高中数学并集教案

时间:2023-11-22 17:58:07 教案 我要投稿
  • 相关推荐

高中数学并集教案

  作为一位杰出的老师,常常要根据教学需要编写教案,教案有助于顺利而有效地开展教学活动。那么你有了解过教案吗?以下是小编为大家整理的高中数学并集教案,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学并集教案

高中数学并集教案1

  教学目标:

  1.结合实际问题情景,理解分层抽样的必要性和重要性;

  2.学会用分层抽样的方法从总体中抽取样本;

  3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

  教学重点:

  通过实例理解分层抽样的方法.

  教学难点:

  分层抽样的步骤.

  教学过程:

  一、问题情境

  1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

  2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

  二、学生活动

  能否用简单随机抽样或系统抽样进行抽样,为什么?

  指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

  由于样本的容量与总体的个体数的比为100∶2500=1∶25,所以在各年级抽取的个体数依次是,即40,32,28.

  三、建构数学

  1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

  说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

  ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的.抽样方法,所以分层抽样在实践中有着非常广泛的应用.

  2.三种抽样方法对照表:

  类别

  共同点

  各自特点

  相互联系

  适用范围

  简单随机抽样

  抽样过程中每个个体被抽取的概率是相同的

  从总体中逐个抽取

  总体中的个体数较少

  系统抽样

  将总体均分成几个部分,按事先确定的规则在各部分抽取

  在第一部分抽样时采用简单随机抽样

  总体中的个体数较多

  分层抽样

  将总体分成几层,分层进行抽取

  各层抽样时采用简单随机抽样或系统

  总体由差异明显的几部分组成

  3.分层抽样的步骤:

  (1)分层:将总体按某种特征分成若干部分.

  (2)确定比例:计算各层的个体数与总体的个体数的比.

  (3)确定各层应抽取的样本容量.

  (4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

  四、数学运用

  1.例题.

  例1(1)分层抽样中,在每一层进行抽样可用_________________.

  (2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

  ②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

  ③某班元旦聚会,要产生两名“幸运者”.

  对这三件事,合适的抽样方法为()

  a.分层抽样,分层抽样,简单随机抽样

  b.系统抽样,系统抽样,简单随机抽样

  c.分层抽样,简单随机抽样,简单随机抽样

  d.系统抽样,分层抽样,简单随机抽样

  例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

  很喜爱

  喜爱

  一般

  不喜爱

  2435

  4567

  3926

  1072

  电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

  解:抽取人数与总的比是60∶12000=1∶200,则各层抽取的人数依次是12、175,22、835,19、63,5、36,取近似值得各层人数分别是12,23,20,5.

  然后在各层用简单随机抽样方法抽取.

  答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

  数分别为12,23,20,5.

  说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

  (3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

  分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

  (2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

  (3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.分层抽样的概念与特征;

  2.三种抽样方法相互之间的区别与联系.

高中数学并集教案2

  教学目标:

  (1)理解子集、真子集、补集、两个集合相等概念;

  (2)了解全集、空集的意义,

  (3)掌握有关子集、全集、补集的符号及表示,会用它们正确表示一些简单的集合,培养的符号表示的;

  (4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

  (5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的结合的数学思想;

  (6)培养学生用集合的观点分析问题、解决问题的能力.

  教学重点:子集、补集的概念

  教学难点:弄清元素与子集、属于与包含之间的区别

  教学用具:幻灯机

  教学过程设计

  (一)导入新课

  上节课我们了集合、元素、集合中元素的三性、元素与集合的关系等.

  【提出问题】(投影打出)

  已知 , , ,问:

  1.哪些集合表示方法是列举法.

  2.哪些集合表示方法是描述法.

  3.将集M、集从集P用图示法表示.

  4.分别说出各集合中的元素.

  5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.

  6.集M中元素与集N有何关系.集M中元素与集P有何关系.

  【找学生回答】

  1.集合M和集合N;(口答)

  2.集合P;(口答)

  3.(笔练结合板演)

  4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

  5....... (笔练结合板演)

  6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

  【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.

  (二)新授知识

  1.子集

  (1)子集定义:一般地,对于两个集合A与B,如果集合A的.任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

  记作: 读作:A包含于B或B包含A

  当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.

  性质:

  ① (任何一个集合是它本身的子集)

  ② (空集是任何集合的子集)

  【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

  【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.

  因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.

  (2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

  例: ,可见,集合 ,是指A、B的所有元素完全相同.

  (3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。

  【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

  集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

  【提问】

  (1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。

  (2) 判断下列写法是否正确

  ① A ② A ③ ④A A

  性质:

  (1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;

  (2)如果 , ,则 .

  例1 写出集合 的所有子集,并指出其中哪些是它的真子集.

  解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

  【注意】

  (1)子集与真子集符号的方向。

  (2)易混符号

  ①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}

  ②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。

  如: {0}。不能写成 ={0}, ∈{0}

  例2 见教材P8(解略)

  例3 判断下列说法是否正确,如果不正确,请加以改正.

  (1) 表示空集;

  (2)空集是任何集合的真子集;

  (3) 不是 ;

  (4) 的所有子集是 ;

  (5)如果 且 ,那么B必是A的真子集;

  (6) 与 不能同时成立.

  解:

  (1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;

  (2)不正确.空集是任何非空集合的真子集;

  (3)不正确. 与 表示同一集合;

  (4)不正确. 的所有子集是 ;

  (5)正确

  (6)不正确.当 时, 与 能同时成立.

  例4 用适当的符号( , )填空:

  (1) ; ; ;

  (2) ; ;

  (3) ;

  (4)设 , , ,则A B C.

  解:(1)0 0 ;

  (2) = , ;

  (3) , ∴ ;

  (4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

  【练习】教材P9

  用适当的符号( , )填空:

  (1) ; (5) ;

  (2) ; (6) ;

  (3) ; (7) ;

  (4) ; (8) .

  解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

  提问:见教材P9例子

  (二) 全集与补集

  1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即

  A在S中的补集 可用右图中阴影部分表示.

  性质: S( SA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};

  (2)若A={0},则 NA=N*;

  (3) RQ是无理数集。

  2.全集:

  如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用 表示.

  注: 是对于给定的全集 而言的,当全集不同时,补集也会不同.

  例如:若 ,当 时, ;当 时,则 .

  例5 设全集 , , ,判断 与 之间的关系.

  解:∵

  ∴

  ∴

  ∴

  练习:见教材P10练习

  1.填空:

  , , ,那么 , .

  解: ,

  2.填空:

  (1)如果全集 ,那么N的补集 ;

  (2)如果全集, ,那么 的补集 ( )= .

  解:(1) ;(2) .

  (三)小结:本节课学习了以下内容:

  1.五个概念(子集、集合相等、真子集、补集、全集,其中子集、补集为重点)

  2.五条性质

  (1)空集是任何集合的子集。Φ A

  (2)空集是任何非空集合的真子集。Φ A (A≠Φ)

  (3)任何一个集合是它本身的子集。

  (4)如果 , ,则 .

  (5) S( SA)=A

  3.两组易混符号:(1)“ ”与“ ”:(2){0}与

  (四)课后作业:见教材P10习题1.2

  (五)板书设计:

高中数学并集教案3

  教学目标

  1、理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。

  (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;

  (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;

  (3)通过通项公式认识等比数列的性质,能解决某些实际问题。

  2、通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。

  3、通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。

  教学建议

  教材分析

  (1)知识结构

  等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用。

  (2)重点、难点分析

  教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用。

  ①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点。

  ②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的'推导是难点。

  ③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点。

  教学建议

  (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用。

  (2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义。也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义。

  (3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解。

  (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法。启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象。

  (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现。

  (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用。

高中数学并集教案4

  一、教材分析

  1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下b)中9、7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

  2、教学目标:

  知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

  (2)进一步培养学生把空间问题转化为平面问题的化归思想。

  能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

  德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

  情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

  3、重点、难点:

  重点:“二面角”和“二面角的平面角”的概念

  难点:“二面角的平面角”概念的形成过程

  二、教法分析

  1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

  2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

  3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

  三、学法指导

  1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

  2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。

  3、会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题。

  四、教学过程

  心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

  (一)、二面角

  1、揭示概念产生背景。

  问题情境1、在平面几何中“角”是怎样定义的?

  问题情境2、在立体几何中我们还学习了哪些角?

  问题情境3、运用多媒体和身边的实例,展示我们遇到的另一种空间的角——二面角(板书课题)。

  通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为它与我们的生活密不可分,激发学生的求知欲。2、展现概念形成过程。

  问题情境4、那么,应该如何定义二面角呢?

  创设这个问题情境,为学生创新思维的展开提供了空间。引导学生回忆平面几何中“角”这一概念的引入过程。教师应注意多让学生说,对于学生的创新意识和创新结果,教师要给与积极的评价。

  问题情境5、同学们能举出一些二面角的实例吗?通过实际运用,可以促使学生更加深刻地理解概念。

  (二)、二面角的平面角

  1、揭示概念产生背景。平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量。说明二面角不仅有大小,而且其大小是唯一确定的。平面

  与平面的位置关系,总的说来只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题。

  问题情境6、二面角的`大小应该怎么度量?能否转化为平面角来处理?这样就从度量二面角大小的需要上揭示了二面角的平面角概念产生的背景。

  2、展现概念形成过程

  (1)、类比。教师启发,寻找类比联想的对象。

  问题情境7、我们以前碰到过类似的问题吗?引导学生回忆前面所学过的两种空间角的定义,电脑演示以提高效率。

  问题情境8、两定义的共同点是什么?生:空间角总是转化为平面的角,并且这个角是唯一确定的。

  问题情境9、这个平面的角的顶点及两边是如何确定的?

  (2)、提出猜想:二面角的大小也可通过平面的角来定义。对学生提出的猜想,教师应该给予充分的肯定,以培养他们大胆猜想的意识和习惯,这对强化他们的创新意识大有帮助。

  问题情境10、那么,这个角的顶点及两边应如何确定呢?生:顶点放在棱上,两边分别放在两个面内。这也是学生直觉思维的结果。

  (3)、探索实验。通过实验,激发了学生的学习兴趣,培养了学生的动手操作能力。

  (4)、继续探索,得到定义。

  问题情境11、那么,怎样使这个角的大小唯一确定呢?师生共同探讨后发现,角的顶点确定后,要使此角的大小唯一确定,只须使它的两条边在平面内唯一确定,联想到平面内过直线上一点的垂线的唯一性,由此发现二面角的大小的一种描述方法。

  (5)、自我验证:要求学生阅读课本上的定义。并说明定义的合理性,教师作适当的引导,并加以理论证明。

  (三)、二面角及其平面角的画法

  主要分为直立式和平卧式两种,用电脑《几何画板》作图。

  (四)、范例分析

  为巩固学生所学知识,由于时间的关系设置了一道例题。来源于实际生活,不但培养了学生分析问题和解决问题的能力,也让学生领会到数学概念来自生活实际,并服务于生活实际,从而增强他们应用数学的意识。

  例:一张边长为10厘米的正三角形纸片abc,以它的高ad为折痕,折成一个1200二面角,求此时b、c两点间的距离。

  分析:涉及二面角的计算问题,关键是找出(或作出)该二面角的平面角。引导学生充分利用已知图形的性质,最后发现可由定义找出该二面角的平面角。可让学生先做,为调动学生的积极性,并增加学生的参与感,活跃课堂的气氛,教师可给学生板演的机会。教师讲评时强调解题规范即必须证明∠bdc是二面角b—ad—c的平面角。

  变式训练:图中共有几个二面角?能求出它们的大小吗?根据课堂实际情况,本题的变式训练也可作为课后思考题。

  题后反思:(1)解题过程中必须证明∠bdc是二面角b—ad—c的平面角。

  (2)求二面角的平面角的方法是:先找(或作)——后证——再解(三角形)

  (五)、练习、小结与作业

  练习:习题9.7的第3题

  小结在复习完二面角及其平面角的概念后,要求学生对空间中三种角加以比较、归纳,以促成学生建立起空间中角这一概念系统。同时要求学生对本节课的学习方法进行总结,领会复习类比和深入研究这两种知识创新的方法。

  作业:习题9.7的第4题

  思考题:见例题

  五、板书设计(见课件)

  以上是我对《二面角》授课的初步设想,不足之处,恳请大家批评指正,谢谢!

高中数学并集教案5

  一、知识与技能

  1、了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;

  2、正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项。

  二、过程与方法

  1、通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;

  2、通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性。

  三、情感态度与价值观

  通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识。

  教学过程

  导入新课

  师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法。这些方法从不同的角度反映数列的特点。下面我们看这样一些数列的例子:(课本p41页的4个例子)

  (1)0,5,10,15,20,25,…;

  (2)48,53,58,63,…;

  (3)18,15、5,13,10、5,8,5、5…;

  (4)10 072,10 144,10 216,10 288,10 366,…、

  请你们来写出上述四个数列的第7项。

  生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510、

  师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说。

  生:这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为78、

  师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征。

  生:1每相邻两项的差相等,都等于同一个常数。

  师:作差是否有顺序,谁与谁相减?

  生:1作差的顺序是后项减前项,不能颠倒。

  师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列。

  这就是我们这节课要研究的内容。

  推进新课

  等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)、

  (1)公差d一定是由后项减前项所得,而不能用前项减后项来求;

  (2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n≥2,n∈n*,则此数列是等差数列,d叫做公差。

  师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环。因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)

  生:从“第二项起”和“同一个常数”。

  师:很好!

  师:请同学们思考:数列(1)、(2)、(3)、(4)的通项公式存在吗?如果存在,分别是什么?

  生:数列(1)通项公式为5n-5,数列(2)通项公式为5n+43,数列(3)通项公式为2、5n-15、5,…、

  师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考。

  [合作探究]

  等差数列的通项公式

  师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1,公差是d,则据其定义可得什么?

  生:a2-a1=d,即a2=a1+d、

  师:对,继续说下去!

  生:a3-a2=d,即a3=a2+d=a1+2d;

  a4-a3=d,即a4=a3+d=a1+3d;

  ……

  师:好!规律性的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?

  生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-1)d、

  师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了。需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?

  生:前面已学过一种方法叫迭加法,我认为可以用。证明过程是这样的:

  因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d、将它们相加便可以得到:an=a1+(n-1)d、

  师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了。

  [教师:精讲]

  由上述关系还可得:am=a1+(m-1)d,即a1=am-(m-1)d、

  则an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,即等差数列的第二通项公式an=am+(n-m)d、(这是变通的通项公式)

  由此我们还可以得到。

  [例题剖析]

  ?例1】(1)求等差数列8,5,2,…的第20项;

  (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

  师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?

  生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3、又因为n=20,所以由等差数列的通项公式,得a20=8+(20-1)×(-3)=-49、

  师:好!下面我们来看看第(2)小题怎么做。

  生:2由a1=-5,d=-9-(-5)=-4得数列通项公式为an=-5-4(n-1)、

  由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是这个数列的第100项。

  师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个)、

  说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的'问题。这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立。

  ?例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?

  例题分析:

  师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?

  生:只要看差an-an-1(n≥2)是不是一个与n无关的常数。

  师:说得对,请你来求解。

  生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n≥2)〕

  an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p为常数,所以我们说{an}是等差数列,首项a1=p+q,公差为p、

  师:这里要重点说明的是:

  (1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,…、

  (2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q、

  (3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式。课堂练习

  (1)求等差数列3,7,11,…的第4项与第10项。

  分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙。

  解:根据题意可知a1=3,d=7-3=4、∴该数列的通项公式为an=3+(n-1)×4,即an=4n-1(n≥1,n∈n*)、∴a4=4×4-1=15,a 10=4×10-1=39、

  评述:关键是求出通项公式。

  (2)求等差数列10,8,6,…的第20项。

  解:根据题意可知a1=10,d=8-10=-2、

  所以该数列的通项公式为an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28、

  评述:要求学生:注意解题步骤的规范性与准确性。

  (3)100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,请说明理由。

  分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数。

  解:根据题意可得a1=2,d=9-2=7、因而此数列通项公式为an=2+(n-1)×7=7n-5、

  令7n-5=100,解得n=15、所以100是这个数列的第15项。

  (4)-20是不是等差数列0,-7,…的项?如果是,是第几项?如果不是,请说明理由。

  解:由题意可知a1=0,,因而此数列的通项公式为。

  令,解得。因为没有正整数解,所以-20不是这个数列的项。

  课堂小结

  师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)

  生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥2);其次要会推导等差数列的通项公式an=a1+(n-1)d(n≥1)、

高中数学并集教案6

  教学目标

  (1)使学生正确理解组合的意义,正确区分排列、组合问题;

  (2)使学生掌握组合数的计算公式;

  (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

  教学重点难点

  重点是组合的定义、组合数及组合数的公式;

  难点是解组合的应用题.

  教学过程设计

  (-)导入新课

  (教师活动)提出下列思考问题,打出字幕.

  [字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

  (学生活动)讨论并回答.

  答案提示:(1)排列;(2)组合.

  [评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

  设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.

  (二)新课讲授

  [提出问题创设情境]

  (教师活动)指导学生带着问题阅读课文.

  [字幕]1.排列的定义是什么?

  2.举例说明一个组合是什么?

  3.一个组合与一个排列有何区别?

  (学生活动)阅读回答.

  (教师活动)对照课文,逐一评析.

  设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

  ?归纳概括建立新知】

  (教师活动)承接上述问题的回答,展示下面知识.

  [字幕]模型:从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

  组合数:从个不同元素中取出个元素的所有组合的个数,称之,用符号表示,如从6个元素中取出2个元素的组合数为、

  [评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

  (学生活动)倾听、思索、记录.

  (教师活动)提出思考问题.

  [投影]与的'关系如何?

  (师生活动)共同探讨.求从个不同元素中取出个元素的排列数,可分为以下两步:

  第1步,先求出从这个不同元素中取出个元素的组合数为;

  第2步,求每一个组合中个元素的全排列数为.

  根据分步计数原理,得到

  [字幕]公式1:

  公式2:

  (学生活动)验算,即一条铁路上6个火车站有15种不同的票价的普通客车票.

  设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

  (三)小结

  (师生活动)共同小结.

  本节主要内容有

  1.组合概念.

  2.组合数计算的两个公式.

  (四)布置作业

  1.课本作业:习题10 3第1(1)、(4),3题.

  2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

  3.研究性题:

  在的边上除顶点外有5个点,在边上有4个点,由这些点(包括)能组成多少个四边形?能组成多少个三角形?

  (五)课后点评

  在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

  作业参考答案

  2.解;设有男同学人,则有女同学人,依题意有,由此解得或或2.即男同学有5人或6人,女同学相应为3人或2人.

  3.能组成(注意不能用点为顶点)个四边形,个三角形.

  探究活动

  同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?

  解设四人分别为甲、乙、丙、丁,可从多种角度来解.

  解法一可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:

  甲拿乙制作的贺卡时,则贺卡有3种分配方法.

  甲拿丙制作的贺卡时,则贺卡有3种分配方法.

  甲拿丁制作的贺卡时,则贺卡有3种分配方法.

  由加法原理得,贺卡分配方法有3+3+3=9种.

  解法二可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.

  正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有(种).

  逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为1.故符合题设要求的取法共有(种).

高中数学并集教案7

  一、教学目标

  知识与技能:

  理解任意角的概念(包括正角、负角、零角)与区间角的概念。

  过程与方法:

  会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

  情感态度与价值观:

  1、提高学生的推理能力;

  2、培养学生应用意识。

  二、教学重点、难点:

  教学重点:

  任意角概念的理解;区间角的`集合的书写。

  教学难点:

  终边相同角的集合的表示;区间角的集合的书写。

  三、教学过程

  (一)导入新课

  1、回顾角的定义

  ①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

  ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  (二)教学新课

  1、角的有关概念:

  ①角的定义:

  角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  ②角的名称:

  注意:

  ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

  ⑵零角的终边与始边重合,如果α是零角α =0°;

  ⑶角的概念经过推广后,已包括正角、负角和零角。

  ⑤练习:请说出角α、β、γ各是多少度?

  2、象限角的概念:

  ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

  例1、如图⑴⑵中的角分别属于第几象限角?

【高中数学并集教案】相关文章:

高中数学教案01-21

高中数学教案模板03-08

高中数学教案直线的方程12-28

高中数学排列组合教案11-19

高中数学教案15篇02-27

高中数学等差数列教案09-29

高中数学三角函数教案10-11

高中数学经典说课稿08-09

高中数学教学反思06-12