安排三个小题,让学生经历先动手、思考、预习这一学习过程,然后在课堂上给学生一个充分展示自我的空间,并且适时发问的同时帮助学生找到解决方法。归纳总结解翻折问题的技巧和作为解题方法的优越性。在实施开放式教学的过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神以及合作交流的精神和创新意识,将创新的教材、创新的教法与创新的课堂环境有机地结合起来,将学生自主学习与创新意识的培养落到实处。
初中数学教案11
教学目标:
1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。
2、收集统计在生活中应用的例子,整理收集数据的方法。
3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。
教学过程:
一、课前预习,出示预习提纲:
1、我们学习了哪几种统计图?
2、这几种统计图各有什么特点?
3、概率的知识有哪些?
二、展示与交流
(一)提出问题
1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答)
2、师:先独立列出几个你想调查的'问题。(写在练习本上)
3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的3个问题。(小组汇报、交流、整理)
4、接着全班汇报交流(师罗列在黑板上)
师:大家想调查这么多的问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理)
(二)收集数据和整理数据
1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。
2、师:开展实际调查的话,如何进行调查比较有效?在调查的时候,大家需要注意什么?
(三)开展调查
1、针对学生提出的某个问题,先组织小组有效的开展收集和整理数据的活动,然后把数据记录下来,并进行整理。
2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的?(指名汇报)
3、全班汇总、整理、归纳各小组数据。(板书)
4、师:分析上面的数据,你能得到哪些信息?
5、师:根据整理的数据,想一想绘制什么统计图比较好呢?
6、师:根据这些信息,你还能提出什么数学问题?
(四)回顾统计活动
1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗?
师板书:提出问题——收集数据——整理数据——分析数据——作出决策。
2、收集在生活中应用统计的例子,并说说这些例子中的数据告诉人们哪些信息。(全班交流)
指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息?
3、结合生活中的例子说说收集数据有哪些方法?
(1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来
的实例)来说说自己的方法。
(2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。
4、师:同学们,我们已经对统计表和统计图进行了系统的学习,回忆一下我们已经学过了哪些统计图,对这些统计图,你已经知道了哪些知识?
初中数学教案12
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.
等都不是代数式.
3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
4.书写代数式的注意事项:
(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.
如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数,
#FormatImgID_0#
.数字与数字相乘一般仍用“×”号.
(2)代数式中有除法运算时,一般按照分数的写法来写.
(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.
5.对本节例题的分析:
例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的'数量关系的代数式表示,课文安排在下一节中专门介绍.
例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.
6.教法建议
(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。
(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。
(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。
(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。
(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。
7.教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。
教学设计示例
课堂教学过程设计
一、从学生原有的认知结构提出问题
1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)
(1)加法交换律 a+b=b+a;
(2)乘法交换律 a·b=b·a;
(3)加法结合律 (a+b)+c=a+(b+c);
(4)乘法结合律 (ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac
指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数
2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?
3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?
4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?
(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)
此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.
三、讲授新课
1代数式
单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义
2举例说明
例1 填空:
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(4)产量由m千克增长10%,就达到_______千克
(此例题用投影给出,学生口答完成)
解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m
例2 说出下列代数式的意义:
解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;
(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方
说明:(1)本题应由教师示范来完成;
(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等
例3 用代数式表示:
(1)m与n的和除以10的商;
(2)m与5n的差的平方;
(3)x的2倍与y的和;
(4)ν的立方与t的3倍的积
分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面
四、课堂练习
1填空:(投影)
(1)n箱苹果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;
(3)底为a,高为h的三角形面积是______;
(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____
2说出下列代数式的意义:(投影)
3用代数式表示:(投影)
(1)x与y的和; (2)x的平方与y的立方的差;
(3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和
五、师生共同小结
首先,提出如下问题:
1本节课学习了哪些内容?2用字母表示数的意义是什么?
3什么叫代数式?
教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号
六、作业
1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长
2张强比王华大3岁,当张强a岁时,王华的年龄是多少?
3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?
4a千克大米的售价是6元,1千克大米售多少元?
5圆的半径是R厘米,它的面积是多少?
6用代数式表示:
(1)长为a,宽为b米的长方形的周长;
(2)宽为b米,长是宽的2倍的长方形的周长;
(3)长是a米,宽是长的1/3 的长方形的周长;
(4)宽为b米,长比宽多2米的长方形的周长
初中数学教案13
一年级学生认知水平处于启蒙阶段,尚未形成完整的知识结构体系。由于学生所特有的年龄特点,学生有意注意力占主要地位,以形象思维为主。从整体上看一年级学生都比较活跃,大多数学生上课基本上能够跟上教师讲课的思路,教师上课组织课堂纪律并不难,而且学生的学习积极性也很容易调动。但每个班都有个别的学生上课不注意听讲,我行我素。
对于他们数学知识和能力掌握情况的分析:
1、对于一年级的数学学习,新生无论在数学知识上还是数学能力上都有所准备。就数的认识来看,新生二十以内的数数非常流利和连贯,可以正数倒数。学生在这方面具有良好的知识准备的原因之一是学生受过这方面的训练,在幼儿园中大部分学生学习过十以内的加减法,同时在一些家长在家中也进行过辅导,另一方面,数数和十以内数的分解组合学生在生活中有机会使用,因此这方面的准备比较好。
2、在数的计算中,学生对于十以内数的计算较为熟练,这和学生的生活需要、学习需要有关。
3、新生在数感方面的发展是不平衡的数感——学生对数的意义理解有一定困难。通过个别访谈,了解到学生对于蕴涵在实际生活中的数的意义的理解较为准确,例如对于“你的小组中有几个小朋友,从前往后数,你是第几个,从后往前数,你是第几个,第几个小朋友是谁”这样的问题,学生的解答没有问题,都能根据实际情况作出正确的回答,但是对于图形,学生的理解有一定的困难。这可能是学生对图形的认识造成了对数的基数序数意义理解的干扰。
4、概括能力和推理能力——普遍学生关注的范围比较小,角度单一。全册教材分析
本册教材一共分为八个单元,本册教材主要是通过各种各样的活动对学生进行数感及观察能力、思维能力、口头表达能力、学习习惯、合作与交流的能力等方面的培养,让学生对数学产生浓厚的学习兴趣,同时鼓励学生用自己喜欢的方式去学习自己有用的知识,对学生进行有效地思想品德教育,初步了解一定的学习方法、思考方式。
全册教学目标
1、熟练地数出数量在20以内的物体的个数,会区分几个和第几个,掌握数的顺序和大小,掌握10以内各数的组成,会读、写0――20各数。
2、初步知道加、减法的含义和加减法算式中各部分部分名称,初步知道加法和减法的关系,比较熟练地计算一位数的加法和10以内的减法。
3、初步学会根据加、减法的含义和算法解决一些简单的实际问题。
4、认识符号“=”“<”“>”,会使用这些符号表示数的大小。
5、直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形和圆。
6、初步了解分类的方法,会进行简单的分类。
7、初步了解钟表,会认识整时和半时。
8、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
9、认真作业、书写整洁的良好习惯。
10、通过实践活动体验数学与日常生活的密切联系。
全册重、难点:
教材重点:在具体的情境中能熟练的认读、写、20以内的数,能用数表示物体的个数或事物的位置与顺序;建立初步的空间观念;能按照给定的标准或选择某个标准对物体进行比较和分类。
教材难点:体会20以内加减法的意义,能熟练的口算20以内的数的加减法;初步形成空间观念;经历简单的数据收集过程,形成初步的统计观念。教学准备
画有田字格的小黑板挂图小棒圆片
多媒体课件视频展示台部分实物模型
智能培养
1、培养学生应用数学知识解决问题的能力。
2、培养学生独立思考与合作交流的能力。
3、培养学生学习数学的.良好情感。
4、培养学生学习数学的兴趣和良好的学习习惯。
教学思路及措施
1.一年级学生的计算学习要和意义理解与思维训练相结合。在小学数学课堂教学中要重视计算策略的优化和算理的渗透,同时在计算教学过程中要渗透思维的训练。
2.数学教学中加强学生的生活经验的积累和对学习对象的直接感知。学生的生活经验和已有的知识能力对学生解决问题有着很大的帮助,甚至很多学生都是建立在生活经验的基础上进行学习的。因此,一年级的数学教学应该加强学生的实际感知,丰富学生的生活经验,让学生在现实情景中把握数的意义和运算的意义,发展数感和符号感。扩大学生的信息贮备,提供有利于学生理解数学、探究数学的生活情景,给学生机会在实际情景中感知、操作、认识数学知识,理解数学,学习数学。
3.空间观念的培养要把握好度,在具体和抽象的空间观念的建立,在低段
要紧密和学生的动手操作相联系,可以通过观察、接触(摸、折、剪、拼等)等各种手段来让学生认识几何形体,建立空间观念。同时,要将生活材料数学化,在具体、半抽象、抽象之间建立一座桥梁,发展学生的空间想象能力。
4.在教学中要逐步渗透重要的数学概念和数学思想方法。数学思想方法已经作为数学知识的一部分,教师在教学中要逐步随着数学知识的学习进行渗透。例如一年级教材中有很多地方可以渗透一一对应思想、函数思想、符号化思想的,要在平时的教学中加以落实。
初中数学教案14
复习目标:
(1)了解方程、一元一次方程以及方程的解等基本概念。
(2)会解一元一次方程。
(3)会根据具体问题中的数量关系列出一元一次方程并求解。
重点、难点:
1.重点:
一元一次方程及方程的解的基本概念。
一元一次方程的解法。
会用一元一次方程解决实际问题。
2.难点:
一元一次方程的解法的灵活应用。
寻找实际问题中的等量关系。
【典型例题】
例1.
分析: 明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。
在这里特别注意:未知数的次数及系数。
这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。
解:
例2.
分析: 此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。
此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。
解:
将m=1代入关于x的方程,得:
例3.
解:
注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。
例4.
分析: 此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。
解:
例5.
分析: 此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。
解:
注:用分数的基本性质化简用的'是分子、分母扩大相同倍数分数值不变,与去分母不同。
解:
例6.已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。
分析: 列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为xm/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为xm
解一: 设车的速度为xm/s
经检验,符合题意。
答: 车的速度为20m/s。
解二: 设车身的长度为xm
经检验,符合题意。
答: 车的速度为(1000+200)/60=20m/s
例7.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票
售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?
分析: 此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。
解: 设团体票共2a张,零售票共a张,零售票价x元
经检验,符合题意。
答: 零售票价为19.2元。
初中数学教案15
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得44x+64=328
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的`“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的。解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业
教科书第3页,习题6.1第1、3题。
【初中数学教案】相关文章:
初中数学教案11-26
初中数学教案(15篇)02-06
初中数学教案15篇12-30
初中数学教案(通用15篇)02-23
初中数学教案合集15篇02-16
角数学教案11-30
小学数学教案03-17
小学数学教案06-14
幼儿的数学教案03-01