- 《3的倍数的特征》教案 推荐度:
- 相关推荐
3的倍数的特征教案
作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,教案是备课向课堂教学转化的关节点。怎样写教案才更能起到其作用呢?下面是小编为大家整理的3的倍数的特征教案,希望对大家有所帮助。
3的倍数的特征教案1
自学预设:
自学内容P19做一做,P20的T4-11
指导方法
复习:1、判断下面哪些数是2的倍数,哪些数是5的倍数?
18,25,46,85,100,325,180,90
2、2的倍数和5的倍数各有什么特征?
3、既是2的倍数又是5的倍数的数有什么特征?
思考:
1、1×3=
2×3=
3×3=
4×3=
5×3=……..
你发现上面的式子有什么特点?
2、3的倍数有什么特点?举例说明
3、哪些数既是2、5的倍数又是3的倍数?
小组讨论
尝试练习
1、试着完成P19的做一做练习
2、判断下列数哪些是3的倍数?
333427180
69390405300
教学内容:3的倍数的特征(P19及P20题4~5)
教学目标:
①使学生通过操作自己发现3的倍数的特征,并归纳出3的`倍数的特征。
②能应用3的倍数的特征,会判断一个数是否是3的倍数。
③培养学生观察、分析、概括、推理能力。
④让学生在探索发现过程中体验到成功的乐趣,培养学习数学的信心。
教学重点:探求3的倍数的特征。
教学难点:会判断一个数是否是3的倍数。
教学过程:
一、预习反馈,探究新知
我们已经知道了2、5倍数的特征,那么3的倍数又有什么特征呢?现在我们就来学习和研究3的倍数的特征(板书课题)
1.反馈3的倍数的特征。
(1)思考并回答:①什么样的数是3的倍数?
②要想研究3的倍数的特征,应该怎样做?
(2)学生反馈:(根据学生说的逐一板书,先找出一些3的倍数)
1×3=35×3=15
2×3=66×3=18
3×3=97×3=21
4×3=128×3=24
……
(3)观察:3的倍数的各位数字又什么特征?它是不是3的倍数?其它位数又什么特征?
(4)提问:如果老师讲这些3的倍数的各位数字和十位数字调换,它还是3的倍数吗?(学生自己动手验证)
我们发现:调换位置后还是3的倍数,那么3的倍数有什么奥妙呢?(分组讨论,汇报)可以提示:将各个数字加起来
汇报:如果把3的倍数的各位上的数字相加,他们的和是3的倍数。
验证:下面各数,哪些是3的倍数呢?210,54,216,129,9231,9876543204
(5):一个数各位上的数的和是3的倍数,这个数就是3的倍数。
2.练习:完成P19做一做
三、课堂:学生今天学习的内容。
四、巩固练习:完成P20题4~5
五、能力拓展:
(1)在□里填上适当的数,使它是3的倍数
3□5□1646□400□
(2)在□里填上适当的数,使它成为偶数,并且是3的倍数。
□7□3□□06□0□81□□
(3)有一个数有因数3,又是5的倍数,在两位数中最大的一个数是,在三位数中最小的一个数是。
六、课后:
七、作业:
八、课后反思:
3的倍数的特征教案2
知识与技能:
1、学生会正确判断一个数是否是3的倍数。
过程与方法:
2、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
情感态度价值观:
3、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学重、难点:
1、掌握3的倍数的特征。
2、能正确判断一个数是否是3的倍数。
教学过程设计:
一、复习引新
1、用5,6,7三个数字组成一个三位数,使这个数是2的倍数?
说说什么样的数一定是2的倍数,可以摆成5的倍数吗?怎样摆出的数一定是5的倍数呢?
2、引入:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,那么你能从个位上发现3的倍数的特征吗?今天我们一起来研究3的倍数的特征。(揭示课题:3的倍数的特征)
二、探索猜想,初步感知
师:3的倍数有什么特征?
1、学生进行猜想。
(1)个位上是3、6、9的数是3的倍数。
(2)个位上是3、6、9的数不一定是3的倍数,如23、26、29都不是3的倍数。
(3)学生面对所出现的问题进行猜想,教师可根据学生的猜想进行适当的引导。
2、可能出现的问题。
(1)猜测个位上是3、6、9的数是3的倍数。
(2)个位上能被3整除的数且被3整除。
3、探索猜想。
(1)学生用3、4、5三个数字组成是3的倍数的3位数。
(2)学生如果提出345或354的例子,可板书并多加评论作为后面要学的内容。
(3)在这个过程中学生可能会提出猜想的结论。即个位上是3、6、9的数是3的倍数。
4、验证猜想。
(1)让学生举例子对猜想的结论进行验证。
(2)在这个环节中,学生有可能也会发现以下情况:
①45是3的倍数,但是,个位上的数字是5,不是3、6、9等。
②26个位上的数是6,但它不是3的倍数。
(3)猜想的结论不成立。
(4)让学生对猜想结论不成立的这个问题提出自己的看法。
师:对于一个结论是否成立,只举一个正例是不够的,如举一个反例就可以推翻这个结论,这个结论就不能成立。请同学们在今后的学习中要注意。
三、自主探索,总结3倍数的特征
1、在质疑中引导学生探究3的倍数的特征。
师:请在下表中找出3的倍数,并做上记号。那么多的数,我们怎么找呢?我们要聪明地找,从比较小的数开始找。(师出示100以内数表,每小组各一张,在小组活动后,教师组织学生进行交流汇报,并呈现学生圈出3的倍数的百以内的数表,如下图。)
2、引导观察。
(1)请同学们观察这个表格,你发现3的倍数有什么特征?把你的发现在小组里说一说。(小组交流后,再组织全班交流。)
(2)在教学过程中,教师要巡视,认真倾听学生有什么发现,有什么不懂的地方。
(3)学生可能发现3的倍数个位上的数有1、2、3、4、5、6、7、8、9、0,没有什么特别规律,十位上的数字也没有什么规律。
3、教师引领。
(1)斜着观察你发现了什么?
(2)在学生观察思考的基础上,概括学生的实际情况,提出新的思考问题:观察每个数各个数位上的数与3有什么关系?将每个数的各个数字加起来看一看会怎样?
(3)试着概括出3的倍数特征。
4、总结3的倍数的'特征。
一个数各个位上的数字之和如果是3的倍数,那么,这个数一定是3的倍数。否则,这个数就不是3的倍数。
5 、检验结论。
(1)我们从10 0以内的数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?
(2)利用100以内数表来验证。
(3)延伸到三位数或更大的数。如:573、753、999、1236、2244、7863……
(4)学生自己写数并验证,然后小组交流,观察得出的结论是否相同。
四、巩固应用
1、从3、0、4、5这4个数字中,选出两个数字组成1个两位数,分别满足以下条件:
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2、3和5的倍数。
2、完成教材19页的“做一做”
五、课堂小结:
这节课你有什么收获?
板书设计:
3的倍数的特征
一个数各位上的数的和是3的倍数,这个数就是3的倍数
教学反思:
“3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,我用复习2、5的倍数特征,迁移到3的倍数特征上来,巧妙设疑,激发学生的兴趣,为学习新的知识,奠定了良好的基础。在新知探究这一块的教学我让学生大胆猜测,质疑,让学生在“实验——讨论——验证”中,产生认知的冲突。激发学生探索的兴趣,然后再在“想象——探索”的过程中,培养学生从不同角度去研究问题,用不同方法去解决问题。学生通过大量的表象积累,思维产生了飞跃,自然就概括出结论。整个课堂孩子们在充分地体验着、感悟着、发展着。这是我觉得成功的地方。
3的倍数的特征教案3
1、学习目标
1.经历探索3的倍数的过程,理解3的倍数的特征。
2.能判断一个数是不是3的倍数。
3.在探究过程中发展概括和归纳能力。
2、学情分析
学生已经学习了2、5的倍数的特征,但3的倍数的特征与2、5的倍数的特征有很大的区别,学生不能仅从一个数的个位加以观察、归纳来得出结论,因此对于孩子们来讲如何探索得出这个特征就较有难度,而对于一些学习能力较弱的孩子,能够正确掌握3的倍数的特征并加以正确运用都会有一定的难度。因此针对学生的这一认知难点,我在设计教学时更加突出学生的自主探索,是学生在找数——观察——讨论——验证——归纳的过程中,概括出3的倍数的特征。
3、重点难点
学习重点:经历探索并掌握3的倍数特征的过程。
学习难点:发现概括出3的倍数特征。
4、教学过程
4.1.2教学活动
活动1【导入】(一)游戏复习、激发兴趣
游戏复习、设疑导入
(一)游戏复习、激发兴趣
同学们,请举起你们的学号给老师看一看,每个人的学号里都隐藏着数学奥秘!(课件)孔子有句话“温故而知新”,根据老师的指令请中奖学号起立,高高举起你的学号,看谁反应快。小组同学判断,准备好了吗?
(课件2的倍数)第一次中奖学号:是2的倍数起立。采访一下:2的倍数的特征是什么?(课件2的倍数特征:个位是0、2、4、6、8的'数)(课件5的倍数)第二次学号中奖:是5的倍数起立。再采访一下:5的倍数的特征是什么?(课件5的倍数特征:个位是0或5的数)
小结:看来,快速判断一个数是不是2或5的倍数的秘诀是,只要看这个数的个位就行了。(课件圈出个位)
【设计意图:学生在中奖学号游戏中复习旧知,为新知做好准备。】
第三次学号中奖:是3的倍数起立。你是怎么知道的?大家来看看这个数是不是3的倍数? 如何快速地判断出是不是3的倍数?3的倍数有什么特征呢?今天我们就来探究3的倍数的特征。 (板书课题:3的倍数的特征)
活动2【活动】二、自主探究,感悟规律
1、请同学们拿出准备好的学具百数表,请在表中找出3的倍数,并圈起来。
2、学生活动后,教师组织学生进行交流,投影学生圈的百数表,并不断完善。
3、观察3的倍数,猜想一(横着看):判断一个数是不是3的倍数,只看个位行吗?
4、仔细观察这个百数表。猜想二(斜着看):判断一个数是不是3的倍数,看这个数各位上数的和行吗?
把你的发现与同桌交流一下。
活动3【讲授】学生摸索,教师讲解归纳
(三)举例验证规律
师:咱们发现的这个规律只适合100以内的数吗?能推广到更大的数吗?
小组合作学习二:验证、归纳3的倍数的特征
举例
各位上的数的和
是不是3的倍数
验证摆出的数
是不是3的倍数
两位数:
48
4+8=12
√
48÷3=16
√
37
3+7=10
×
37÷3 有余数
×
三位数:
四位数:
2、小组再次讨论总结。
3的倍数特征:
(四)、总结规律
下面小组的验证是否正确?
看来,通过我们的发现,进一步验证,归纳出3的倍数的特征是(板书:一个数各位上的数的和是3的倍数,这个数就是3的倍数。)
【注意】:与2、5的倍数的特征不同,3的倍数的个位上可以是任何数字。
【设计意图:汇报验证结果形成共识,得出结论。让孩子们验证此规律在100以外的数是否适用,体会“特殊—一般”的研究方法,培养孩子们研究数学的科学性和思维的严谨性。体会发现—验证—归纳的数学思想和方法。】
活动4【练习】三、闯关比赛:
闯关比赛:
3的倍数的特征相信你们已经掌握,闯关开始了,准备好了吗?
第一关:下面的数哪些是3的倍数,手势判断。
92 654 7203
71 164 20xx
老师质疑:7203为什么是3的倍数?如果打乱一下顺序,这个四位数还是3的倍数?你们有什么发现?(3的倍数与数字的顺序无关。)
【设计意图:换位探索——引导发现3的倍数与数字的顺序无关。】
第二关:在横线上填上合适的一个数,组成三位数并且是3的倍数。想想共有几种填法?
老师质疑:一共几种填法?有什么规律?(只要相差3就可以了)
【设计意图:通过小组合作学习了解到多角度思考问题,答案不唯一,纠正自己的认识,学生学以致用,有助于培养孩子们的发散思维的能力。】
活动5【测试】师生闯关
第三关:师生闯关:
同学们,老师也想和你们合作一下。请学号1-9的同学上讲台,赵老师没有学号,用0代替。和你们一起组成10位数,看看这么大的数是3的倍数吗?为什么?
请看,老师取走一个数,(9)这个9位数还是3的倍数吗?
再看,老师再取走一个数,(6)这个8位数还是3的倍数吗?
猜猜看,这次取走哪数,(3)这个七位数还是3的倍数?
你们有什么发现?(划去单个数字是3的倍数,剩下的数还是3的倍数)
你能快速发现下面这个数是不是3的倍数?想好就起立。98763963
【设计意图:发散练习:学生体会划去的数字是3的倍数,剩下的数还是3的倍数。】
第四关:猜猜中奖学号
到目前为止,我们已经学习了2、3、5的数的倍数特征,看见今天最后一次中奖学号是谁呢?同时是2、3、5的倍数的学号。(30)老师期待下一个中奖学号就是你。
【设计意图:综合运用所学2、3、5的倍数的特征的知识,让学生深刻体会自己的学号里藏着的数学奥秘】
活动6【作业】延伸和总结
四、全课小结:
1、今天你学会了什么?通过小组合作学习你有什么收获?
2、我们是通过什么方法得出3的倍数的特征?
【设计意图:在课结束前适时总结,重在使同学们进一步体会到一些研究的方法,使孩子们掌握一些“学法”。】
五、作业(课后延伸)
课后可以运用今天所学的方法去探索研究9的倍数的特征。
【设计意图:让同学们把这种探究活动延伸到课外,进一步培养了同学们学习数学的兴趣。】
3的倍数的特征教案4
教学内容:
教材19页内容,能被3整除的数的特征。
教学要求
使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。
教学重点:能被3整除的数的特征。
教学难点:会判断一个数能否被3整除
教学方法:
三疑三探教学模式
教具学具:
课件等。
教学过程
一、设疑自探(10分钟)
(一)基本练习
1、能被2、5整除的数有什么特征?
2、能同时被2 和5整除的数有什么特征?
(二)揭示课题
我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)
(三)让学生根据课题提问题。
教师:看到这个课题,你想提出什么问题?(教师对学生提出的.问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)
(四)出示自探提示,组织学生自探。
自探提示:
自学课本19页内容,思考以下问题:
1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。
2、能被2、3整除的数有什么特征?
3、能被2、3、5整除的数有什么特征?
二、解疑合探(15分钟)
1、检查自探效果。
按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。
2、着重强调;
一个数各个数位上的数字之和能被3整除,这个数就能被3整除。
三、质疑再探(4分钟)
1、学生质疑。
教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?
2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)
四、运用拓展(11分钟)
(一)学生自编习题。
1、让学生根据本节所学知识,编一道习题。
2、展示学生高质量的自编习题,交流解答。
(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。
1、判断下列各数能不能被3整除,为什么?
72 5679 518 90 1111 20373
2、58 115 207 210 45 1008
有因数3的数:( )
有因数2和3的数:( )
有因数3和5的数:( )
有因数2、3和5的数:( )
让学生说说怎么找的。
(三)全课总结。
1、学生谈学习收获。
教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。
2、教师归纳总结。
学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。
板书设计:
能被3整除的数的特征 一个数各个数位上的数字之和能被3整除,
这个数就能被3整除。
3的倍数的特征教案5
教学目标:
1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。
2、培养分析、比较及综合概括能力。
3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。
教学重点:
掌握3的倍数的特征,正确判断一个数是否是3的倍数。
教学难点:
探索3的倍数的特征。
教学过程:
一、创设情景,明确目标(3分钟)
(一)创设情景,反馈预习
1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?
P:16、24、85、102、138、170、
2 的倍数:16、24、102、138、170
5的倍数:85、170
即是2的倍数又是5的倍数:170
师:说一说,你是怎么想的?
生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.
2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?
生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。
师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。
3、教师板书课题:3的.倍数的特征。
(二)明确目标,引领方法
1、出示学习目标(见学案),生自读目标。
2、同伴说说自己的理解,谈谈如何实现目标。
设计意图交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。
二、自主学习,同伴合作(15分钟)
(一)自主学习,自我感知
1、小棒游戏,探究规律
师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?
师:你来!
师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。
学生摆出:51
师:51是3的倍数。我算的比计算器快吧?
师:能摆一个三位数吗?
学生摆出:312
师:312是3的倍数。
师:再来一个难点的。
学生摆出:1123
师:1123不是3的倍数。
师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。
2、小组合作探究
(1)用3根小棒摆一个数,这些都是3的倍数吗?
师:我们一探究要求:用相应根数的小棒在数位表上各摆出3个数。
小组内合理分工,请大家看一下导学案的合作要求
①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。
②用计算器算一算,将3的倍数圈出来。
③仔细观察表格,从中你发现了什么?
(2)用4根再摆出一些数,这些都是3的倍数吗?
(3)用6根再摆出一些数,这些都是3的倍数吗?
(4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?
预设
第一组:用3根小棒摆:2、12、102,都分别是3的倍数。
第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。
第三族,用6根小棒摆:都是3的倍数。
问题:你发现了什么?
生:我们发现了3根、6根小棒摆出来的数都是3的倍数。
师:关键要看小棒的根数,了不起的发现。
生:只要小棒的根数是3的倍数,这个数就是3的倍数。
师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。
生: 9根、12根、15根……都行——
(5)真的是这么回事吗?以9为例摆摆看。
师:来,说说你们小组摆出了哪个数,它是不是3的倍数?
生:我用9根小棒摆出了36,36是3的倍数。
师:哪个小组还想出三位数、四位数或是更大的数?
生:我用9根小棒摆出了216,216是3的倍数。
生:我用9根小棒摆出了3015,3015是3的倍数。
师:说得完吗?
生:说不完。
师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?
生:很合理。
师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。
师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。
3、提升
师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?
师:小组内交流一下。
小组活动。
师:谁来说说?
生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。
生2:各个数位上数的和是3的倍数,这个数就是3的倍数。
生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。
师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。
4、探究原因,区别理解
(1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?
研究16
师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)
但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)
用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)
看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。
通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。
(2)问:为什么3的倍数特征要看各个数位相加的和呢?
举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?
一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,
138分一分,试一试,看看是不是3的倍数
一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。
(2):梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。
P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)
三、巩固拓展,形成能力(10分钟)
(一)巩固训练,夯实基础
1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?
把一个数各个数位上的数相加是3的倍数……
2、圈出3的倍数的数:42、78、111、165、655、5988
3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?
(预设:生1:1。
师:可以吗?还有其他答案吗?
生2:1,4,7都可以。
师:理由呢?
生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。
师:恭喜你,三种可能都被你们猜中了!
师:如果它既是2的倍数,又是3的倍数呢?
生:24。
师:为什么只有24可以呢?
生:因为只有24既是2的倍数,又是3的倍数。)
(二)拓展训练,灵活创新
以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)
13689362754、123456789
老师:如果用各个数位之和是3的倍数,比较麻烦。
但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……
后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。
教师巡视,个别辅导。
(二)同伴讨论,互助共进
完成学案中“同伴合作,互助共进”内容。
重点交流学生所举的例子。
教师巡视,个别辅导。
设计意图这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。
四、师生共学,交流分享(5分钟)
(一)小组展示,彰显风采
指名小组进行汇报。
(二)师生完善,共同提高
1、学生纠正、补充、质疑
2、教师精讲、点拨、
在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。
设计意图通过教师的点拨完善学生对比的认识。
五、巩固拓展,形成能力(10分钟)
(一)巩固训练,夯实基础
先由学生自主完成学案中相应的内容,再同桌交流,完善答案。
1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?
把一个数各个数位上的数相加是3的倍数……
2、看一看哪些是3的倍数:42、78、111、165、655、5988
原来判断是用除法,现在用加法。改革了
3、不用计算,能快速算出来那个式子有余数吗?
802、3;342、3
4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数
5、下面都是吗?789、345、654
都是,有什么特点?相邻、连续三个自然数。
是不是所有都是呢?举例:123.为什么呢?
654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。
6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。
3的倍数的特征教案6
学习内容
3的倍数的特征(教材第10页的内容及教材第11页练习三的第3~6题)
第1课时课型新授
学习目标
1、使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。
2、引导学生学会判断一个数能否被3整除。
3、培养学生分析、判断、概括的能力。
教学重点
理解并掌握3的倍数的特征
教学难点
会判断一个数能否被3整除。
教具运用
课件
教学方法
二次备课
教学过程
【复习导入】
1、学生口述2的倍数的特征,5的倍数的特征。
2、练习:下面哪些数是2的倍数?哪些数是5的倍数?
324 153 345 2460 986 756
教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。
板书课题:3的倍数的特征。
【新课讲授】
1、猜一猜:3的倍数有什么特征?
2、算一算:先找出10个3的倍数。
3×1=3 3×2=6 3×3=9
3×4=123×5=15 3×6=18
3×7=213×8=24 3×9=27
3×10=30……
观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)
提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)
12→21 15→5118→81 24→42 27→72
教师:我们发现调换位置后还是3的倍数,那3的.倍数有什么奥妙呢?
(以四人为一小组、分组讨论,然后汇报)
汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。
3、验证:下面各数,哪些数是3的倍数呢?
21054 216 129 9231 9876
小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)
4、比一比(一组笔算,另一组用规律计算)。
判断下面的数是不是3的倍数。
34025003 1272 2967
5、“做一做”,指导学生完成教材第10页“做一做”。
(1)下列数中3的倍数有。
143545100 332 876 74 88
①要求学生说出是怎样判断的。
②3的倍数有什么特征?
(2)提示:
①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)
②接着再考虑什么?(最小三位数是100)
③最后考虑又是3的倍数。(120)
【课堂作业】
完成教材第11~12页练习三的第4、6、7、8、9、10、11题。
【课堂小结】
同学们,通过今天的学习活动,你有什么收获和感想?
【课后作业】
完成练习册中本课时练习。
板书设计第2课时3的倍数的特征
一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。
【作业设计】
学习目标,教学方法,数学,教师,能力。
3的倍数的特征教案7
一、教学内容
新人教版《义务教育课程教科书数学》五年级(下册)第10页。
二、教学目标
1.使学生掌握3的倍数的特征,能够正确地判断一个数是不是3的倍数。
2.让学生经历科学的探究过程,激发学生探索新知的兴趣,培养学生的自主学习能力。
3.结合知识的教学,培养学生的观察、猜想、分析、比较、归纳等思维能力。
4.让学生获得探索成功的体验,增强学好数学的自信心,培养学生的数学兴趣。
三、课前准备
计数器、课件
四、教学过程
(一)复习旧知,引出新知 1.复习旧知
出示:
(1)如果将这些钱平均分给2所学校,每所学校得到的钱数是整元数吗?你是怎么知道的?有几种不同的方法可以判断?哪种方法比较好?
(2)如果将这些钱平均分给5所学校,每所学校得到的钱数是整元数吗?你又是怎么知道的?有几种不同的方法可以判断?哪种方法比较好?
2.引出新知
如果将这些钱平均分给3所学校,每个学校分到的钱是整元数吗?你是怎么知道的?能不用计算3860÷3的方法判断吗?
⒊导入新课
同学们,3的倍数有特征吗?有什么特征呢?今天我们就来研究3的倍数的特征。
教学意图:一方面通过复习帮助学生回忆2、5倍数的特点,巩固前一节学习的知识,另一方面引出本节课要研究的知识――3的倍数的特征,自然过渡到新知教学。
(二)猜想验证,制造悬念
1.请同学们猜一猜3的倍数的特征可能是什么? 各种不同的数,都是3的倍数。
2.用4颗珠子摆数研究
(1)用4颗珠子可以摆出哪些数?
学生先摆,并做搞好记录,最后汇报:4、40、31、22、13、400、310、301、220、202、211、130、103、121、112。
(2)这些数是3的倍数吗?
(3)你又有什么发现?
教学意图:通过让学生摆数、计算等活动,发现规律:用4颗珠子摆成的不同的数,都不是3的倍数。
3.观察比较,寻找简便方法
(1)把3颗珠子和4颗珠子摆的数联系起来看一看,有什么发现?
(2)从这里可以看出,只要看摆出的几个数就知道摆出的其他数是不是3的倍数了?
教学意图:通过对3颗、4颗珠子摆数、判断的比较,发现规律:摆出的数要么全是3的倍数,要么全不是3的倍数,从而寻找到简便的判断方法:只要判断摆成的一个数是不是3的倍数就知道其他的数是不是3的倍数了,为下面快速地判断奠定基础。
4.用n颗珠子摆数研究
(1)用5颗珠子摆成的数是3的倍数吗?为什么?(如:104不是3的倍数,所以摆成的其他数都不是3的倍数)
(2)用6颗珠子摆成的数是3的倍数吗?为什么?
(3)用7颗珠子摆成的数是3的倍数吗?为什么?
(4)用8颗珠子摆成的数是3的倍数的数吗?为什么?
(5)用9颗珠子摆成的数是3的倍数吗?为什么?
教学意图:通过快速地判断5、6、7、8、9颗珠子摆成的数是不是3的倍数的研究,为下面的研究规律提供丰富的素材,为发现和概括规律奠定基础。
5.观察比较,发现规律
(1)请同学们观察上面的研究,有什么发现?
(2)猜想一下还可以用几颗珠子摆成的数都是3的倍数?为什么?验证一下猜想对不对?
(3)为什么不猜10颗、11颗珠子摆的`数?验证一下对不对?
(4)请同学们想一想:摆成的3的倍数与珠子的颗数有什么关系?
(5)再请同学们思考:珠子的颗数就是摆成的数的什么?
(6)把珠子颗数换成“各位上数的和”说说3的倍数有什么特征?
教学意图:先帮助学生寻找到摆成的3的倍数的数与珠子的颗数之间的关系,初步发现规律,再引导学生思考:珠子的颗数就是摆成的数的各位上数的和,最终发现3的倍数的特征。
6.举例判断,验证规律
师:这个规律对不对呢?怎样去验证?学生举几个例验证(略)。
教学意图:因为这个规律是采用不完全归纳法归纳出来的,具有一定的局限性,正确与否还需要进行验证,学生随机举例验证,从而证明规律的正确性。
(四)巩固练习,消化理解
1.下面哪些数是3的倍数?你是怎么想的?
45 546 7 7610 81 8180
2.在下面每个数的□里填上一个数字,使这个数是3的倍数。你是怎么想的?
4□ 3□5 12□ □12
可以填哪些数?有什么规律?
⒊熊爸爸在狐狸办的工厂干了3个月的活,月工资856元,这一天,熊爸爸带着小熊到狐狸家里领工资。他们通过计算,得出以下的结果:狐狸:856×3=2468(元),小熊:856×3=2558(元),熊爸爸:856×3=2568(元),你知道谁算对了吗?为什么?
⒋有个很大的数,如:46091362930,它是3的倍数吗?你是把所有的数字都加来的吗?有更简便的方法吗?
(五)回顾总结,结束全课
通过今天的学习你学到了什么?你有什么收获?
《3的倍数特征》教学反思
3的倍数特征相对于2和5来说相对不易发现,在讨论3的倍数特征时,学生学习遇到困难,有学生得出结论:1、个位是3、6、9的数是3的倍数。2、个位是3的倍数,这个数就是3的倍数。…这时,我让学生用计数器上的3颗珠子和4颗珠子拨数,计算出是否是3的倍数,再次找3的倍数特征,学生交流后发现光看个位是不是3的倍数可不行。课件出示114,圈一圈,你有什么发现?让学生明确把各个数位上的数加起来,所得的和是3的倍数,这样的数才是3的倍数。
整个教学过程,我重点放在了教学方法上,着重学生“发现问题—探索问题—解决问题”的能力培养,让学生能在猜想、操作、验证、交流、反思、归纳的过程中获取知识,也有助于学生数学思维的培养。抓住一切可以利用的机会,激发学生的创新欲望,培养学生的创造意识,充分发展个性才能。
《3的倍数的特征》说课稿
一、教材简析
《3的倍数的特征》是新人教版第十册的内容,属于“数与代数”领域中有关“倍数与因数”的知识。学生在已经学习“2,5倍数的特征”的基础上,继续学习3的倍数的特征。
二、教学目标
1.经历探索3的倍数的特征的过程,理解3的倍数的特征,能判断一个数是不是3的倍数。
2.发展分析、比较、猜测、验证的能力。
三、教学思路
本节课我紧紧抓住猜想→观察→举证→归纳这条主线展开教学,让学生经历有效探究的学习过程。
基于以上想法,本课设计以下两个大环节:
探究 深化
四、教学过程
一.探究
这个部分,我为学生提供了四个探究平台:
(1)猜想
复习:2和5的倍数特征。猜测3的倍数的特征。
(2)观察
在百数表中找出所有3的倍数,通过观察否定猜想。
借助计数器,在百数表中任意选一个3的倍数,用计数器将它拨出来,并记录下拨这个数用了几颗数珠。再观察记录表,你能发现什么?
学生很快能发现所用数珠的颗数都是3的倍数。
当学生的认知出现困难时,借助计数器来研究3的倍数的特征,直观地降低了学生观察发现特征的难度,使得所学新知更贴近学生的“最近发展区”。
如果给你3颗数珠,那你猜一猜在计数器上拨出100以内的数会是3的倍数吗?给出4颗、5颗…….,自己拨一拨,发现了什么?
经过研究,学生发现100以内是3的倍数,所用数珠的颗数都是3的倍数,而不是3的倍数,所用数珠的颗数都不是3的倍数。也就是说:100以内的数,如果在计数器上拨它,所用数珠的颗数是3的倍数,这个数就是3的倍数。
(3)举证
我们之前的研究结论对所有的数都适用吗?学生马上会提出研究比100更大的数。
小组合作:随意想出多个大于100的数,先用计算器算一下,然后记录下来。最后用计数器拨一拨看有什么发现?
经过合作探讨,交流汇报,学生发现在这些较大的数当中,之前的研究结论依然适用。
所研究的对象范围越广,代表性越强,研究结论就越可靠。本环节通过“更大的数”和“随意想”两方面,让研究对象范围更广,培养了学生缜密思考的意识和习惯。
(4)归纳
现在如果给你一个数,不做除法,你怎样快速地判断它是不是3的倍数呢?咦!我发现有的同学没有用计数器也判断对了,还很快呢!你们是怎么想的呢?学生会说所用数珠的颗数其实就是各个数位上的数字之和。
“各个数位上的数字之和”这种稍复杂的表述方式,由学生在操作中自然归纳得出,突出了学生探究学习的自主性,彰显了学生的主体地位。
二.深化
让学生拿出事先准备好的从0到9的十张卡片,在游戏中解决以下问题:
(1)你能任意选3张卡片,摆出一个3的倍数吗?用你选的这3张卡片,还能摆出不同的3的倍数吗?一共能摆出几个?
(2)随意抽取3张卡片,在它的基础上加卡片,使摆出的数还是3的倍数。如果加一张怎样加?加两张呢?三张?……你最多能用到几张?
(3)当十张卡片全部用上时,我们就得到了比较大的3的倍数,你能快速去掉一些卡片,让这个数依然是3的倍数吗?
如果要去掉一张卡片,你怎么做?如果要去掉两张?三张?……
刚才的练习有没有给你什么启发?
用你们的方法判断下面的这些数是不是3的倍数:
36996969336, 1827457874。
判断数位多的数是否是3的倍数,运用常规方法比较麻烦。如何突破这一难点?通过这一系列的卡片游戏,学生在操作中自然而然地摸索出解题的捷径,完成了对所学知识的拓展。
各位老师,刚才我描述的这个教学过程,是让学生在探究3的倍数的特征过程中不但为学生积累了数学活动经验,而且也积淀了基本的数学思想:让学生逐步领悟到猜想、观察、举证、归纳是解决数学问题的一般方法。
谢谢!
3的倍数的特征教案8
设计说明
本课通过动手操作帮助学生发现3的倍数的特征,培养学生大胆猜想、动手实践、归纳概括的能力,同时让学生利用3的倍数的特征解决生活中的一些问题,培养应用意识。本课教学在设计上主要体现以下两点:
1、一个数是不是2,5的倍数,只需看这个数个位上的数就可以了,而3的倍数的特征则不然,一个数是不是3的倍数,不能只看个位上的数,要把这个数各个数位上的数相加,如果和是3的倍数,这个数就是3的倍数。这样,既发展了学生的思维,提高了认知,又培养了学生动脑、动口的能力。
2、使学生在原有认知的基础上产生认知冲突,进而产生新的探究欲望,让学生在猜想、操作、验证、交流、反思、归纳的数学活动中获得较为丰富的数学经验,培养学生提出问题、探索问题、解决问题的能力。
课前准备
教师准备
PPT课件、百数表
学生准备
百数表、数位表
教学过程
⊙游戏激趣,导入新课
1、复习导入。
师:我们已经掌握了2和5的倍数的特征,下面我们来做一个游戏(游戏要求:师随机说“2的倍数”或“5的倍数”,生根据老师的指令举起自己的学号卡片)。
提问:什么样的数是2的倍数?(个位上是0,2,4,6,8的数)什么样的.数是5的倍数?(个位上是0或5的数)
2、设问质疑。
师:请学号是3的倍数的同学站起来。(是3的倍数的同学站起来)同学们猜测一下:3的倍数可能有什么特征呢?
生猜测结果:(1)个位上是3,6,9的数是3的倍数。
(2)个位上的数能被3整除的数是3的倍数。
……
师:这节课我们就来探究3的倍数的特征。
设计意图:
通过猜想,产生疑问,把学生求知的欲望推向高潮,为新知的探究做好铺垫,为有效地教学创设时机。
⊙自主探究,合作交流
1、圈数探究。
(1)课件出示书上的百数表,请学生观察。
师:百数表中圈出的是什么数?
引导学生发现:是3的倍数。
(2)请学生在书上的百数表中接着圈出3的倍数。
快速浏览一遍所圈出的数,说一说3的倍数的个位上是哪些数。
(3)观察圈出的数,探究3的倍数的特征。
预设生:3的倍数都排列在几条斜线上。
师:像判断2和5的倍数那样,只看个位上的数来判断3的倍数可以吗?单独看这些数的个位和十位上的数能发现规律吗?
引导学生发现:单独看3的倍数个位和十位上的数都没有什么规律。
2、换位探究。
引导学生发现:3的倍数与该数各个数位上的数的顺序无关。
(1)引导学生看两组3的倍数:3,12;6,15,24,33,42,51。
师:请大家看看这些数各个数位上的数的和有什么特征。
(2)请学生依次说出这些数的各个数位上的数的和,教师板书。
3的倍数的特征教案9
教学目标
1、知识与技能
理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。
2、过程与方法
经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。
3、情感态度与价值观
感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。
教学重难点
【教学重点】
3的倍数特征。
【教学难点】
探究3的倍数特征的过程。教学过程
教学过程
一、以旧引新,竞赛导入
1、请说出2的倍数的特征、5的倍数的特征。
2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?
35 158 200 87 65 164 4122
既是2的倍数又是5的倍数的数有什么特征?
3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?
4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!
5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)
二、猜想探索,归纳验证
1、大胆猜想:猜一猜3的倍数有什么特征?
(1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)
(2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?
2、观察探索:出示第10页表格。
(1)圈一圈。上表中哪些是3的倍数,把它们圈起来。
(2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)
(3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?
(4)问题启发:
大家再仔细看一看,3的倍数在表中排列有什么规律?
从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)
个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)
每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)
3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?
3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
4、验证结论
大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。
(1)尝试验证。(生写数,然后判断、交流、得出结论。)
(2)集体交流。
教师说一个数。如342,学生先用特征判断,再用计算器检验。
一个更大的数。4870599,学生先用特征判断,再用计算器检验。
5、巩固提高。下面用数字卡片摆出的数中哪些是3的倍数?在每个数后增加一张卡片,使新的三位数成为3的倍数。
三、梯度练习,内化新知
我们已经理解了3的倍数的`特征,下面请运用特征来检验我们的实践能力吧!
1、圈出3的倍数。
92 75 36 206 65 3051 779 99999
111 49 165 5988 655 131 2222 7203
2、在下面各数的□里填上一个数字,使这个数是3的倍数,各有几种填法?
□7、4□2、□44、65□、12□1
3、用数字1、3、5、能组成几个三位数?哪些三位数是3的倍数?你有什么发现?
4、将下面这些数进行分类。
548、15、2707、820、118、452、507、210、462、450
2的倍数:()3的倍数:()
5的倍数:()同时是2和5的倍数:()
同时是2和3的倍数:()
同时是2、3、5的倍数:
5、从下面四张数字卡片中取出三张,按要求组成三位数。
奇数_________偶数__________
2的倍数______ 5的倍数______
3的倍数______既是2的倍数,又是3的倍数数___
6、现在有学生22人,每3个人分成一组,至少再来几个人才能正好分完?
7、(1)既是2和5的倍数,又是3的倍数的最小两位数是()。
(2)既是2的倍数,又是3的倍数的最小三位数是(),最大三位数是()。
四、梳理归纳,回顾总结
1、这节课你有什么收获?
知道了3的倍数的特征,一个数各位上的数的和是3的倍数,这个数就是3的倍数。
2、通过什么方法获得了这些知识?
我们运用了数学上很重要的研究方法“猜想、探索、归纳、验证”研究3的倍数的特征。
五、知识应用,课外延伸
生活中有很多的数是3的倍数,找一找。
课下大家运用“猜想、探索、归纳、验证”的方法,继续研究9的倍数有什么特征?
3的倍数的特征教案10
教学目标
1.让学生探索3.的倍数的特征,会判断一个数是不是3的倍数。
2.让学生在学习过程中学会运用分析、比较、归纳或猜想、检验等方法,并进一步学会与同学交流。
教学重难点
判断一个数是不是3的倍数。
课前准备
小黑板、学具卡片
教学活动
一、引入新课,激发兴趣
教师在黑板上写出一组数:5、6、14、18、25、27、36、41、90,问学生:谁能判断出哪些数是3的倍数?(这些都是一些简单的数,估计学生通过口算很快就能判断出来)
教师再写出几个数:1540、2856、3075,再问:谁能很快判断出哪些数是3的倍数?当学生出现畏难情绪时,教师说:我能很快地说出这几个数当中,2856和3075都是3的倍数。
谈话:你们会想这是老师预先算好的。你们可以考考老师,不管你报一个什么数,我都能很快地判断出来,你们愿意来试一试吗?
学生报数,教师很快地回答,并把是3的倍数的数板书在黑板上,再让学生用计算器进行验证。
谈话:你们一定在想:老师你有什么窍门吗?有啊!你们想知道吗?让我们一起来探索3的倍数的特征。(板书课题:3的倍数的特征)
二、自主探索。合作学习
1.先让学生猜一猜:3的倍数有什么特征?举例说明。
2.根据学生猜测的结果,讨论:个位上是3、6、9的数是3的'倍数吗?
3.当学生得出3的倍数与个位上的数没有关系时,教师引导学生在小组里用计数器拨几个3的倍数,看每次用了几颗算珠?
如:84、51、27、90、123、2856、3075,它们用的算珠颗数分别是:8+4—12;5+1—6;2+7—9;9+0—9;1+2+3—6;2+8+5+6—21;3+O+7+5—15。
4.引导学生观察、分析、讨论:用的算珠的颗数有什么共同点?
:每个数所用算珠的颗数都是3的倍数。
5.提问:这些数所用算珠的颗数跟什么有关系?小组讨论,交流讨论结果。
:一个数是3的倍数,这个数各位上的数的和一定是3的倍数。
6.进一步验证。(1)同桌之间互相报数,验证刚才的结论是否正确。(2)用1、2、6可以写成126,还可以组成哪些三位数?这些三位数是3的倍数吗?小组讨论后得出结论:3的倍数,跟数字的位置没有关系,只跟各位数上的数的和有关系。
7.试一试:如果一个数不是3的倍数,这个数各位上数的和是3的倍数吗?
在小组里举例验证、讨论交流。得出:一个数不是3的倍数,这个数各位上数的和不是3的倍数。归纳:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
三、运用结论。巩固拓展
1.做“想想做做”第1题。
指名口答。提问:你是怎么判断出67不是3的倍数,84是3的倍数的?
2.做“想想做做”第2题。
提问:每一题有没有余数与什么有关?有什么关系?谈话:在没有余数的算式下边画横线,看谁做得快。指名报结果,共同评议。
3.做“想想做做”第3题。
让学生独立填写,再在小组里交流:你能找到几种不同的填法?
4.做“想想做做”第4题。
学生涂完后,指名回答:9的倍数都是3的倍数吗?
5.做“想想做做”第5题。
各自组数,并把组成的数记下来。
指名报答案,全班学生评议。
6.补充题。
提问:你今年几岁?再过几年你的岁数是3的倍数?
四、
3的倍数的特征教案11
学习目标:
1.经历观察、探究、发现、验证的过程,发现并掌握3的倍数的特征,进一步体会归纳思想。
2.能判断一个数是不是3的倍数。
3.在探究发现的过程中体验成功的乐趣,增强学好数学的信心。
学习重点:
3的倍数的特征。
学习难点:
能正确判断一个数是不是3的倍数。
学习准备:
课件等。
学习过程:
一、复习导入
提问:谁来说一说什么样的数是2的倍数?什么样的数是5的倍数?
并出示习题。
二、新知探究
1.引导观察,调整思路。
(1)下面各数中,哪些是3的倍数?
21 42 63 84 15 36 57 78 99 11 32 53 74 95 26 47 68 89
(2)你能从个位上找出一个数是3的倍数的特征吗?从十位上呢?
(3)学生讨论发现:这两组数个位上分别为1—9,但第一组的数均是3的倍数,第二组的数都不是3的倍数,因此,无法从个位或十位找出是3的倍数的特征。
(4)通过观察发现是不是3的倍数,已不再取决于个位或十位上的数字了,必须探索新的解决办法。
2.组织活动,探索规律。
(1)请你从1、2、3、4、5、6六张数字卡片中挑出其中三张,排成是3的倍数的'三位数,你能排出多少个?
(2)讨论:从上面这些三位数中,你能发现3的倍数的特征吗?
(3)一个数是否是3的倍数,只同所选的数字有关,而与数字的排列位置无关。选三张卡片组成是3的倍数的三位数,除选(1,2,3)外,还可选(1,3,5),(2,3,4),(2,4,6),(3,4,5),(4,5,6)。
(4)小结。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3.揭示特征,加深理解。
(1)利用这一题还可进一步让学生思考:如果用这六张卡片组成一个六位数,这个六位数一定是3的倍数吗?
(2)谁能想出更简便的方法来判断?(把每一个数位上是3的倍数的数划去,全部划完,说明这个数是3的倍数)
三、课堂小结
本节课学习后你有什么收获?
3的倍数的特征教案12
设计说明
1.让学生产生探究的兴趣。
兴趣是学好数学的动力源泉。为了使学生产生探究的意识,激发学习兴趣,形成最佳的学习心理状态,我充分利用小学生好奇心强这一心理特点,创设了“猜一猜”的游戏情境:让学生出题,随意说一个数,老师迅速地说出该数是不是3的倍数,以此来调动学生学习的积极性。
2.让学生发现学习的方法。
本设计在教学3的倍数时,先让学生运用已经学过的2和5的倍数的特征的知识进行知识迁移,对3的倍数的特征进行初步的猜想。再由猜想与验证的不一致,激起学生探究新知识的兴趣。接着根据学生提出的探究3的倍数的特征的方法,让学生以小组合作的形式,探究3的倍数的特征。通过这样一个过程,培养学生的推理能力,充分体现学生的主体地位。
课前准备
教师准备 PPT课件 计数器 记录表
学生准备 百数表 计数器教学过程
教学过程
创设情境
师:用5,6,7组成一个没有重复数字的`三位数,使这个数是2的倍数。说说什么样的数是2的倍数。
师:能组成既是2的倍数又是5的倍数的数吗?为什么?
师:同学们,我们已经知道要判断一个数是不是2或5的倍数,只需观察这个数的个位即可。那么你们能通过观察发现3的倍数的特征吗?今天我们就一起来探究3的倍数的特征。(板书课题:3的倍数的特征)
设计意图:创设问题情境,既可以巩固已学知识,又可以引导学生积极主动地投入到3的倍数的特征的教学过程中来,有利于学生轻松、愉快地学习新知。
探究新知
1.提问:我们已经知道判断一个数是不是2或5的倍数,只要看这个数的个位即可,那么你们能猜出什么样的数是3的倍数吗?
(学生可能会说个位上是3,6,9的数是3的倍数)
师:大家同意他的猜想吗?他的猜想到底对不对呢?我们一起来探究一下。
课件出示百数表。
师:在百数表中找出3的倍数。用自己喜欢的方法圈一圈。
师:请同学们观察一下,3的倍数个位上是哪些数?刚才那位同学的猜想正确吗?要判断一个数是不是3的倍数,能不能只看个位?
2.观察百数表中圈出的3的倍数,你们发现了什么?
(1)引导学生先横着看,再竖着看,学生找不到3的倍数的特征。
(2)引导学生斜着看,先看第一斜行的3,12,21。
学生分组讨论这3个数有什么特征。
汇报交流:第一斜行3的倍数各位上的数相加,和是3。
(3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?
设计意图:先让学生从第一斜行开始思考3的倍数的特征,能使教学难点化整为零,易于逐个突破。
3.操作验证。
(1)在计数器上分别拨出几个3的倍数:12,42,45,75,87,看看各用了几颗珠子。
学生以小组为单位,用计数器拨出3的倍数,并填写记录表。
总结:一个数各位上的数的和是3的倍数,这个数就是3的倍数。 (2)思考:观察这些3的倍数,它们十位与个位上的数的和与3有着怎样的关系?学生分组讨论后得出结论。
3的倍数的特征教案13
教学目标:
1、在探索活动中,观察发现3的倍数的特征。
2、能够运用2、3、5的倍数的特征,迁移类推出其他相关倍数问题的解决方法。
教学重点:观察发现3的倍数的特征
教学难点:运用2、3、5的倍数的特征
教学过程;
活动一:复习巩固。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征么?指名说
2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)
3、说说能同时被2和5整除的.数有什么特征?(观察特征。用自己的话说一说。)
活动二:探索研究3的倍数的特征。
1、在书上第6页的表中,找出3的倍数,并做上记号。
2、观察3的倍数,你发现了什么?先独立完成,看谁找的快
教师参与到讨论学习中。先独立思考,想己的想法,然后与四人小组的同学说说你的发现。
生一:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生二:十位上的数也没有什么规律。
生三:将每个数的各个数字加起来试试看
3、你发现的规律对三位数成立吗?找几个数来检验一下。
活动三:试一试
在下面数中圈出3的倍数。
284553873665
活动四:练一练
1、请将编号是3的倍数的气球涂上颜色。自己独立完成,在小组内说说自己的想法。
361754714548
2、选出两个数字组成一个两位数,分别满足下面的条件。独立完成,说说你的窍门和方法。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
活动五:实践活动
在下表中找出9的倍数,并涂上颜色。可以在自主实践以后再交流。
板书设计:
3的倍数的特征教案14
教学目标
1、经历探索3的倍数特征的过程,理解其特征,能判断一个数是不是3的倍数。
2、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展分析、比较、猜测、验证的能力。
3、通过归纳、类比猜测等学习数学的活动,体验数学问题的探索性和挑战性,感受数学结论的确定性。
教学重点
理解3的倍数的特征
教学难点
探索活动中,发现规律,并归纳出3的倍数的特征。
教学过程
一、谈话引入,提示课题
我们已经研究了2,5的倍数的特征,那么3的倍数又会有什么特征呢?(板书课题)
二、探索交流、获取新知
1、出示1~100数字表格
2、找出3的倍数,并做出记号
3、观察3的倍数,你发现了什么?(生认为没有什么规律,师再引导观察)
⑴任意选择几个3的倍数。如42、87、93。
⑵板书在黑板上
⑶交换个位和十位上的数字,得到24、78、39。
⑷判断这三个数是不是3的.倍数
⑸想一想:交换数位前后的两个数中什么不变?(给足充分的讨论时间)生得到:交换前后两个数字的和不变。
⑹引导提问:3的倍数的特征跟一个数各个数位上数字的和有关系,到底有什么关系呢?
⑺分析、猜测。生从这几个数字的和,可以看出它们又刚好是3的倍数(6、15、12)
⑻验证、归纳
① 让生随意再找几个3的倍数,利用同样方法,将每个数的各个数字加起来进行验证。
② 发现规律,进行归纳
⑼尝试检验:①出示84、92、102、315。②利用规律进行检验。③小结:这个规律对三位数一样成立。
三、巩固练习
第7页的试一试和练一练
四、板书设计:
3的倍数的特征
3的倍数的特征:把一个数各个数位上的数字加起来的和正好是3的倍数。
五、课后反思:
略
3的倍数的特征教案15
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)五年级下册第10页的例2。例2是探究3的倍数特征,教材仍然采用百数表,让学生先圈数,再观察、思考。
(二)核心能力
在探究3的倍数特征的过程中,学会从不同角度去观察和思考,进一步积累观察、猜想、验证、归纳的思维活动经验。
(三)学习目标
1.借助百数表,经历探究3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数,并解决生活中的实际问题。
2.在探究3的倍数特征的过程中,学会从不同角度去观察和思考,发展合情推理的能力,积累数学思维活动经验。
(四)学习重点
探索3的倍数的特征。
(五)学习难点
归纳举证3的倍数的特征
(六)配套资源
百数表、计算器
二、教学设计
(一)课前设计
(1)回忆我们研究过的2、5倍数的特征是什么?并能给同学们解释是怎样探究出来的。
(2)自制一张百数表。
(二)课堂设计
1.复习引入
师:谁来给大家介绍一下,2、5的倍数特征是什么?我们是怎样研究出来的?
学生自由发言,重点引导学生回忆知识形成的过程。
小结:我们是利用百数表,先找数,然后观察、猜想,最后进行验证和归纳,得出了2、5倍数的特征。
师:这节课我们来研究“3的倍数的'特征”。(板书课题)
【设计意图:通过复习2、5倍数的特征及探求的方法,唤醒学生的记忆,为探求3的倍数的特征做铺垫。】
2.问题探究
(1)找3的倍数
师:研究“3的倍数的特征”,你们准备怎样研究?
生自由发言。
师:你们准备借助百数表,利用研究2、5倍数特征的方法来研究3的倍数的特征,现在拿出你准备的百数表。同桌合作先找出3的倍数,然后观察圈出的数,看看有什么发现?
(2)全班交流、讨论
①发现问题
学生展示圈好的百数表。
师:说说你们的发现?
预设:只看个位不行。
师:为什么不行?
横着看:个位上的数0-9都有,竖着看:个位上的数也是0-9都有。
②分析问题
师:同学们发现,在百数表中(课件出示),横着、竖着观察3的倍数,只看个位上的数,没有规律可循。横着、竖着看,看不出规律,换个角度思考,我们还可以怎样看?只看个位不行,我们还可以看什么?
学生自由发言,引导学生斜着看。
师:大家认为除了横着、竖着看,我们还可以斜着看,现在请你斜着观察3的倍数,你又有什么新发现?
生独立观察、发现。
【设计意图:因为3的倍数的特征比较隐蔽,根据探究2、5倍数的特征的经验,学生发现不了规律。在学生实在没人看出规律时,教师再提示学生可以换一个角度去观察、去思考,接着重新去探索。】
③解决问题
师:把你的发现和根据发现引发的猜想,在小组内交流一下,并想办法来验证你们的猜想。(可以用计算器)
小组合作交流后全班汇报。
(3)归纳3的倍数的特征
师:你们的发现和猜想是什么?
小组汇报,引导学生评价补充。
引导小结:斜着观察发现,每一行数的个位与十位的和分别是3、6、9、12、15,它们都是3的倍数,各个数位上的和是3的倍数,这个数也是3的倍数。
师:这个猜想对不对呢?你们是怎么验证这个猜想呢?
生汇报验证的过程。
师:举什么样的例子既简单又有代表性?
举的例子包含有两位数、三位数、四位数……,多举几个
师:有没有同学发现反例的,各个数位上的和是3的倍数,但是这个数却不是3的倍数。
师:通过验证,你们得出的3的倍数特征是什么,谁再来说一说?
归纳小结:一个数各个数位上的和是3的倍数,这个数就是3的倍数。
【设计意图:经过引导,学生进行二次探索,发现、猜想、验证并归纳出3的倍数的特征,积累数学探究的活动经验。】
3.巩固练习
(1)课本第11页“练习二的第3题”
圈出3的倍数。
92 75 36 206 65 3051 779 99999
111 49 165 5988 655 131 2222 7203
(2)课本第10页“做一做”
(3)小明拿了5个圆片,小军拿个6个圆片,用他们拿的圆片在数位表上摆数,谁拿的圆片摆出的数一定是3的倍数?谁拿的圆片摆出的数一定不是3的倍数?
请说明理由。
先独立完成,然后同桌合作操作验证。
4.全课总结
师:通过这节课的探究,我们获得了什么新知识?采用了什么样的研究方法?
在探究的过程中我们遇到了什么新问题?
小结:通过找数、观察、猜想、验证、归纳的研究方法,得出了3的倍数的特征。
师:为什么判断一个数是不是2或5的倍数,只要看个位数?而判断一个数是不是3的倍数,要看各位上数的和呢?请大家课下阅读第13页的“你知道吗”我们下节课进行交流。
【3的倍数的特征教案】相关文章:
《3的倍数的特征》教案02-27
3的倍数特征教学反思07-12
《3的倍数的特征》教学反思05-11
《3的倍数特征》教学反思04-11
《3的倍数的特征》教学反思02-11
3的倍数的特征教学反思02-11
3的倍数特征教学反思15篇04-07
《3的倍数的特征》教学反思 15篇04-11
倍数的特征教学反思04-21