圆的认识教案常用4篇
作为一位优秀的人民教师,就难以避免地要准备教案,借助教案可以有效提升自己的教学能力。来参考自己需要的教案吧!以下是小编为大家整理的圆的认识教案,仅供参考,大家一起来看看吧。
圆的认识教案1
教学内容:
冀教版六年级数学上册第一单元第一课时
教学目标:
知识目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,理解在同一个圆内直径与半径的关系。
能力目标:让学生认识直径和半径的关系,能找出圆的对称轴。
转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。德育目标:让学生养成在交流、合作中获得新知的习惯。
教学重点:
探索出圆各部分的名称、特征及关系。
教学难点:
通过动手操作体会圆的特征。
教学过程:
(一)情景引入
出示课本的情景图,动物设计的汽车,思考兔博士的问题。
学生回答
师:你想过没有,车轮为什么要做成圆形?车轴又是安装在哪儿的?又是为什么?生答。
师:这一切,都跟圆的知识有关,这节课,让我们一起来认识圆(板书:圆的认识)
(二)探索新知
1、师:说说在生活中哪些地方能看到圆。
生:一些圆形钟面,纽扣是圆形的',硬币是圆形的,球(球是立体图形,把球从中间剖开得到的剖面才是圆形。圆也是一种平面图形。)
师:圆在生活中无处不在,古希腊的一位数学家曾经说过,在一切平面图形中,圆是最美的。
2、用一个瓶盖或圆柱体在纸上描出一个圆,并剪下来。
学生独立完成。
3按照书上的方法折一折,思考你有什么发现?
小组同学讨论,说出自己的看法。
教师进行总结。明确圆是轴对称图形,它有无数条对称轴,同时介绍直径和半径。4思考下面几个问题。
(1)在同一个圆里可以画多少条半径,多少条直径?
(2)在同一个圆里,半径的长度都相等吗?直径呢?
(3)同一个圆的直径和半径有什么关系?
(4)你还有什么发现?
师:说说你们小组的发现?
生汇报:
(1)同一个圆里可以画无数条半径,无数条直径。
师:有没有谁有不同意见?
生:没有。
(师板书:半径无数条直径无数条)
(2)师:你们还发现了什么?
生:半径都相等,直径都相等。
师:你量出你画的圆的半径是多少?其他同学呢?量直径的同学呢,有没有不同的意见。
师:怎么不相等?要使半径都相等,必须加上一个前提条件。(板书:在同一个圆里与等圆中)
(板书:都相等)
(3)你还有什么发现?
学生汇报,教师适时引导并小结。
(同一个圆的直径是半径的2倍,半径是直径的一半。谈话:你能用字母表示它们之间的关系吗?(板书:d=2r,r=d÷2)
(4)圆是轴对称图形。
师:为什么?(因为将圆对折后能完全重合)
师:它的对称轴是什么?(直径所在的直线是圆的对称轴。)
师:它有几条对称轴?(无数条)
三:课堂练习,巩固深化。
师:同学们掌握得真好,下面让我们来完成几道挑战题。
1、填写下表。
2判断练习,全班学生一起用手势表示自己的意见。(正确的举手,错的不举手)
(1)圆的直径是半径的2倍。
(2)要画直径是4厘米的圆,圆规两脚间的距离是4厘米。
(3)半径2厘米的圆比直径3厘米的圆大。
(4)所有的半径都相等。
(5)两端都在圆上的线段叫做直径2、画圆。
3、解释与应用
车轮为什么做成圆的?车轴装在什么位置?为什么?
师:为什么车轮子要设计成圆形而不设计成方形或其它形状呢?
把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.
四:结课。
师:数学中也有很多美,只要你认真探究,善于发现你就能感受到美。
板书设计:圆的认识
在同一个圆半径——相等、无数条
中直径——相等、无数条
d=2rr=d/2
圆的认识教案2
教学目标
1.使学生认识圆,知道圆的各部分名称。
2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。
3.初步学会用圆规画圆,培养学生的作图能力。
4.培养学生观察、分析、抽象、概括等思维能力。
教学重点
理解和掌握圆的特征,学会用圆规画圆的方法。
教学难点
理解圆上的概念,归纳圆的特征。
教学过程
一、铺垫孕伏
(一)教师用投影出示下面的图形
1.教师提问:这是我们以前学过的哪些平面图形?这些图形都是由什么围成的?
2.教师指出:我们把这样的图形叫做平面上的直线图形。
(二)教师演示
一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来。
1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)
2.小结引入:(出示铁丝围成的圆)这就是一个圆。圆也是一种平面图形,这节课我们就来学习圆的认识。(板书课题:圆的认识)
二、探究新知
(一)教师让学生举例说明周围哪些物体上有圆。
(二)认识圆的各部分名称和圆的特征。
1.学生拿出圆的学具。
2.教师:你们摸一摸圆的边缘,是直的还是弯的.?(弯曲的)
教师说明:圆是平面上的一种曲线图形。
3.通过具体__作,来认识一下圆的各部分名称和圆的特征。
(1)先把圆对折、打开,换个方向,再对折,再打开这样反复折几次。
教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)
仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)
教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母表示。
教师板书:圆心
(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?
(圆心到圆上任意一点的距离都相等)
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母表示。(教师在圆内画出一条半径,并板书:半径)
教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?
在同一个圆里可以画多少条半径?
所有半径的长度都相等吗?
教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。
(3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?
教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母来表示。(教师在圆内画出一条直径,并板书:直径)
教师提问:根据直径的概念同学们想一想,直径应具备什么条件?
在同一个圆里可以画出多少条直径?
自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?
教师板书:在同一个圆里有无数条直径,所有直径的'长度都相等。
(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的
长度都相等;有无数条直径,所有直径的长度也都相等。
(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?
如何用字母表示这种关系?
反过来,在同一个圆里,半径的长度是直径的几分之几?
教师板书:在同一个圆里,直径的长度是半径的2倍。
(三)反馈练习。
填表。
r(米)
0.24 1.42 2.6
d(米)
0.86 1.04
(四)圆的画法。
根据圆心到圆上任意一点的距离都相等这一特征,我们可以用圆规来画圆。
1.学生自学
2.教师示范画圆。
3.教师归纳板书:
定半径
2.定圆心;
3.旋转一周。
教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。
4.学生练习
(五)教师提问
为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?
教师板书:半径决定圆的大小,圆心决定圆的位置。
(六)思考:体育课上,老师想在__场画一个大圆圈做游戏,没有这么大的圆规怎么办?
三、全课小结
这节课我们学习了什么?通过这节课的学习你有什么收获?
四、课堂练习
(一)判断
1.画圆时,圆规两脚间的距离是半径的长度。()
2.两端都在圆上的线段,叫做直径。()
3.圆心到圆上任意一点的距离都相等。()
4.半径2厘米的圆比直径3厘米的圆大。()
5.所有圆的半径都相等。()
6.在同一个圆里,半径是直径的.()
7.在同一个圆里,所有直径的长度都相等。()
8.两条半径可以组成一条直径。()
五、课后作业
(一)按下面的要求,用圆规画圆。
1.半径2厘米。
2.半径2.5厘米。
3.直径8厘米。
(二)怎样测量没有圆心的圆的直径?
圆的认识教案3
教学目标:
1.使学生认识圆,掌握圆的各部分名称。
2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。
3.初步学会用圆规画圆,培养学生的作图能力。
4.培养学生观察、分析、抽象、概括等思维能力。
教学重点:
在动手操作中掌握圆的特征,学会用圆规画圆的方法。
教学难点:
理解圆上的概念,归纳圆的特征。
教材分析:
教材首先说明什么是圆,并结合周围物体说一说,这样调动了学生已有的生活经验,再通过画圆、折圆、测量等活动,展现圆的特征,其目的在于让学生通过观察、操作理解圆中的各部分关系,从而掌握圆的特征并解释生活中相关问题。
学情分析:
圆是在学生学过了直线图形以及圆的初步认识的基础上进行教学的。圆这一平面上的曲线图形,学生在生活中经常看到,它到底有什么特征呢?是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获取一些有关圆的特征的知识,这样回大大提高学生的学习兴趣,发挥学生的`主体性。
教学过程:
活动一:演示操作,揭示课题
师:一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来。
1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)
2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识。(板书课题:圆的认识)
活动二、动手操作,探究新知
(一)教师让学生举例说明周围哪些物体上有圆。
(二)认识圆的各部分名称和圆的特征。
1.学生拿出圆的学具。
2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)
教师说明:圆是平面上的一种曲线图形。
3.通过具体操作,来认识一下圆的各部分名称和圆的特征。
(1)先把圆对折、打开,换个方向,再对折,再打开??这样反复折几次。教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)
仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)
教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。
教师板书:圆心
(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?(圆心到圆上任意一点的距离都相等)
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。(教师在圆内画出一条半径,并板书:半径)
教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?
在同一个圆里可以画多少条半径?
所有半径的长度都相等吗?
教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。
(3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?
教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。(教师在圆内画出一条直径,并板书:直径)
教师提问:根据直径的概念同学们想一想,直径应具备什么条件?
在同一个圆里可以画出多少条直径?
自己用尺子量一量同一
个圆里的几条直径,看一看,所有直径的长度都相等吗?教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。
(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。
(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?
如何用字母表示这种关系?
反过来,在同一个圆里,半径的长度是直径的几分之几?
教师板书:在同一个圆里,直径的长度是半径的2倍。
(三)反馈练习。
1.P58 1
2.填表
(四)圆的画法。
1.学生自学,看书57页。
2.学生试画。
3.学生通过试画小结用圆规画圆的方法,注意的问题。
4.教师归纳板书:1.定半径;2.定圆心;3.旋转一周。
教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。
5.学生练习
(五)教师提问
为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?教师板书:半径决定圆的大小,圆心决定圆的位置。
(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?
活动三、实践与应用
(一)判断
1.画圆时,圆规两脚间的距离是半径的长度。()
2.两端都在圆上的线段,叫做直径。()
3.圆心到圆上任意一点的距离都相等。()
4.半径2厘米的圆比直径3厘米的圆大。()
5.所有圆的半径都相等。()
6.在同一个圆里,半径是直径的。()
7.在同一个圆里,所有直径的长度都相等。()
8.两条半径可以组成一条直径。()
(二)按下面的要求,用圆规画圆。
1.半径2厘米。
2.半径2.5厘米。
3.直径8厘米。
(三)怎样测量没有圆心的圆的直径?
活动四、全课小结
这节课我们学习了什么?通过这节课的学习你有什么收获?
板书设计
在同一个圆里有无数条半径,所有半径的长度都相等。
在同一个圆里,直径的长度是半径的2倍。半径决定圆的大小,圆心决定圆的位置。
圆的认识教案4
教学目标:
知识目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,理解在同一个圆内直径与半径的关系。
能力目标:让学生了解、掌握画圆的多种方法,初步学会用圆规画圆;
转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。
德育目标:让学生养成在交流、合作中获得新知的习惯。
教学重点:探索出圆各部分的名称、特征及关系。
教学难点:通过动手操作体会圆的特征。
教具准备:硬币、线绳、图钉、铅笔头、圆规、课件。
教学过程:
一、创设情境、激发兴趣:
1、创设情境
师:同学们,你们喜欢运动会吗?老师今天给你们带来了一场紧张而又激烈的塞车运动。看,它们已经来到了起跑线上,一号、二号、三号谁将会成为最后的冠军,请同学们大胆预测。
师:让我们把掌声献给冠军,送给一号车手。同学们预测的很好,那么一号的赛车为什么成为了最后的冠军呢?
生:因为一号的赛车,轮子是圆的。
师:其它的车手为什么会比一号的赛车慢呢?
生:因为它们的轮子是方形,是三角形,有棱有角的。
2、联系生活、举例说明
师:你在生活中,哪些物体上还有圆?指名学生回答日常生活中含有圆的物体。
师:圆在我们的生活中是无处不在的,汽车作为现代工业化的产物,正是因为装上了圆形的轮子,不仅极大的方便了我们的生活出行,也大大提高了社会生产效率;家庭用的圆形套装餐具,满足我们审美需求的同时,也更让我们味口大开,看来圆在我们的生活中的确很重要。下面就让我们对圆作更进一步的认识吧!揭示课题:圆的认识
二、自主探索,初步体验:
1、第一次自主探索画一画。
师:你能创造出一个任意大小的圆吗?
生:能。
师:同学们真有自信,下面就请同学们前后四人小组为单位,可以利用学具袋中老师给大家准备的工具,也可以自己想办法去创造圆,比一比看哪个小组想到的方法最多?
学生进行小组合作,分工创造圆。
生:进行小组反馈。
教师注意将各种方法进行概括分类,学生可能会出现的答案有①利用硬币或其它圆形轮廓描圆;②利用图钉和线画圆;③用圆规画圆;④用圆形物体用力在纸上压印圆;⑤线一头系上重物旋转形成圆……
师:这么多的方法都能创造出圆,那么这些方法有什么缺点吗?
学生说一说各种画法的缺陷:(
1、利用圆形轮廓描和印圆,方便但圆的大小固定。
2、线画圆,比较麻烦但可以画很小的圆也可以画很大的圆。
3、旋转形成圆不能留下痕迹。
4、圆规画圆,方便且一定大小的圆都能画)
师:那你认为这么多方法中用什么画圆最科学最方便?
生:用圆规画圆最方便。
2、第二次尝试画一画-----用圆规画圆。
师:那请同学们用圆规自已尝试画一个圆。
没有画成功的同学把图案展示,我们愿意帮助你寻找原因。
生:(
1、画移位的,2、重新画又找不到位置的,)如:问为什么会移位,为什么会找不到原来的位置?
学生回答问题的原因,教师边示范边讲解:所以画圆的时候要先确定位置,点上一点,把钢针戳在点上,用手捏住圆规的头,岔开圆规两脚的开口,将圆规略微倾斜一点,旋转一周,一个圆就画好了。请大家也一起试试看。(板书:定点、定长、旋转一周)
师:学生根据老师的讲解独立画圆。
师:大家画的圆的位置都一样吗?
生:不一样。
师:为什么会不一样?
生:因为刚针戳的位置不一样,(或点的位置不一样)
师:看来这个点能决定圆的位置,(板书:能决定圆的位置)
师:请同桌再互相比较一下你们刚才画的圆大小完全一样吗?
生:不一样。
师:为什么会不一样?
生:因为我们圆规的开口大小不一样。
生:圆规的两脚开得越大,所画的圆也就越大,圆规两脚间的距离能决定圆的大小。(师板书:能决定圆的大小)
师:那请同学们把圆规两脚间的距离定为3厘米,来画一个圆,并用剪刀将你所画的圆剪下来。
三、认识圆各部分名称及探究其特征:
①学生跟老师一起操作:把圆对折、打开,换个方向,再对折,再打开…这样反复几次。(也可进行一下小竞赛,看谁折得快、折得好。)
提问:折过若干次后,你发现什么?(在圆内出现了许多折痕。)
师:仔细观察一下,这些折痕总在圆的什么地方相交?(圆中心一点)
教师指出:我们把圆中心的这一点叫做圆心。(贴出纸圆,点出圆心,并板书:圆心)
师:圆心一般用字母o来表示。(板书:o)
教师领学生读字母“o”,说明“o”的写法,让学生在自己的圆里标出圆心并用字母“o”来表示。
游戏过渡:下面让我们放松一下,玩一个“食指点圆”的游戏,游戏规则:教师说出圆的.位置(圆外、圆心、圆内、圆上)让学生用食指来点,看谁点的快,点的准。尤其强调“圆上”的概念,指圆的边缘上。
②师:强调之后,让学生说圆上有多少个点?(无数个)现在请同学们用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?
通过测量引导学生发现:圆心到圆上任意一点的距离都相等。
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径。(教师在圆内画出一条半径,并板书:半径)
提问:谁能说一说什么样的线段叫做半径?
教师说明:半径一般用字母r来表示。(板书:r)
教师领学生读“r”,强调“r”的写法,让学生在自己圆里画出一条半径并用字母r来表示。
学生做完后,教师提问:在同一个圆里可以画出多少条半径?所有的半径长度都相等吗?
启发学生说出:在同一个圆里,有无数条半径,所有的半径长度都相等。(并板书)。
③同学们接着观察,刚才我们把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?(每条折痕都通过圆心,两端都在圆上。)
学生回答后,教师指出:我们把这样的线段叫做直径。(在圆内画出一条直径,并板书:直径)
提问:谁能说一说,什么样的线段叫做直径?
启发学生说出:通过圆心并且两段都在圆上的线段叫做直径。
教师说明:直径一般用字母“d”来表示。(板书:d)
教师领学生读“d”,强调"d"的写法,让学生在自己的圆里画出一条直径,并用字母“d”来表示。
学生做完后,教师提问:在同一个圆里可以画出多少条直径?自己用尺子量一量同一个圆里的的几条直径,看一看可以发现什么?
引导学生得出在同一个圆里有无数条直径,所有的直线的长度都相等。
④练习:出示课件请观察下图中哪些直径,哪些是半径。哪些不是,为什么?
⑤小结与过渡:通过刚才的学习我们知道,在同一个圆里,有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。那么,在同一个圆里,直径与半径之间又有什么关系呢?(组织学生讨论)
引导学生得出:在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。
师:如何用字母表示这种关系?学生回答后,教师板书:d=2rr=d/2。
师:这就是说,在同一个圆里,知道了半径的长度,乘以2就可以求出直径的长度;知道了直径的长度,乘以1/2就可以求出半径的长度。(组织学生说半径或直径的长度,让其他学生说直径或半径的长度,然后组内互说互评。)
⑥练习:出示课件填表。
⑦巩固练习:出示判断题。
四、转回课前问题:
为什么车轮做成圆形的能得冠军呢?
(让学生结合今天所学知识解决此题。)
五、课后作业:
用今天所学知识画出各种大小、不同颜色的圆,组合出一幅美丽的图画。
六、板书设计:
圆的认识
圆心O ——能决定圆的位置(定点)
半径r
——能决定圆的大小(定长)
直径d
同圆半径
无数条且长度相等
(等圆)直径
d=2r或r=d=
【圆的认识教案】相关文章:
圆的认识教案03-22
《圆的认识》教案02-09
圆认识教案03-17
圆的认识教案03-30
圆的认识教案(经典)09-22
圆初步认识教案04-05
数学圆的认识教案11-16
《圆的认识》教案优秀09-13
小学数学《圆的认识》教案03-30
《圆的认识》教案15篇02-23