六年级数学下册教案

时间:2024-01-07 09:50:27 教案 我要投稿

苏教版六年级数学下册教案(精品14篇)

  作为一名教学工作者,总不可避免地需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么大家知道正规的教案是怎么写的吗?下面是小编帮大家整理的苏教版六年级数学下册教案,希望对大家有所帮助。

苏教版六年级数学下册教案(精品14篇)

  苏教版六年级数学下册教案 篇1

  教学目标:

  1、知识与技能

  理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、过程与方法

  通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

  3、情感态度与价值观

  渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

  教学重点:

  掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

  教学难点:

  理解圆锥体积公式的推导过程。

  教具学具:

  不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

  教学流程:

  一、创设情境,提出问题

  师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

  生:我选择底面的;

  生:我选择高是的;

  生:我选择介于二者之间的。

  师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

  生:只要求出冰淇淋的体积就可以了。

  师:冰淇淋是个什么形状?(圆锥体)

  生:你会求吗?

  师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。

  二、设疑激趣,探求新知

  师:那么你能想办法求出圆锥的体积吗?

  (学生猜想求圆锥体积的方法。)

  生:我们可以利用求不规则物体体积的.方法,把它放进一个有水的容器里,求出上升那部分水的体积。

  师:如果这样,你觉得行吗?

  教师根据学生的回答做出最后的评价;

  生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?

  师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?

  小组中大家商量。

  生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

  师:此种方法是否可行?

  学生进行评价。

  师:哪个小组还有更好的办法?

  生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)

  师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。

  1、各小组进行观察讨论。

  2、各小组进行交流,教师做适当的板书。

  通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。

  3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)

  4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。

  师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?

  师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?

  生:大约是圆柱的一半。

  生:……

  师:到底谁的意见正确呢?

  师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!

  要求:

  实验材料,任选沙、米、水中的一种。

  实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。

  (生进行实验操作、小组交流)

  师:

  谁来汇报一下,你们组是怎样做实验的?

  通过做实验,你们发现它们有什么关系?

  生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。

  生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)

  师:同学们得出这个结论非常重要,其他组也是这样的吗?生略

  师:请看大屏幕,看数学小博士是怎样做的?(课件演示)

  齐读结论:

  师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?

  (小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则V圆锥=sh÷3即V圆锥=1/3sh

  师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?

  (噢!三种冰淇淋的体积原来一样大)

  联系生活,拓展运用:

  本练习共有三个层次:

  1、基本练习

  (1)判断对错,并说明理由。

  圆柱的体积相当于圆锥体积的3倍。( )

  一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是( )

  一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。( )

  (2)计算下面圆锥的体积。(单位:厘米)

  s=25.12 h=2.5

  r=4, h=6

  2、变形练习

  出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米,(1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?

  (2)、找一找这些计算方法有什么共同的特点? V锥=1/3Sh

  (3)、准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深?

  3、拓展练习

  一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

  整理归纳,回顾体验

  (通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)

  苏教版六年级数学下册教案 篇2

  教学内容:教材55页的例2和练一练,练习十二的第3--5题。

  教学目标:使学生经历探究根据给出的方向和距离在平面上画出相关物体的位置的方法,并能根据给出的方向和距离在平面图上准确画出相关物体的位置。

  重点难点:帮助学生进一步理解和掌握用方向和距离在平面图上表示物体位置的方法。

  教学准备:教学光盘

  教学过程:

  一、复习

  1、出示以灯塔为中心的平面图。

  (1)以灯塔为中心,灯塔的上、下、左、右分别表示什么方向?

  相机指出:东——E 西——W 南——S 北——N

  (2)在图上指出北偏东、北偏西、南偏东、南偏西的方向。

  2、如果知道灯塔北偏东40°方向20千米处是清凉岛,你能在图上表示出清凉岛的吗?这节课我们就研究根据给出的方向和距离在平面图上准确画出相关物体的位置的方法。

  二、展开

  1、明确清凉岛的`位置。

  (1)题目中告诉我们清凉岛在哪里?

  (2)你能在图上指一指清凉岛的大致位置吗?

  自己在图上指出来,并和同学交流一下。

  2、探究操作。

  (1)怎么在图上画出清凉岛的位置呢?

  在小组中讨论后全班交流。

  使学生认识到要先画出表示方向的射线,再确定灯塔到清凉岛的图上距离。

  (2)怎么画出北偏东40°的射线?

  各自用量角器在图上画一画,边画边思考:应该怎么摆放量角器,怎么看量角器上的度数?

  指名上黑板画,注意引导学生正确摆放量角器。

  让学生说说画表示方向的射线时要注意什么?

  (3)怎么确定灯塔到清凉岛的距离?

  图中告诉我们这幅图的比例尺是多少?表示什么意思?

  清凉岛在北偏东40°方向20千米处,图中清凉岛的位置在灯塔处沿北偏东40°方向的射线几厘米的地方?怎么想?

  各自计算后指名汇报:20÷5=4(厘米)

  追问:为什么用20÷5就是图上距离了?

  引导学生在图上标出清凉岛的位置,并与同学交流。

  3、试一试

  (1)出示题目要求:在灯塔南偏西30°方向15千米处是红枫岛,你能在图中表示出它们的位置吗?

  (2)各自独立完成。

  (3)组织全班交流,重点交流画南偏西30°方向的射线的方法和所确定的位置。

  三、练习

  1、讨论“练一练”

  (1)看图说一说:图上熊猫馆在猴山的什么方向,距离是猴山多少米?孔雀园呢?

  自己先算一算实际距离,然后与同座位的同学说一说。

  汇报交流:熊猫馆在猴山的什么方向?距离猴山多少米?怎么算出来的?连起来怎么说?

  孔雀园呢?

  引导学生说出:熊猫馆在猴山北偏西60°方向120米处。孔雀园在猴山南偏东35°方向90米处。

  (2)蛇馆在猴山南偏西45°方向150米处。怎么在图上表示出它的位置。

  各自在图上画出表示南偏西45°方向的射线,再算出图上距离,最后标出蛇馆的位置。

  练习后交流思考的方法和具体的画法。

  2、讨论练习十二第3题。

  (1)出示题目,理解题目所包含的信息。

  (2)飞机A在机场的什么位置?

  (3)飞机B、C、D、E分别在机场的什么位置?你能在途中表示出这四架飞机的位置吗?

  各自在图上表示出来,然后汇报交流。

  四、课堂作业:练习十二第4题和第5题以及补充习题相关练习。

  苏教版六年级数学下册教案 篇3

  教学目标

  1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

  2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

  3.培养学生的观察能力和概括能力。

  教学重点和难点

  1.正确理解倒数的意义及互为的含义。

  2.正确地求出一个数的倒数。

  教学过程设计

  (一)激发兴趣,引出概念

  1.投影。哪个同学和老师比赛?谁说得快?

  师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)

  2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。

  板书:乘积是1 两个数

  3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?

  生:两个数分子、分母颠倒位置就可以了。

  师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)

  4.举例说明,什么叫互为倒数?

  师:3是倒数这句话对吗?为什么?

  你们说得对,谁能说出几组倒数?

  同桌互相说,每人说两组。(指名说)

  问:怎样判断他们说得是否正确?

  生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于1,这两个数不是互为倒数。

  5.思考:1的倒数是几?为什么?0有倒数吗?为什么?

  板书:1的倒数是1。0没有倒数。

  (二)求一个数的倒数

  同学们已经掌握了倒数的意义,也能正确地判断出两个数是不是互为倒数。那么怎样找出一个数的倒数呢?

  1.出示前面的投影,找特点。

  观察互为倒数的两个数有什么特点,把观察到的结果同前后同学交流一下。

  问:谁来说说你发现了什么?

  生:互为倒数的'两个数,是分子、分母交换了位置。

  师:你们观察得很仔细。根据这一规律,你们试着做一做下面的题。

  学生说老师板书:

  3.同学们想一想,怎样求一个数的倒数?前后、左右的同学互相说一说。

  谁来给同学们汇报一下?(2~3名)

  板书:求一个数( )的倒数,只要把这个数的分子、分母调换位置。

  问:老师为什么要空出一些地方?

  生:0除外。

  问:为什么要加上0除外?(板书:0除外。)

  问:你们现在知道一上课时,老师为什么说得那么快了吗?奥秘在哪儿?你们已经知道了方法。如果给你一个数,你能很快写出它的倒数吗?比一比看。

  4.课堂练习。

  写出下面各数的倒数:

  35的倒数是怎么想的?

  问:2的倒数是几? 10的倒数呢?怎样又对又快地写出一个自然数的倒数呢?

  5.写出1.5的倒数,怎样做?

  (三)课堂总结

  我们学习了哪些知识?倒数的意义是什么?怎样判断两个数是不是互为倒数?怎样求一个数的倒数?还有什么问题?

  下面我们一起做几道题,检验一个我们这节课的知识是否真正掌握了。

  (四)巩固练习

  1.投影。

  问:怎么填得这么快,你是根据什么填的?

  问:①谁能回答?

  ②你根据什么填的?

  ③为什么根据倒数的意义填?

  看下一组题:

  问:怎么填?根据什么?与(2)有什么不同?

  师:所以做题时要认真审题,看清符号,千万不能出审题错误。

  2.下面哪两个数互为倒数?(课本24页第2题做在书上,用线连接,投影订正。)

  3.判断下面各题。对的举,错的举,并说明理由。

  投影出示:

  (1)乘积是1的两个数互为倒数。 ()

  (2)2.5和0.4互为倒数。 ()

  师:你们是怎么想的?

  生:2.5和0.4乘积是1,所以是对的。

  (3)因为1的倒数是1,所以0的倒数是0。 ()

  问:错在哪里?

  问:错在何处?

  问:这道题错在哪了?

  生:乘积是1的两个数互为倒数。这道题是3个数的乘积是1,所以错了。

  4.游戏。

  每个组第一个同学手里有一块小黑板,上面都有6个数字。每人写一个数的倒数,写完后传给你后面的同学。如果后面同学发现前面的题做错了,你可以改,再做下一题再向后传。最后一名同学做完后迅速把小黑板拿到前面来。哪一组又对又快做完,哪一组就是优胜。

  评比表扬优胜,找出谁给前面的同学改了错。

  (五)作业

  课本24页第3,5,6题。

  课堂教学设计说明

  1.这节课的设计思想首先从如何激发学生的学习兴趣入手。一上课就采取了师生比赛填空的方法,使学生产生疑问:老师为什么说得那么快?有什么窍门?学生的兴趣一下子起来了,他们迫切地想听完这节课,解决他们心中的疑惑。这样,一上课就抓住了学生的心。在课的最后,又用小组比赛的形式设计练习,把课堂气氛推向了高潮。这样既检查了学生知识的掌握情况,又培养了学生的集体荣誉感。

  2.这节课还注意充分发挥学生的主体作用。如,新授一开始,就让学生观察每道算式,找出共同点,引出倒数的意义。而后又让学生自己观察互为倒数的两个数的变化规律得出求一个数的倒数的方法。

  苏教版六年级数学下册教案 篇4

  第二课时

  教学目标:

  1、理解比例的意义。

  2、能根据比例的意义,正确判断两个比能否组成比例。

  3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

  重点难点:

  1、理解比例的意义,能正确判断两个比能否组成比例

  2、在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神

  教学过程:

  一、复习导入

  1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

  2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?希望这些知识能对你们今天学习的新知识有帮助。

  二、教学比例的意义

  1、认识比例

  (1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的比。

  (2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)

  (3)是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:6.4:4=9.6:6。或6.4/4=9.6/6

  数学中规定,像这样的式子就叫做比例。(板书:比例)

  (4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)

  (5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  (一)复习导入

  1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

  2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?希望这些知识能对你们今天学习的新知识有帮助。

  (二)教学比例的意义

  1、认识比例

  (1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的'比。

  (2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)

  (3)是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:6.4:4=9.6:6。或6.4/4=9.6/6

  数学中规定,像这样的式子就叫做比例。(板书:比例)

  (4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)

  (5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  苏教版六年级数学下册教案 篇5

  教学内容:

  课本第29——30页例2和“练一练”,练习五第6-9题。

  教学目标:

  1、使学生理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。

  2、通过操作,观察,培养学生的推理能力,发展学生的思维。

  教学重难点:

  一个数乘分数的意义以及计算方法。

  课前准备:

  多媒体课件

  教学过程:

  一、创设情境

  同学们,上节课我们学习了分数乘整数的计算方法,你想不想继续往下学?在学新课之前我们先来复习一下上节课的内容。

  复习:计算下面各题,并说出计算方法。

  3/7 ×2 5/8 ×1 1/10 ×5

  上面各题都是分数乘以整数,说一说分数乘以整数的意义以及计算方法

  二、探究新知

  今天,我们来学习一个数乘以分数的意义和计算方法。

  1、教学例2

  出示例2的图,然后出示条件:

  小芳做了10朵绸花,其中1/2是红花,2/5是绿花。

  引导学生理解:“其中12 “是什么意思?

  使学生明白是10朵中的1/2,然后出示问题

  红花有多少朵?

  引导学生看图理解:求红花有多少朵,就是求10朵的1/2

  让学生应用已有的.知识经验解决。

  学生可能列式:10÷2=5(朵)

  在此基础上指出:求10朵中的1/2是多少,还可以用乘法计算。

  教师说明要求,学生列式解答。

  在此基础上教学第(2)题,怎样解决

  (2)绿花有多少朵?

  可以先让学生在图中圈一圈,借助圈的过程理解求绿花有多少朵,就是把10朵平均分成5份,求这样的2份是多少,引导学生用以前的方法解决。

  10÷5×2=4(朵)

  在此基础上告诉学生:求10朵的2/5是多少也可以用10×2/5来计算。

  学生独立计算,订正时指出:

  计算10×2/5可以先约分

  2、引导学生进行比较

  通过对上述两个问题的计算,你明白了什么?

  小组讨论:10朵的2/5,也就是把10朵花平均分成5份,求这样的2份是多少。

  计算10×2/5时要先约分,实际上也就是先用10÷5,求出1份是多少,再乘2求出2份是多少。

  引导小结:求一个数的几分之几是多少,可以用乘法计算。

  三、巩固练习

  1、做练一练的第1题。

  先让学生根据题意涂色,然后列式解答。

  2、做练一练的第2题。

  通过填空使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。

  3、练习五第6、7题。

  四、课堂总结

  本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

  五、布置作业

  练习五第8、9题。

  教学反思:

  苏教版六年级数学下册教案 篇6

  教学要求:

  1、使学生认识解比例的意义,学会应用比例的基本性质解比例。

  2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。

  教学重点:认识解比例的意义。

  教学难点:应用比例的基本性质解比例。

  教学过程:

  一、复习引新

  1.做第32页复习题。

  出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定里的数;也可以用比的基本性质,把已知的一个比的前项、后项同时扩大。]让学生根据思考的方法在括号里填上数。指名口答结果,老师板书括号里的数。

  2.根据比例的基本性质把下面的比例改写成积相等的式子。(口答)

  4:3=2:1.5=x:4=1:2

  提问;根据积相等的式子,你能求出最后一题里的x吗?

  3.引入新课。

  在上面两题里,第1题是求比例里的未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。

  二、教学新课

  1、教学例2。

  出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。

  2、教学例3。

  出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的`基本性质写出积相等的式子,再求未知数x。

  3、教学“试一试”。

  提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。

  4、小结方法。

  提问:你认为根据比例的基本性质要怎样解比例?

  三、巩固练习

  1、做“练一练”。

  指名四人板演。其余学生分两组,每组两道题,做在练习本上。

  2、做练习六第8题。

  让学生做在课本上,指名口答。

  3、做练习六第l0题。

  学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。

  4、做练习六第11题。

  学生口答、老师板书,看能写出多少个比例。

  四、讲解思考题

  提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的积已知是1,你能求另一个内项吗?

  五、课堂小结

  这堂课学习的什么内容?应用比例的基本性质怎样解比例,

  六、布置作业

  课堂作业:练习六第6题第(1)~(4)题,第7题。

  家庭作业:练习六第6题第(5)、(6)题,第9题和思考题。

  教学目标:

  1、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,

  2、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

  3、培养学生的判断分析推理能力。

  苏教版六年级数学下册教案 篇7

  教学目标

  1、通过复习使学生把稍复杂的分数、百分数应用题的有关知识系统化。

  2、使学生牢固掌握分数、百分数应用题的基本数量关系和解题方法。

  3、通过运用知识解题,提高解决实际问题的能力。

  教学重点

  综合运用知识解答有关应用题

  教学准备

  课件,作业纸

  教学过程

  一、 导入

  谈谈学校的体育达标情况。

  出示;体育达标率为99.7%

  从这个条件,你能知道什么?你还想到了什么?

  揭题:分数、百分数应用题

  二、 教学新课

  (一)求分率

  1、出示学校体育达标情况:优秀650人,良好400人,合格250人。

  2、根据这些条件,你可以提出那些不同的有关分数、百分数的`问题?

  3、同桌合作,讨论完成。

  4、反馈

  (1)一个数是另一个数的几(百)分之几?

  例如:优秀率?650(650+400+250)=50%

  (2)一个数比另一个数多(少)几(百)分之几?

  例如:优秀比良好人数多几分之几?(650-400)400=5/8

  (二)求单位1或求分率所对应的量

  1、把问题当成条件,根据条件编分数、百分数应用题

  优秀650人,良好400人,合格250人,总人数1300人,优秀率50%,优秀比良好人数多5/8。

  2、小组合作完成

  3、反馈,并解答,想想有没有另外方法可以解答。

  ① 在体育达标中,我校1300人,优秀率为50%,优秀人数是多少人?

  130050%=650(人)(说说你的揭题思路)

  ② 在体育达标中,我校优秀率为50%,优秀人数为650人,全校有多少人?

  65050%=1300(人)

  ③ 在体育达标中,我校优秀人数650人,比良好人数多5/8,良好人数有多少人?

  650(1+5/8)=400(人)(说说你的解题思路)

  ④ 在体育达标中,我校良好人数400人,优秀人数比良好人数多5/8,优秀人数多少人?

  400(1+5/8)=650人

  4、观察这些应用题,找找相同点与不同点

  ①有共同的数量关系 单位1分率=分率对应的量

  ②单位1已知或未知

  5、你认为在解这类应用题是要注意什么?

  6、师小结:找准单位1的量,根据已知与未知判断方法。列出题中数量间的相等关系。

  (三)练习

  1、对比练习

  ① 学校运动队有30名男队员,女队员比男队员少1/6,女队员比男队员少多少人? 301/6=5人 (说说另外的方法)

  ② 学校运动队有25名女队员,女队员比男队员少1/6,女队员比男队员少多少人? 25(1-1/6)-25=5(人) (说说另外的方法)

  通过练习,你想说什么?(看清单位1,找准关系。)

  2、一题多解

  陈老师看一本200页的故事书,前5天看了1/4,照这样计算,还要几天可以看完?

  你能用几种方法就用几种方法,先独立完成,不能解答时与同桌交流,比比谁的方法多,谁的方法好?

  反馈、交流

  师总结:在解答时可以不用具体数量,直接用分率求,也可以用具体数量进行计算。通过比较可以发现用分率求比较简单。

  3、专题研究

  某种股票进期走势如下

  日期

  13日

  14日

  15日

  16日

  涨跌

  +5%

  +5%

  -5%

  -5%

  某股民用10000元炒该股,你认为该股民从13日购入到16日为止是亏还是盈,并说明理由。

  (四)课堂总结

  谈谈通过这节课的复习,说说你的想法

  苏教版六年级数学下册教案 篇8

  教学目标

  1.使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的已知一个数的几分之几是多少,求这个数的应用题。

  2.在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。

  教学重点和难点

  确定单位1,理清题中的数量关系。利用题中的等量关系用方程解答。

  教学过程

  (一)复习准备

  1.找出单位1。

  2.出示第88页的复习题。

  (1)画图分析并列式解答。

  (2)说说你是怎样思考和解答的?

  (3)学生分析教师板演线段图。

  3.导入:

  今天我们继续学习分数应用题。

  (二)学习新课

  现在老师把这道题改动一下。

  1.出示例6。

  千克?

  2.分析解答。

  (1)读题,找出已知条件和问题。

  (2)提问:这两道题有没有相同的条件?(有,都已知吃了这袋大米的

  不同的地方在哪儿?(前者已知一袋大米的重量,求还剩的重量,后者已知还剩的重量,求这袋米的重量。)

  (3)我们把这道题也用线段图表示出来,应从哪个条件入手找单位

  (4)谁来分析这个条件?

  成8份,吃了的占其中的5份。)

  学生分析的同时教师板演线段图:

  (5)上道题是已知单位1的重量,求还剩的重量,这道题呢?谁能把条件和问题标在图上?

  生在黑板上画出:

  (6)对比两道题的线段图说一说是怎样变化的。(条件和问题互相转化了。)

  (7)无论谁为条件,谁为问题,题中所涉及的数量关系变了吗?(没变)

  (8)说一说上题在解答的过程中涉及到哪些数量关系?(总重量-它

  (9)现在买来大米的重量是未知的,根据这个等量关系可以用什么方法解答?(列方程)

  (10)试着在练习本上列方程解答。

  (11)谁能说说你是怎样解答的?

  生口述:

  解 设买来大米x千克。

  答:买来大米40千克。

  题中的`等量关系式是什么?

  (买来的重量还剩几分之几=还剩的重量。)

  3.小结。

  通过刚才的分析解答,你认为这两道题实际上什么相同。(数量关系相同。)

  解答方法相同吗?为什么?

  (解答方法不同。单位1已知,可根据数量关系用算术方法解答;单位1未知,可用x代替,运用数量关系式列方程解答。)

  4.出示例7。

  烧煤多少吨?

  (1)读题,找出已知条件和所求问题。

  (3)画图分析解答。

  ①从这个条件可以看出题中是几个数量相比?(两个数量相比。)

  追问:哪两个?(四月份实际烧煤量和四月份计划烧煤量。)

  我们应把哪个数量看作单位1?为什么?(把原计划烧煤量看作单位1。因为和它相比,以它为标准,所以把它看作单位1。)

  ②画图时我们要用两条线段表示两个数量,先画谁呢?(先画原计划烧煤吨数。)

  下一步画什么?(实际烧煤吨数。)

  指名回答:把计划烧煤量看作单位1,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量的

  这两条线段谁为已知?谁为未知?

  在提问回答的过程中教师板演线段图:

  ③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?

  (计划烧煤吨数-节约吨数=实际烧煤吨数。)

  计划烧煤吨数未知怎么办?(设计划烧煤吨数为x,用方程解答。)

  ④试做在练习本上。

  ⑤反馈:说说你的解答方法及依据。

  解 设四月份原计划烧煤x吨。

  答:四月份原计划烧煤135吨。

  (1)学生独立画图分析并列式解答。

  (2)反馈提问:

  ②你用什么方法解答的?依据的等量关系式是什么?

  (三)课堂总结

  今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?

  (数量间的等量关系相同,解答方法不同。)

  (四)巩固反馈

  (1)课本第91页的第2题。

  (2)根据列式补充条件:

  (五)布置作业

  课本第91页第1,3题。

  课堂教学设计说明

  本节课的内容是在学习了已知一个数的几分之几是多少,求这个数的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。

  由于新旧知识联系很密,因此本节课在教案设计上抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在画图分析的过程中抓住数量关系相同,只是已知和问题发生了转化,引导学生利用数量间的等量关系用方程解答。

  在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

  苏教版六年级数学下册教案 篇9

  教学目标:

  1.知识与技能目标

  能够正确运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

  2.过程与方法

  在探作中完成圆锥体积公式的推导。在合作探究中探明等底等高圆柱体积与圆锥体积内在联系。

  3.情感态度与价值感

  在探索合作中感受教学与我生活的密切联系,让学生感受探究成功的快乐。

  教学重点:

  掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。

  教学难点:

  理解圆锥体积公式的推导过程及解决生活中的实际问题

  学习者特征分析:

  接受教育者是小学六年级的学生。

  教学策略选择与设计:

  (1)引导学生主动建构知识是新课标的重要理念,六年级的学生尽管具备了一定的逻辑思维能力,但感性知识对于他们来说还是非常重要的。因此,教学中通过引导学生通过自主探索、解决问题,真正掌握所学知识,发展数学能力,真正做到“动手操作、体验成功”

  (2)以实验要求为主线,既动手操作,又动脑思考,努力探索圆锥体的计算方法。

  (3)问题解决为主的教学策略:通过演示、小组交流、动手操作、感念辨析等方式,本课从具体的学生感兴趣的活动中,让学生自己发现问题,提出问题,体验探索成功的快乐;提高学生解决问题的能力,巩固所学知识。

  教学资源与工具设计:

  (1)每位同学准备等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、6水槽红颜色水。直尺6把。

  (2)教师自制的多媒体课件;

  教学过程:

  一、复习旧知,课前铺垫

  1.怎样计算圆柱的体积?

  指名回答,教师板书:圆柱体的体积=底面积×高。

  2.一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?

  指两名板演,全班齐练,集体订正。

  二、提出质疑,引入新课

  圆锥有什么特征? 它的体积如何计算呢?

  今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)

  三、动手操作 ,获得新知

  1. 探讨圆锥的体积公式

  教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:

  学生回答,教师板书:

  圆柱——(转化)——长方体

  圆柱体积公式——(推导)——长方体体积公式

  教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。

  (1) 提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)

  (学生得出:底面积相等,高也相等。)

  底面积相等,高也相等,用数学语言说就叫“等底等高”。

  (板书:等底 等高)

  (2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?为什么?

  教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)

  用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

  (3) 学生分组做实验。

  谁来汇报一下,你们组是怎样做实验的'?

  你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)

  同学们得出这个结论非常重要,其他组也是这样的吗?

  我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

  (4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

  学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了砂子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

  为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

  在等底等高的情况下。

  (老师在体积公式与“等底等高”四个字上连线。)

  现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

  教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?

  得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3.

  小结:今后我们求圆锥体体积就用这种方法来计算。

  (5)应用巩固

  1.出示例题学生读题,理解题意,自己解决问题。

  例 一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

  学生完成后,进行小组交流。

  你是怎样想的和怎样解决问题。(提问学生多人)

  教师板书:

  1/3 ×19×12=76(立方厘米)

  答:它的体积是76立方米

  2. 练习题。

  一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

  3.出示例2:要求学生自己读题,理解题意思。

  有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1.5米。你能计算出这堆小麦的体积吗?

  (1)提问:从题目中你知道什么?

  (2)学生独立完成后教师提问。并回答同学的质疑:3.14×()×1.5表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思? 4.比较:例1和例2有什么地方不同?

  (1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积。

  四、综合练习,发展思维

  1.一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?

  2.选择题。

  每道题下面有3个答案,你认为哪个答案正确就用手指数表示。

  (1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是(    )

  立方米 3a立方米 9立方米

  (2)把一段圆钢切削成一个的圆锥体,圆柱体体积是6立方米,圆锥体体积是(    )立方米

  6立方米 3立方米 2立方米

  3.学生操作

  看看我们的教室是什么体?(长方体)

  要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积?(小组讨论)

  指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m.并板书出来,再比较怎样放体积的圆锥体。

  五、课后小结,归纳知识

  这节课你有什么收获?哪个同学、哪个小组学习?

  六、作业布置,巩固新知

  1、本节课后第3、4、5题。

  2、回去观察你生活身边有哪圆锥物体?测量计算它们的体积。下节课交流汇报。

  苏教版六年级数学下册教案 篇10

  教学目标

  1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。

  2.复习用正比例方法解答应用题。

  3.复习用反比例方法解答应用题。

  教学重点和难点

  判断两种相关联的量成什么比例;确定解答应用题的方法。

  教学过程设计

  (一)复习数量关系

  判断两种相关联的量成不成比例,确定解答应用题的方法。

  1.被除数一定,除数和商。

  2.一条路,已修的和未修的。

  3.梯形的上、下底长度一定,梯形的面积和它的`高度。

  4.每块砖的面积一定,砖的块数和铺地面积。

  5.挖一条水渠,参加的人数和所需要的时间。

  6.从甲地到乙地所需的时间和所行走的速度。

  7.单位面积一定,播种面积和总产量。

  8.时间一定,速度和距离。

  9.订阅《北京儿童》的份数和所需钱数。

  (二)复习应用题

  1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?

  第一步,先找对应关系:

  8天56台

  31天?台

  第二步,判断成什么比例?(每天生产的台数一定,成正比例。)

  请你在对应关系的旁边写上正字,决定用正比例方法做。

  解 设到月底可生产x台。

  x=217

  答:照这样速度月底可生产217台。

  2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?

  第一步,先找对应关系:

  20页600本

  24页?本

  第二步,判断成什么比例?(纸张总页数一定,成反比例。)

  请你在对应关系的旁边写上反字,决定用反比例方法做。

  解 钉成24页一本的练习本,可钉x本。

  24x=20600

  x=500

  答:如果钉成24页一本的练习本可钉500本。

  学生独立地用老师教的分析应用题的思路和方法在本上做两道题。

  (1)火车3小时行135千米,用同样的速度5小时可以行多少千米?

  (2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?

  (三)练习解答两步的比例应用题

  1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?

  黑板上的对应关系变成:

  解 设x天读完。

  (6+4)x=630

  10x=630

  x=18

  答:18天可以读完。

  2.在第1题的基础上,改变问题。

  李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?

  对应关系:

  解 设如果每天多读4页,x天读完。

  (6+4)x=630

  10x=630

  x=18

  30-18=12(天)

  答:提前12天读完。

  (指导学生分析、比较。)

  以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)

  练习(学生独立分析,做题。)

  1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了1.2h到达乙城,甲城到乙城有多少千米?

  解 设甲城到乙城有x千米。

  3x=105(3+1.2)

  x=147

  答:甲城到乙城有147km。

  2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的几天可以收割完?

  解 设剩下的x天可以收割完。

  90x=554

  x=3

  答:剩下的3天可以收割完。

  (再用间接设的方法做两道题。)

  1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?

  1642=24x

  42-x

  2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?

  12x=4815

  x-48

  (四)总结

  这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。

  课堂教学设计说明

  解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。

  第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。

  第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。

  第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。

  苏教版六年级数学下册教案 篇11

  教学目标

  1.结合丰富的实例,认识反比例。

  2.能根据反比例的意义,判断两个相关联的量是不是成反比例。

  3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。

  教学重点

  认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

  教学难点

  认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

  教学过程

  一、复习

  1.什么是正比例的量?

  2.判断下面各题中的两种量是否成正比例?为什么?

  (1)工作效率一定,工作时间和工作总量。

  (2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。

  (3)正方形的边长和它的面积。

  二、导入新课

  利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

  三、进行新课

  认识加法表中和是12的直线及乘法表中积是12的曲线。

  引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

  让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

  两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。

  同桌交流,用自己的语言表达。

  写出关系式:速度×时间=路程(一定)

  观察思考并用自己的语言描述变化关系乘积(路程)一定。

  把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。

  写出关系式:每杯果汁量×杯数=果汗总量(一定)

  以上两个情境中有什么共同点?

  4.反比例意义

  引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

  教学内容:

  苏教版义务教育课程标准实验教科书第60-61页

  教材分析:

  在本节课之前,学生们已经基本掌握了“用方向和距离描述、画出相关物体位置和描述简单的行走路线”方法。“实际测量”是一次实践与综合应用,主要目的是让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。

  “实际测量”的主要内容包括:用工具测量两点间的距离,步测和目测。

  在“用工具测量两点间的距离”的内容中,先学习在地面上测量两点间的距离,再用卷尺或测绳分段测量出相应的距离;“步测和目测”的内容中,介绍了得到步长的方法以及用步测的方法测定一段距离;目测重在介绍目测的方法。

  教学目标:

  ⑴使学生会用工具测量两点间的距离、步测和目测的方法。

  ⑵在用工具测量两点间的距离、步测和目测的过程中,进一步感受所学知识在生活中的应用价值,发展空间观念。

  ⑶使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察日常生活现象,解决日常生活问题的意识。

  教学重点:

  掌握“用工具测量两点间的距离、步测和目测”的方法。

  教学难点:

  掌握“用工具测量两点间的距离、步测和目测”的方法。

  教学具准备:

  卷尺、标杆、50米跑道。

  教学流程:

  一、揭示课题,明确学习内容。

  ⑴揭示课题。

  板书课题——实际测量。让学生说说对课题的理解。

  ⑵了解测量工具。

  让学生说说知道的测量工具;预设:卷尺、测量仪、标杆等。

  ⑶明确学习内容。

  测量地面上相隔较远的两点间的距离;步测和目测。

  二、了解测量知识,为实践活动作准备。

  ⑴测量相隔较远的两点间的距离。

  理解测定直线的意义:如果不先测定直线就去测量相隔较远的两点间的距离,分段测量时容易偏离两点间的连线,从而降低测量结果的精确程度。

  理解测定直线的方法:把相隔较远的两点间的连线分成若干小段,以便于工具测量;

  观察教材上的图片,让学生说说怎样在A、B两点间测定直线的?(2根以上的标杆成一线时)

  掌握测定直线的步骤:测定直线;分段量出;记录计算。

  ⑵学习步测的方法。

  理解步测在实际生活中应用:在没有测量工具或对测量要求不十分精确是,可以用步测。

  掌握步测的方法:用步数×每一步的距离。

  理解步测的关键:确定平均步长。

  掌握确定平均步长的方法:让学生说说确定平均步长的方法,形成一般测定平均步长的过程,量出一段距离(50米),反复走几次,记录数据,计算步长。

  理解实践活动的内容和方法:测定平均步长;步测篮球场的长和宽。

  ⑶学习目测的方法。

  观察黑板,说说黑板的长和宽,交流得到黑板的长和宽的思考过程。预设:一米一米数出;比较得到;等等。

  目测较短距离:人书本的长和宽;课桌的长和宽等等;

  理解目测较长距离的方法:先量出一段距离(50米),每隔10米插上标杆,观察、理解;用目测发方法测定教学楼的长度。

  三、实践活动。

  ⑴测定直线。

  ⑵确定平均步长。

  ⑶步测篮球场的长和宽。

  ⑷目测教学楼的长度。

  第三单元分数除法

  第10课时按比例分配的实际问题

  教学内容:

  课本第59--60页例11,“试一试”和“练一练”,完成练习十第1-3题。

  教学目标:

  1、使学生理解按比例分配实际问题的意义。

  2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。

  教学重难点:

  理解按比例分配实际问题的意义,掌握解题的关键。

  课前准备:

  课件

  教学过程:

  一、创设情境、引入新知

  根据信息填空:

  (1)男生有31人,女生有21人,男生人数是女生人数的。

  (2)红花的朵数与黄花朵数的比是3:2。你能联想到什么?

  师:数学与生活是密切联系的,今天这节课就来研究前两节所学的比在生活的运用。

  二、探究新知

  1、出示例11中的实物图及例题。

  (1)让学生阅读题目后说说你知道哪些信息?

  (2)让学生说说你是怎样理解红色与黄色方格比这句话?(先同桌相互说一说)然后全班交流,学生可能有以下两种想法:

  ①红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色;

  ②红色与黄色方格数的比是3:2,红色方格占总格数的3/5,黄色方格占2/5。

  ③红色与黄色方格数的比是3:2,也就是红色方格数是黄色方格数的3/2,或是黄色方格数是红色方格数的2/3。

  师说明:在实际生活中,很多情况下,并不只是把一个数量平均分,使每一部分都一样多,而是在平均的基础上,按一定的比进行分配,这一题就是把30按3:2进行分配。

  学生尝试解答,用你学过的知识来解答例2,并在学生小组内说说你是怎样想的?

  说说你是怎样做的?

  方法一:3+2=530÷5×330÷5×2

  方法二:30×3/530×2/5

  2、比较一下这几种方法中你理解的哪种方法,你是怎样理解的讲给同桌听一听?

  说说这种方法的思路?(红色与黄色方格数的比是3:2,就是说,在30个方格里,红色方格数占3份,黄色方格数占2份,一共是5份,也就是说红色方格占总格数的,黄色方格占)

  如何进行检验?自己检验请你检验一下同组同学做得对不对?(可以把求得的红色和黄色方格数相加,看是不是等于总方格数。或者可以把求得的红色和黄色方格数写成比的形式,看比简后是不是等于3:2)

  3、完成练一练第1题。

  4、完成试一试。

  出示试一试。

  提问:“按各小组人数的比分配”是什么意思?你想到了什么?

  5、归纳(讨论)。

  (1)比较例题与试一试题目在解答方法上有什么共同特点?

  (2)怎么解答?

  求总份数,各部分量占总数量的几分之几,最后求各部分量。

  (3)教师指出:用这种特定方法解答的分配问题叫做“按比例分配”问题(板书课题)

  三、应用比的知识解决实际问题

  1、练一练第2题。

  独立完成后进行交流

  指出:把180块巧克力按照三个班的人数来分配,就是按怎样的比进行分配?

  2、练一练第3题。

  独立填表,完成后集体核对。

  3、练习十第1题。

  四、课堂总结

  这节课学过以后,你有什么收获?

  五、布置作业:

  练习十第2、3题。

  教学反思:

  教学过程:

  (一)导引探究,由表及里

  教学例1,认识成正比例的量。

  1.谈话引出例1的表格。一辆汽车在公路上行驶,行驶的时间和路程如下表。

  时间(时)123456……路程(千米)80160240320400480……

  在让学生说一说表中列出了哪两种量之后,教师引导学生逐步探究:行驶的时间和路程有关系吗?行驶的时间是怎样随着路程的变化而变化的?行驶的时间和路程的变化有什么规律?(学生探究第3个问题时,教师可进行适当的引导,如引导学生写出几组路程和时间对应的比,并要求学生求出比值。)

  2.引导学生交流并聚焦以下内容:路程和时间是两种相关联的量,路程随着时间的变化而变化;时间扩大、路程也扩大,时间缩小、路程也缩小;路程和时间的比值总是一定的,也就是“路程/时间=速度(一定)”(板书关系式)。

  3.教师对两种量之间的关系给予具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间咸正比例(板书“路程和时间成正比例”),行驶的路程和时间是成正比例的量。

  4.让学生根据板书完整地说一说表中路程和时间成什么关系。

  [数学概念是客观现实中数量关系和空间形式的本质属性在人脑中的反映。数学概念的来源一般有两个方面:一是直接从实际经验中概括得出;二是在原有的初级概念基础上通过新旧概念的相互作用而获得。正比例概念的形成属于前者,因此例1的教学可以充分利用表格,让学生通过对表中数据的观察和分析,由浅入深,由表及里,逐步认识成正比例的量的特点。本环节先让学生观察例题中的表格,说一说表中列出的是哪两种量;接着用三个引探性的问题逐步引导学生在探究学习活动中发现路程与时间之间的关系及变化趋势;最后,聚焦、明晰这两种量之间的关系,让学生初步认识正比例的特点。这样的教学有利于学生经历正比例概念的形成过程。]

  (二)自主探究,尝试归纳

  出示例2:汽车从甲地开往乙地,行驶的速度和所用时间如下表,它们之间有什么规律?

  速度(千米/时)406080100120……时间(时)3020151210……

  1.出示供学生自主探究的问题:当速度变化时,时间是否也随着变化?这种变化与例1中两种量的变化有什么不同?速度和时间的变化有什么规律?

  2.引导学生在自主探究、交流中认识成反比例的量的特点:速度和时间是两种相关联的量,速度变化,时间也随着变化;例2中两种量的变化规律是:一种量扩大,另一种量反而缩小;速度和时间的变化规律是它们的乘积一定,可以表示为“速度×时间=路程(一定)”(板书关系式)。

  3.在发现变化规律的基础上,让学生仿照正比例的意义,尝试归纳反比例的意义,引出反比例概念(板书“速度和时间成反比例”)。

  [从生活原型中逐步抽象,从已有概念中衍生,从数学概念的学习中迁移等,都是建构数学概念的有效方法。有了学习正比例的基础,反比例意义的学习应更加体现学生的学习自主性。本环节除了让学生发现成反比例的量之间的关系,还让学生仿照正比例的意义,尝试归纳反比例的意义。这样能真正发挥学生的学习主动性,让学生在自主探究过程中经历反比例概念的.形成过程。]

  (三)对比探究,把握本质规律

  1.将例1、例2教学时探究发现的内容用多媒体呈现出来,揭示正比例、反比例的内涵本质。

  多媒体呈现:

  例1路程/时间=速度(一定)

  路程和时间成正比例

  例2速度×时间;路程(一定)

  速度和时间成反比例

  2.探究活动。

  (1)让学生仿照例1完成教材第62页“试一试”(题略),仿照例2完成教材第65页“试一试”(题略)。

  (2)引导学生将成正比例的量与成反比例的量进行对比探究,找出它们的相同点与不同点。

  [例1中路程和时间相依互变,速度不变,例2中速度和时间相依互变,路程不变,这样的对比有利于学生从变中看到不变;例1中速度是不变量,例2中路程是不变量,同样都有不变量,例1中路程和时间成正比例,而例2中速度和时间成反比例,这样的对比有利于学生从不变中看到变。变与不变关键要抓住本质——“比值一定”还是“积一定”。对比探究活动旨在让学生把握概念内在的联系与区别,形成正比例、反比例概念的认知结构。]

  (3)引导学生尝试用字母表达式对正比例的意义和反比例的意义进行抽象概括。

  启发学生思考:①如果用字母x和y分别表示两种相关联的量、用k表示它们的比值,正比例关系可以怎样表示?②如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以怎样表示?

  根据学生的回答,板书关系式“正比例y/x=k(一定)”,“反比例x×y=k(一定)”。

  [概念符号化在概念教学中很重要。《数学课程标准》明确指出,符号感主要表现之一是能从具体情境中抽象出数量关系和变化规律,并用符号来表示。学生概念形成的主要过程为:感知具体对象阶段、尝试建立表象阶段、抽象本质属性阶段、符号表征阶段、概念运用阶段。在符号表征阶段,学生尝试用语言或符号对同类对象的本质属性进行概括。本阶段教学是概念符号表征阶段,在这个阶段之前,学生对正比例、反比例的本质属性及特征有一定的认识,可以开始尝试用符号对正比例、反比例进行概括。“y/x=k(一定)”,“x×y=k(一定)”,是对正比例、反比例意义的抽象表达,是揭示正比例、反比例数量关系及其变化规律的数学模型。]

  3.组织对比性练习。

  (1)成正比例、反比例的对比练习。笔记本的单价、购买的数量和总价如下表:

  表1

  数量/本2030405060……总价/元3045607590……

  表2

  单价/元1。52456……数量/本4030151210……

  在表1中,相关联的量是和,随着变化,是一定的。因此,数量和总价成关系。!

  在表2中,相关联的量是和,随着变化,是一定的。因此,单价和数量成关系。

  [将获得的新概念推广到其他的同类对象中去,是概念运用的过程,也是进一步理解概念的过程。表1是成正比例的量,表2是成反比例的量,这种正比例与反比例的对比,有利于学生进一步加深对正比例、反比例意义的认识,对正比例或反比例中两种量变化趋势和规律的把握。]

  (2)成比例与不成比例的对比练习。

  下面每题中的两个量哪些成正比例,哪些成反比例?哪些既不成正比例也不成反比例?

  ①圆的直径和周长。

  ②小麦每公顷产量一定,小麦的公顷数和总产量。

  ③书的总页数一定,已经看的页数和未看的页数。

  [这一类型题比较抽象,学生只有对正比例、反比例的意义有了较深刻的理解,才能正确地作出判断。这样的练习有助于学生从整体上把握各种量之间的关系,有助于进一步提高学生判断成正比例、反比例的量的能力。此题型在新授课上还只是让学生初步接触,重点训练还要放在练习课。]

  (3)从生活中寻找成正比例、反比例的量的实例,进行对比练习。

  [举例练习是概念巩固阶段的重要组成部分。如果让学生独立找生活中成正比例、反比例的量的实例,可能有一定难度,我们可采用小组讨论的形式进行。此练习还可以让学生感受到数学与生活的联系。

  苏教版六年级数学下册教案 篇12

  教学重点:

  比例尺的意义。

  教学难点:

  将线段比例尺改写成数值比例尺。

  教学过程:

  一、引入

  教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?

  请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

  二、教学比例尺的意义。

  1.什么是比例尺(自学书上内容,学生交流汇报)

  出示图例1

  在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

  2.介绍数值比例尺

  让学生看图。

  “我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。

  3.介绍线段比例尺

  还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。”

  4.介绍放大比例尺

  出示图例2

  “在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。“

  学生看图,“你知道比例‘2:1’表示什么意思吗?这也是一个比例尺,图上距离与实际距离的比是2:1

  比较这个比例尺与上面的比例尺有什么相同点,什么不同点。

  相同点:都表示图上距离与实际距离的比。

  不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。

  5、总结

  比例尺书写特征。

  (1)观察:比例尺1:100000000

  比例尺1/5000000

  比例尺2:1

  (2)看一看,比例尺书写形式有什么特征。

  为了计算方便,通常把比例尺写成前项或后项是1的比。

  6、比例尺的化简和转化

  “我们再看一下北京地图上的这个线段比例尺,这里图上距离:实际距离=1厘米:50千米,你会把这个线段比例尺转化成数值比例尺吗?”

  说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

  “是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作

  “50千米等于多少厘米?”学生回答后,教师把50千米改写成5000000厘米。

  “现在单位统一了,是多少比多少,怎样化简?”

  图上距离:实际距离=1:5000000

  教师出示比例尺不同的地图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

  最后教师指出

  ①比例尺与一般的尺不同,这是一个比,不应带计量单位。

  ②求比例尺时,前、后项的长度单位一定要化成同级单位。如10厘米:10米,要把后项的米化成

  ③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。

  三、巩固练习

  1、做一做。

  过程要求

  (1)学生独立完成。(要求写出数值比例尺)

  (2)同学之间互相交流。

  (3)汇报交流结果。

  2、完成课文练习八第1~3题。让学生完成第48页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“1”。

  四、课堂小结

  (本课要点:1、比例尺的意义;2、线段比例尺和数值比例尺的互化;3、注意单位名称的改写,如把千米和厘米的换算就是扩大或缩小100000倍的'关系。)

  教学目标:

  1、理解比例的意义,会根据比例的意义组成比例。

  2、经历引导学生参与知识的形成过程,发现过程和运用过程,体验数学与日常生活的紧密联系。

  3、感受生活中处处有数学,激发学习数学的兴趣。

  教学重、难点:理解比例的意义。

  教学方法:自主合作,讨论交流。

  教学过程:

  一、复习旧知,目标展示。

  1、上学期,我们学习了有关比的知识,你能说说什么是比吗?举例说明比各部分的名称。

  2、今天,我们要在比的基础上学习一个新知识(板书:比例)。

  3、看到这个数学新名词——比例,你的脑子里产生出哪些问题?

  【老师有选择地板书如:什么是比例(或比例的意义),比例的组成及名称,比和比例的区别等。】

  4、同学们提的这些问题都很有价值。这节课,我们就来研究这些问题。

  二、合作交流,探究新知。

  〈一〉教学比例的意义。

  1、我们从学习数学开始,几乎天天都用到等号,你能说出几个含有等号的式子吗?说说等号在式子中的作用是什么?(连接左右两边相等的两部分)

  2、自主探究,初步形成印象。

  (1)两个比相等可以用等号连接吗?

  (2)你能在练习本上写出两个可以有用等号连接的比吗?

  (3)和你小组内同学交流你写出的式子,并说明理由。

  (4)学生汇报。

  3、形成概念。

  (1)像黑板上我们所列出的这些式子叫做比例。

  (2)你能用自己的话说说什么是比例吗?

  (3)老师小结:表示两个比相等的式子叫做比例。

  4、深化概念,巩固练习。

  (1)你认为组成比例的关键是什么吗?(两个比的比值相等)

  (2)你能抓住这个关键写几个比例式吗?(2分钟的时间看谁写得多,并且和别人的不一样。)

  〈二〉教学比例各部分的名称。

  1、比例各部分有自己的名称?你知道吗?

  (预设:学生如果不清楚的话,教师说明比例各部分的名称)

  2、找出黑板上这几个比例的内、外项。

  3、比可以写成分数的形式,比例也可以写成分数形式。

  (1)把黑板上的这几个比例式写成分数形式。(先小组讨论,再全班交流)

  (2)找出它们的内、外项。

  (3)你发现什么规律了吗?

  〈三〉比和比例的区别。

  1、小组讨论、交流。

  2、全班交流。

  3、小结:比例是由两个相等的比组成的式子。比例有4项,比有2项。

  三、巩固练习。

  1、填空。

  (1)、表示()的式子叫做比例。

  (2)、判断两个比能否组成比例,要看它们的()是不是相等。

  (3)、写出比值是的两个比():()和():(),写成比例是()。

  (4)、选取48的4个因数组成一个比例是()。

  2、课本32页国旗尺寸成比例吗?

  3、课本33页“做一做”第2题。(用右图中的4个数据可以组成多少个比例?)

  (1)学生独立思考后,小组交流。

  (2)全班交流。

  (3)教师引导:比例的变化有规律可循吗?若有能用已学的知识解释吗?如不能解释,课后请预习课本34页。下节课我们就来研究这个问题。

  苏教版六年级数学下册教案 篇13

  教学内容:教科书94页“练习与实践”的第7~10题。

  教学目标:

  1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。

  2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。

  教学重点:

  使学生加深认识比例的意义和基本性质。

  教学难点:

  能判断两个比能能不能组成比例,能比较熟练地解比例。

  教学准备:多媒体

  教学过程:

  一、与反思

  今天我们一起来复习正比例和反比例相关知识。

  怎样判断两种量是否成正比例或反比例关系?

  学生交流

  二、练习与实践

  1.完成“练习与实践”第7题

  让学生先独立完成,再点评。

  2.完成“练习与实践”第8题

  引导学生列举几组对应的数值

  再分析每组中两个数的关系,再判断。

  3.完成“练习与实践”第9题

  第1小题让学生根据图中标出的点的'位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)

  第2小题让学生在教材的方格图上描点、连线,

  引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。

  体会数形结合在解决问题方面的价值。

  4.完成“练习与实践”第10题

  什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)

  怎样求图上距离?怎样求实际距离

  学生量出的图上距离。

  利用的线段比例尺,求出相应的实际距离

  三、

  通过学习你有什么收获?

  学生交流

  四、作业

  完成《练习与测试》相关作业。

  板书设计

  关于正比例和反比例的复习

  苏教版六年级数学下册教案 篇14

  教学目标:

  知识技能:

  1、使学生理解和掌握圆锥的特征及各部分名称。

  2、使学生掌握测量圆锥的高的方法。

  3、培养学生的观察能力、操作能力和思维能力,发展学生的空间观念。

  过程方法:创设情景,由学生自己提出问题,通过自主探索,合作交流,学生动口、动手又动脑,主动参与知识的形成过程

  情感态度:培养学生积极参与、勇于探索、敢于创新的自主学习精神,发展学生的思维能力,培养学生学习数学的兴趣

  教学过程:

  一、回顾强化

  课件演示:出示一支圆柱形铅笔。

  教师问:同学们这支铅笔是什么形状的?你能说说它具有什么特征吗?

  生:是圆柱体。它的特征是:圆柱有三个面,有上下两个底面,是完全相同的两个圆,有一个侧面是曲面,两个底面之间的距离叫做圆柱的高,有无数条高。圆柱侧面展开是长方形。

  二、创设情境,激情导入

  师:圆柱的特征同学们掌握得非常好,今天我们学习一种新的几何形体,请同学们仔细观察屏幕

  课件:用转笔刀削铅笔,把削成的笔尖部分(圆锥体)垂直切下来。

  问:这还是圆柱体吗?被切下来的是什么几何形体呢?

  生:不是。是圆锥体。

  师揭示课题:我们把象这样的几何形体叫做圆锥体,简称圆锥,我们所学的圆锥都是直圆锥。今天我们就来学习《圆锥的认识》。板书课题

  三、探究体验。

  1、列举,提出问题。

  同学们想一想,在日常生活和生产劳动中,你都看到过哪些物体的形状是圆锥体的?你也可以把课下收集的圆锥形物体拿出来给大家看。

  生1:冰激凌外壳的形状是圆锥体的。

  生2:有的帽子的形状是圆锥体的。

  生3:漏斗的形状是圆锥体的。

  生4:盖房子用的铅锤的形状是圆锥体的。

  ……

  同学们很善于观察,请同学们拿出圆锥体模型,看一看、想一想,你都想知道有关圆锥的哪些知识?

  生可能提出:

  1、我想知道圆锥的特征。

  2、我想知道圆锥有几条高?它的高指的是什么?

  3、我想知道圆锥的侧面展开是什么形状的?

  4、我想知道圆锥的体积应怎样计算?

  5、我想知道圆锥的表面积该怎样计算?

  2、自主探究、解决问题。

  师:请同学们拿出圆锥体模型,看一看、摸一摸、玩一玩、也可以猜一猜你能发现什么?

  生:手拿圆锥体模型观察、想。

  师:把你观察到的,感觉到的告诉给你小组的同学,小组同学共同探讨刚才大家提出的问题

  小组交流、讨论。教师深入小组和学生一起进行探讨。

  师:哪组愿把你们的研究成果展示给大家。

  生汇报:(预设展示过程)

  A、圆锥的特征。

  ①我们发现圆锥上面细,下面粗。

  ②圆锥有一个尖尖的部分,摸起来很扎手。我们把它叫做顶点。

  ③圆锥有一个弯曲光滑的面,我们可以把它叫做侧面。这个面是曲面。

  ④圆锥有一个圆形的面,我们可以把他叫做底面。

  ⑤我们还发现圆锥的底面朝下立者,尖朝下不立者。

  ⑥圆锥在桌子上滚动时,既不朝前走,也不朝后走,它总是绕着一点画圆。

  B、圆锥的高

  ①我们发现圆锥的高是从圆锥的顶点到底面之间的距离。

  ②圆锥的高是从圆锥的顶点到底面圆心的距离,我们认为圆锥只有一条高。

  ③圆锥的高是圆锥的底面到顶点的线段的长。

  ④我们认为他们说的不准确,圆锥的`高是从圆锥的顶点到底面的距离。它应该有无数条高。因为从圆锥的顶点引一条与底面平行的线,这样就可以作出无数条高。

  师:同学们对于圆锥的高有几种不同的看法,谁的说法是正确呢?请同学们小组进行讨论。

  生:小组进行讨论。

  师:哪些同学同意某某的说法。老师也同意这位同学的说法。请同学们仔细看屏幕。(课件演示圆锥的高)

  师:这条黑色的虚线就是圆锥的高。谁愿意说说圆锥的高指的是什么?

  生试说圆锥的高:

  圆锥的高是从圆锥的顶点到底面圆心的距离。圆锥只有一条高。因为圆锥只有一个顶点和一个底面圆心。

  师:请同学们打开书42页看第三自然段最后一句话,谁来读。

  (指名读、齐读高的定义)

  师:哪一组还有发现。

  C、圆锥的侧面展开。

  我们发现圆锥的侧面展开是扇形。(举起给同学们看,一名同学把展开的图形贴在黑板上)

  教师用课件演示侧面展开的过程。

  师:通过刚才的学习,我们掌握了圆锥各部分的名称。请同学们拿起圆锥体模型,小组同学互相说说圆锥各部分的名称。

  小组互相说圆锥各部分的名称。

  师:谁愿意到前面说说圆锥各部分的名称。

  两名学生到前面来说

  3、由实物抽象出几何图

  师:同学们说得可真好!老师这有三幅圆锥体实物图,请同学们看。(课件展示)圆锥的几何图是什么样的呢?请同学们仔细看(课件展示)画图时看不见的部分应怎样画?(课件演示)

  这就是圆锥的几何图

  生:用虚线画。

  师:同学们看黑板这是圆锥的几何图。(教师边说边揭开贴纸)谁能到前面对照圆锥的几何图说说你都学会了有关圆锥的哪些知识?

  学生到前面说

  师:请同学们闭上眼睛想一想圆锥是什么样子的?

  4、探究测量圆锥高的方法。

  师:通过刚才的学习我们掌握了圆锥的特征及圆锥各部分的名称,我们知道圆锥的高是从圆锥的顶点到底面圆心的距离,那怎样来测量圆锥的高呢?先想一想,然后利用课下大家准备的材料,小组同学共同探究圆锥的高的测量方法。

  学生汇报:

  生1:我们小组是这样测量的,先把圆锥底面放平,用直尺水平地放在圆锥的顶点上,用三角板竖直地量出圆锥的高

  生2:我们小组的方法和他们的差不多,只是用小尺竖立在桌面上,然后用三角板通过顶点与直尺垂直。

  生3:我认为这种方法比第一种测量准确。因为三角板这样放在圆锥的顶点上可以与直尺保持垂直,准确地测量出高

  生4:我们是这样测量的,把圆锥的底面朝下倒立在桌面上,把小尺放在圆锥的底面上,然后用三角板垂直地测量出顶点到底面之间的距离。

  生5:我认为这种方法不太好,因为这种方法不能使用于所有的圆锥,比如,一个大的小麦堆,能把它倒过来测量它的高吗?

  生6:我们认为不管用什么方法,都应该注意小尺测量时要从“0”刻度开始。

  四、看书质疑。

  五、课堂练习

  1、在下面的图形中找出哪些是圆锥。

  课本练习十二1题

  2、判断。(打手势)

  (1)圆锥的侧面是曲面。( )

  (2)圆柱侧面展开是长方形,圆锥侧面展开也是长方形。( )

  (3)从圆锥的顶点到底面任意一点的线段叫做圆锥的高。( )

  (4)圆锥的底面是圆形。( )

  3、练习十二2题

  六、课堂小结。

  这节课我们学习了什么?通过这节课的学习你都学会了什么?

  七、作业。

  到室外找一些沙子或土堆成一个圆锥形,想办法测量出它的高,可以两个人进行合作。

【六年级数学下册教案】相关文章:

六年级下册数学教案02-13

苏教版六年级数学下册教案01-06

苏教版六年级下册数学教案02-06

《比例》小学六年级数学下册教案02-14

六年级下册数学教案15篇02-15

六年级数学下册第四五单元教案01-03

北师版六年级下册数学教案范文01-06

人教版六年级数学下册第二单元《利率》教案04-16

人教版六年级数学下册第二单元《成数》教案11-18