众数中位数教案

时间:2024-01-23 13:22:30 教案 我要投稿

众数中位数教案

  作为一位无私奉献的人民教师,就不得不需要编写教案,教案是教学活动的总的组织纲领和行动方案。写教案需要注意哪些格式呢?下面是小编为大家整理的众数中位数教案,仅供参考,欢迎大家阅读。

众数中位数教案

众数中位数教案1

  教学内容和地位:

  众数、中位数是描述一组数据的集中趋势的两个统计特征量,是帮助学生学会用数据说话的基本概念。本节课的教学内容和现实生活密切相关,是培养学生应用数学意识和创新能力的最好素材。

  教学重点和难点:

  本节课的重点是众数和中位数两概念的形成过程及两概念的运用。本节课的难点是对统计数据从多角度进行全面地分析。因为利用数据进行分析,对刚刚接触统计的学生来说,他们原有的认知结构中缺乏这方面的知识经验,所以,我们可以借助生活中的事例,利用丰富多彩的多媒体辅助,帮助学生突破这一知识难点。

  教学目标分析:

  认知目标:

  (1)使学生认知众数、中位数的意义;

  (2)会求一组数据的众数、中位数。

  能力目标:

  (1)让学生接触并解决一些社会生活中的问题,为学生创新学数学、用数学的情境,培养学生的数学应用意识和创新意识。

  (2)在问题解决的过程中,培养学生的自主学习能力;

  (3)在问题分析的过程中,培养学生的团结协作精神。

  情感目标:

  (1)通过多媒体网络课件,提供适当的问题情境,激发学生的学习热情,培养学生学习数学的兴趣;

  (2)在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。

  教学辅助:网络教室、多媒体辅助网络教学课件、BBS电子公告栏、学习资源库

  教法与学法:

  根据本节课的教学内容,主要采用了讨论发现法。即课堂上,教师(或学生)提出适当的问题,通过学生与学生(或教师)之间相互交流,相互学习,相互讨论,在问题解决的过程中发现概念的产生过程,体现“数学教学是数学思维活动的'过程的教学”。在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。另外,在学生合作学习的同时,始终坚持对学生进行“学疑结合”、“学思结合”、“学用结合”的学法指导,这对学生的主体意识的培养和创新能力的培养都有积极的意义。

众数中位数教案2

  总时:4时 使用人:

  备时间:第十五周 上时间:第十六周

  第3时:

  教学目标

  知识与技能:掌握中位数、众数的概念,会求出一组数据的中位数与众数;能结合具体情境平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己 的正确评判。

  过程与方法:通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一定的评判能力,进一步发展其数学应用能力。

  情感态度与价值观:将知识的学习放在解决问题的情境中,通过数据分析与处理,数学与现实生活的联系,培养学生求真的科学态度。

  教学重点:求出一组数据的中位数、众数

  教学难点:利用平均数、中位数、众数解决问题

  教学过程

  第一环节:情境引入 (5分钟,学生小组合作探究)

  内容:在当今信息时代,信息的重要性不言而喻,人们经常要求一些信息“用数据说话”,所以对数据作出恰当的评判是很重要的。下面请看一例:

  某次数学考试,小英得了78分。全班共32人,其他同学的成绩为1个100分,4个90分,22个80分,2个62分,1个30分,1个25分。

  小英计算出全班的平均 分为77.4分,所以小英告诉妈妈说,自己这次数学成绩在班上处于“中上水平”。小英对妈妈说的情况属实吗?你对此有何看法?

  引导学生展开讨论,作出评判:

  平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第五的成绩 说成处于班级的“中上水平”显然是不属实的。原因是全班的平均分受到了两个极端数据30分和25分的影响,利用平均数反应问题就出现了偏差。

  怎样说明这个问题呢?我们需要学习新的数据代表—中位数与众数。

  第二环节:合作探究(20分钟,教师点拨,学生合作解决,全 班交流)

  内容:问题:某公司员工的月工资如下:

  员 工经理副经理职员A 职员B职员C职员D职员E职员F杂工G

  月工资/元6000 400017001300120011001100110050 0

  经理说:我公司员工收入很高,月平均工资为20xx元。

  职 员C说:我的工资是1200元,在公司算中等收入。

  职员D说:我们好几个人工资都是1100元。

  一位应聘者心里在琢磨:这个公司员工收入到底怎样呢?

  你怎样看待该公司员工的收入?

  学生四人小组讨论,交流自己的看法,教师对表现积极的.学生予以鼓励。

  在学生讨论交流的基础上,教师进行点拨:

  上述问题中,经理、职员C、职员D从不同的角度描述了该公司的收入情况:

  (1)月平均工资20xx元,指所有员工工资的平均数是20xx元,但只有正副经理的工资比平均工资高,是他两人的工资把平均工资“拉”高了。

  (2)职员C的工资是1200元,恰好居于所有员工工资的“正中间”(恰有4人的工资比他高,有4人的工资比他低),我们称1200元是这组数据的中位数。

  (3)9个员工中有3个人的工资为1100元,出现的次数最多,我们称1100元是这组数据的众数。

  议一议:你认为用哪个数据表示该公司员工收入的平均水平更合适?

  让学生讨论,充分发表不同的观点,然后 归纳起:用中位数1200元或众数1100元表示该公司 员工收入的平均水平更合适些,因为平均数20xx元受到了极端值的影响。

  结合上述问题的探究,引入中位数、众数的概念:

  一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两

  个数据的平均数)叫做这组数据的中位数。

  一组数据中出现次数最多的那个数据叫做这组数据的众数。

  教师指出:平均数、中位数、众数都是数据的代表,它们刻画了一组数据的“平均水平”。

  让学生用中位数、众数的概念回头望,解释引例中小英的数学成绩的问题。

  第三环节:运用提高(10分钟,学生独立完成,全班交流)

  内容:1. 对于一组数据:3,3,2,3,6,3,10,3,6,3,2,下列说法正确的是( )

  A. 这组数据的众数是3;

  B. 这组数据的众数与中位数的数值不等;

  C. 这组数据的中位数与平均数的数值相等;

  D. 这组数据的平均数与众数的数值相等。

  答案:A

  2. 20xx—20xx赛季上海东方大鲨鱼篮球队队员身高的中位数、众数分别是多少?(本213页)

  3.(1)你前所调查的50名男同学所穿运动鞋尺码的平均数、中位数、众数分别是多少?

  (2)你认为学校商店应多进哪种尺码的男式运动鞋?

  第四环节:堂小结(5分钟, 学生思考问题,回顾)

  内容:议一议:平均数、中位数和众数有哪些特征?

  学生讨论交流,师生共同特征:

  1. 用平均数作为 一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,对这组数据所包含的信息的反映最为充分,因此在现实生活中较为常用,但它容易受极端值的影响。

  2. 用中位数作为一组数据的代表,可靠性比较差,它不能充分利用所有数据的信息,但它不受极端值的影响,当一组数据中有个别数据变动较大时,可用它描述这组数据的“集中趋势”。

  3. 用众数作为一组数据的代表,可靠性也比较差,其大小只与这组数据中的部分数据有关,但它不受极端值的影响。当一组数据中某些数据多次重复出现时,众数往往是人们尤为关心的一种统计量。

  要根据不同的实际需要,确定是用平均数、中位数还是众数映数据的平均水平。

  第五环节:布置作业

  本习题8.3。

众数中位数教案3

  一、教学目标:

  1、进一步认识平均数、众数、中位数都是数据的代表.

  2、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异.

  3、能灵活应用这三个数据代表解决实际问题.

  二、重点、难点和突破难点的方法

  1、重点:了解平均数、中位数、众数之间的差异.

  2、难点:灵活运用这三个数据代表解决问题.

  三、教学过程:

  首先应复习平均数、众数和中位数的定义,将这三者进行比较,归纳三者的各自特点,以保证学生在应用过程中不致盲目乱用.可以通过具体问题来进行比较:

  以下是这三个数据代表的异同:

  平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量.平均数是应用较多的一种量.另外要注意:

  平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.

  众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.

  平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.

  中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.

  实际问题中求得的平均数,众数,中位数应带上单位.

  四、例习题的分析:

  例题6中第一问是在巩固平均数定义、中位数定义和众数的定义.可以引导学生从问题中词语特点分析它们分别指哪个数据代表,教师也可以顺便加一个发散性问题,一般地哪些词语是指平均数、中位数和众数呢?

  例题6中的第二问学生一般不易想到,教师要将“较高目标”衡量标准引向三个数据代表身上,这样学生就不难回答了.

  第三问要抓住一半左右应与哪个数据代表的.意义相符这个问题.即要很好的回答第三问,学生头脑必须很清楚平均数、中位数、众数的特点.

  教材P146例6的意图:

  ①、这是在学习过数据的收集、整理、描述与分析之后涉及到这四个环节的一个例题,从分析和解答过程来看它交待了该如何完整的进行这几个过程,为该怎样综合运用已学的统计知识解决实际问题作了一个标准范例.教师在授课过程中也应注意,对已学知识的巩固复习.

  ②、从分析和解答过程来看,此例题的一个主要意图是区分平均数、众数和中位数这三个数据代表的异同.

  ③、由例题中(2)问和(3)问的不同,导致结果的不同,其目的是告诉学生应该根据题目具体要求来灵活运用三个数据代表解决问题.

  ④、本例题也客观的反映了数学知识对生活实践的指导有重要的意义,也体现了统计知识与生活实践是紧密联系的.

  补充例题:

众数中位数教案4

  素质教育目标

  (一)知识教学点

  1.使学生理解众数与中位数的意义.

  2.会求一组数据的众数和中位数.

  (二)能力训练点

  培养学生的观察能力、计算能力.

  (三)德育渗透点

  1.培养学生认真、耐心、细致的学习态度和学习习惯.

  2.渗透数学知识来源于实践,反过来又服务于实践的思想.

  (四)美育渗透点

  通过本节课对众数、中位数的比较,精辟的分析、形象的讲解,不断揭示数学中美的因素,也渗透了一组数据对称的数学美.

  重点·难点·疑点及解决办法

  1.教学重点:求一组数据的众数与中位数.

  2.教学难点:平均数、众数、中位数这三量之间的区别与联系.

  3.教学疑点:学生容易把一组数据中出现次数最多的数据的次数当做众数.应通过对众数概念的剖析,使学生理解并掌握众数的概念.

  4.解决办法:(1)众数由所给数据可直接求出.(2)求中位数时,首先要先排序(从小到大),然后计算中位数的序号,分数据为奇数个与偶数个两种来求.

  教学步骤

  (一)明确目标

  教师提出问题:1.怎样求一组数据的平均数?2.平均数反映了一组数据的趋势.3.平均数与一组数据中的每个数据均有关系吗?(学生回答,教师纠偏后引出课题).

  这节课,我们将进一步学习另两个反映一组数据的集中趋势的特征数——众数和中位数.

  这样引入新课,能使学生的心理活动指和和注意力集中于特定的教学内容,尽快进入课堂学习状态.

  (二)整体感知

  平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同,平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动,众数着眼于对各数据出现的频数的考察,其大小只与这组数据中的部分数据有关.当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量,中位数则仅与数据的排列位置有关,某些数据的变动对它的中位数没有影响.当一组数据中的个别数据变动较大时,可用它来描述其集中趋势.

  (三)教学过程

  (用幻灯片出示引入例)请同学们看下面问题:

  一家鞋店在一段时间内销售了某种女鞋30双,其中各种尺码的鞋的销售量如下表所示:

  鞋的尺码

  (单位:厘米)

  22

  22.5

  23

  23.5

  24

  24.5

  25

  销售量

  (单位:双)

  1

  2

  5

  11

  7

  3

  1

  在这个问题里,鞋店比较关心的是哪种尺码的鞋销售得最多.

  教师引导学生观察表格,并思考表格反映的是多少个数据的全体.(30个),表中上面一行反映的是什么?(学生回答是出现的数据).下面一行反映的是什么?(学生回答是相应的数据出现的次数.)表中反映出哪一种尺码的鞋销售得最多?(学生回答23.5厘米的`鞋销售了11双,是销售得最多的).接着教师强调,在这个问题中,我们通常不大关心所销售的鞋的平均尺码,而是关心各种尺码的鞋的销售情况,特别是关心哪种尺码的鞋销售得最多.这时掌握市场需求情况和确定今后进货量具有重要参考价值.在学生明确了研究众数的必要性后,教师给出众数定义.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.

  教师在剖析众数定义时应强调:1.众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数.在这一点上,学生很容易混淆.2一组数据中的众数有时不只一个,如数据2、3、-1、2、1、3中,2和3都出现了2次,它们都是这组数据的众数.

  教师引导学生回答引例中的众数是什么?是(23.5厘米),有的学生会误将23.5厘米的鞋的销售量11当作所求的众数,教师要注意纠正.

  下面我们来学习怎样根据众数的定义求一组数据的众数,看例1(幻灯出示)

  例1在一次英语口试中,20名学生的得分如下:

  708010060807090508070

  80709080908070906080

  求这次英语口试中学生得分的众数.

  教师引导学生用观察法找出这组数据中哪些数据出现的频数较多,从而进一步找出它的众数;也可仿照引例画表格找出众数.

  例1在上面数据中,80出现了7次,是出现次数最多的,所以80是这组数据的众数

  答:这次英语口试中,学生得分的众数是80(分).

  教师应强调一下这个结论反映了得80分的学生最多.

  课堂练习:教材P159中1

  学生做完练习后接着讲解中位数定义.请同学看下面问题:

  在一次数学竞赛中,5名学生的成绩从低分到高分排列庆次是:

  5557616298

  教师引导学生观察在这5个数据中,前4个数据的大小比较接近,最后1个数据与它们的差异较大.这时如果用其中最中间的数据61来描述这组数据的集中趋势,可以不受个别数据较大变动的影响.通过这个引例,不仅使学生对中位数的意义有了了解,又加深了对中位数概念的理解.

  中位数定义:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.

  教师剖析定义时要强调:1.求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以.2.在数据个数为奇数的情况下,中位数是这组数据中的一个数据;但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等.

  教师引导回答引例的中位数是什么?

  例2(用幻灯出示)10名工人某天生产同一零售,生产的件数是:

  15171410151917161412

  求这一天10名工人生产的零件的中位数.

  教师引导学生观察分析后,让学生自解.

  解:将10个数据按从小到大的顺序排列,得到:

  10121414151516171719

  左右最中间的两个数据都是15,它们的平均数是15,即这组数据的中位数是15(件).

  答:这一天10人生产的零件的中位数是15件.

  例3(用幻灯出示)在一次中学生田径运动会上,参加男子跳高的17名运动员的成

  绩如下表所示:

  成绩

  (单位:米)

  1.50

  1.60

  1.65

  1.70

  1.75

  1.80

  1.85

  1.90

  人数

  2

  3

  2

  3

  4

  1

  1

  1

  分别求这些运动员成绩的众数,中位数与平均数(平均数的计算结果保留到小数点后第2位).

  教师引导学生观察表格,分析回答下列问题:1.表中共有多少个数据?其中哪个数据出现的次数最多?这组数据的众数是什么?说明什么?2.表里的17个数据可看成是按什么顺序排列的?其中第几个数是最中间的数据?这组数据的中位数是多少?说明什么?3.可选用哪个公式求这组数据的平均数?所求得的平均数能说明什么?

  这样分析例题,可使学生加深理解平均数、众数、中位数的概念之间的联系与区别,体会到这三个量在描述一组数据集中趋势时的不同角度.

  教师范解例3.

  解:在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.

  上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是1.70;

  这组数据的平均数是

  答:17名运动员成绩的众数、中位数、平均数依次是1.75(米)、1.70(米)、1.69(米).

  课堂练习:教材P159中2、3

  (四)总结、扩展

  1.知识小结:这节课我们学习了众数、中位数的概念,了解了它们在描述一组数据集中趋势时的不同角度和适用范围.

  2.方法小结:通过本节课我们学会了求一组数据的众数及中位数的方法,求众数时不需要计算只要观察出出现次数最多的数据即可.求中位数时,先要将这组数据按顺序排列出来,再找出最中间的一个数据或最中间两个数并算出它们的平均数.

  3.知识网络:平均数、众数、中位数都是描述一组数据的集中趋势的特征数,只是描述的角度不同,其中以平均数的应用最为广泛.

  布置作业

  教材P160A1、2、3、,B

  板书设计

  14.2众数与中位数

  1.定义例1例2例3

  众数:

  中位数

  教学设计示例2

  一、教学目的

  1.理解众数与中位数的意义.

  2.使学生会求一组数据的众数与中位数.

  二、教学重点、难点

  重点:使学生通过练习掌握众数与中位数的概念.

  难点:在一组数据中有两个居于中间的数的平均数做为中位数时的判定方法.中位数、众数的意义的解释.

  三、教学过程

  复习提问

  1.什么叫做一组数据的平均数?

  2.一组数据的计算方法有哪些?

  引入新课

  在对一组数据分析研究过程中,往往要了解某个数出现的最多,某个特定的数处于什么特定位置.那么这些数应如何称呼,如何利用?这节课我们来进行探讨,

  新课

  教材售鞋一例即一家鞋店在一段时间内销售了某种女鞋30双,其中各种尺码的鞋的销售量如下表所示.

  哪种尺码的鞋销售得最多?介绍完之后,可再介绍如下实例.某面包房生产多种面包,在一天内销售面包100个,各类面包销售量如下表:

  在这个问题中,店主最关心的是哪种面包售量最好.从表中可见,椰茸面包销售情况最好,达到30个.

  接下来向学生介绍:在一组数据中,出现次数最多的数据叫做这组数据的众数.教材中的例子中,23.5(厘米)出现的次数最多,称这组数据的众数;而我们举的例子中,椰茸面包销售情况最好,占100个中的30个,它是这组数据中的众数.

  讲到此处,要强调众数的功能,即“当一组数据中不少数据多次重复出现时,常用众数来描述这组数据的集中趋势.”

  例1在一次英语口试中,20名学生的得分如下:

  70801006080709050807080709080908070906080求这次英语口试中学生得分的众数.

  教师指导学生观察后,指出80出现了7次,确定80分是学生得分的众数.(可多请几位学生说一说观察情况.)

  教师引导学生阅读P163中间一段文字.即看数学竞赛一例,即在一次数字竞赛中,5名学生的成绩从低分到高分排列依次是5557616298前四个数据的大小比较接近,最后一个数据与它们的差异较大,得出学生成绩最中间的数据为61,它可以用来描述这组数据的集中趋势,可以不受个别数据的较大变动的影响.

  由此给出定义:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.接下来指出61是上述一组数的中位数.

  要特别指出:按从小到大的顺序排列的4个数据0.5,0.8,0.9,1.0中,最中间的两个数据的平均数是0.85,它是这组数据的中位数.要使学生注意,这组数有“偶数个”.

  例210名工人某天生产同一零件,生产的件数是

  15171410151917161412求这一天10名工人生产的零件的中位数.

  教师应请一位学生将此例中的一组数据在黑板上从小到大按顺序排列,启发学生找出中位数是15(件).

  还可顺势问一下,这组数据中的众数是哪些?(引导学生答出:14,15,17.)

  例3在一次中学生田径运动会上,参加男生跳高的17名运动员的成绩如下表所示:

  分别求这些运动员成绩的众数,中位数与平均数(平均数的计算结果保留到小数点后第2位).

  通过此例的练习,使学生巩固对众数、中位数与平均数概念的认识和理解.

  小结

  众数、中位数与平均数从不同的角度描述了一组数据的集中趋势.其中,又以平均数的应用最为广泛.在讲述过程中需强调:

  (1)平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动.

  (2)众数着眼于对各数据出现的频数的考察,其大小只与这组数据中的部分数据有关.当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量.

  (3)中位数则仅与数据的排列位置有关,即当将一组数据按从小到大的顺序排列后,最中间的数据即为中位数,因此某些数据的变动对它的中位数没有影响.当一组数据中的个别数据变动较大时,可用它来描述其集中趋势.

  练习:选用课本练习

  作业:选用课本习题

  四、教学注意问题

  教学中要注意讲好众数在一组数据中不止一个;中位数在一组数据为奇数、偶数时的不同确定方法.

众数中位数教案5

  一 、教学目标

  1.在实际情境中,认识并会求一组数据的中位数、众数,并解释其实际意义。

  2. 根据具体的问题,能正确选择运用平均数、中位数或众数。

  3.感受统计在生活中的应用,增强统计意识,发展统计观念。

  二、教学重点、难点

  1. 教学重点:会求一组数据的中位数、众数。

  2. 教学难点:能正确选择运用平均数、中位数或众数。

  三、教学活动

  (一)基础训练

  1.口算下列各题

  128+92 34+48 800+750 396÷12 850÷4 57÷2

  2.只列式不计算

  (二)创设情景,谈话引入

  1.师生谈话引入

  师:同学们这么小就充满爱心,要为祖国献爱心,那你们长大后想当什么呢? 学生自主回答,说出自己的志愿,老师及时给与评价。

  师:看来你们每个人都有自己的想法,为了实现你们的理想,一定要从小做起加倍努力呀!老师想问你们一个问题,假如你现在刚刚大学毕业,在找工作时你应该关注什么?

  生:关注公司的实力。

  生:关注公司的工作环境。

  生:我比较关注我的工资是多少?

  师:是啊,工资的确是人们比较关注的一个条件,很多人在找工作时都要考虑这个问题。我的一位好朋友张明在求职的过程中就遇到了这方面的问题,我们一起来看一下。

  2.出示招聘启示,指名读出。

  招聘启示

  本商场由于扩大规模,现招聘工作人员若干,月平均工资1000元,有意者请到经理处面谈。

  多又惠超市

  20xx年4月20日

  师:从招聘启事中你能获得哪些信息?

  生:月平均工资有1000元。

  师:是啊!张明认为月平均工资1000元,待遇不错,于是来到这家公司。一个月后他拿到了650元的工资,觉得十分不满,他的工资水平远远低于1000元,

  于是找到了经理。经理拿出了该公司工作人员月工资表,并再三强调月平均工资没有错,那么问题究竟出在哪呢?

  3.师:大家认真观察这组数据,你发现了什么?

  生:员工的工资全都低于1000元。

  师:月平均工资1000元有没有错?

  生:我算了一下,9个数的平均数是1000,月平均工资1000元没有错? 师:但大部分员工都没达到1000元,那问题出在哪里呢?

  生:因为经理的工资高,所以把平均值拉高了。

  小结:同学们分析得很有道理,由于平均数1000受到较大数据的影响,已经不能合理地反映这家公司工作人员工资一般水平了。

  (三)、揭示问题,自主探究新知

  1.中位数的定义

  (1)引入中位数

  师:再观察这组数据,你认为哪个数据最能代表员工工资的一般水平?自己先想一想,然后和你的同桌或其他同学交流一下。

  (学生交流并汇报。)

  生1:我认为是750元,因为它在中间更能表示员工工资的一般水平。 生2:我认为是750元,因为它不高也不低,能代表一般水平。

  ……

  (2)导出中位数的特点

  师:通过讨论,大家都能达成共识,认为750元最能代表员工工资的一般水平。观察750在这组数据中处于什么位置?

  生:中间位置

  (板书:中间)

  师:再观察,这9个数据是怎么排列的?

  生1:从大到小。老师用手势指示方向

  生2:从小到大

  (板书:从大到小(或从小到大))

  师:我们把具有这种特点的数叫做中位数。(板书:中位数)

  (3)总结中位数的定义

  师:你能不能根据自己的理解说一说什么是中位数?

  根据学生的说法,补充定义,完善中位数的定义。

  全班齐读定义。

  2. 中位数的即时练习

  完成课本p88试一试

  求出下面这组数据的中位数。

  (1). 数的个数是奇数情况

  10151825323448(中位数:25)

  (2). 数的个数是偶数的情况。(在原题基础上加50)

  1015182532344850

  指出:中位数取中间两个数的平均数。

  3. 众数的定义

  师:过了一段时间,超市又聘请了两位新员工,请大家看看新的.工资统计表。

  特点?

  生:发现有3个员工的工资是一样的,都是600元。

  师:说明600出现的次数最多。

  (板书:出现次数最多)

  师:具有这样特点的数我们就叫众数。(板书:众数。)

  师:根据你的理解说说什么是众数?

  根据学生的说法,补充定义,完善众数的定义。

  全班齐读定义。

  4. 探索平均数、中位数和众数的作用

  小组交流

  (1)平均数1000元和中位数650元,哪个数表示工作人员的工资水平更合适呢?你是怎么想的?

  (2)可以用众数600元表示工作人员月工资水平吗?为什么?

  5.反馈交流情况。

  师:平均数会因为一些特别偏大或特别偏小的数据的影响,不能很准确地反映一组数据的平均水平。而这种极端的数据对中位数、众数没有影响。中位数650元,众数600元,反映的是中等水平的工资,能表示这组数据的中等水平。

  6.点名课题

  通过我们共同研究,不仅对平均数有了新的认识,还结识了两位新朋友:中位数和众数。(板书课题:中位数和众数)

  (四)、巩固练习

  【基础练习】

  (1)在10、16、48、20、17、50、40中,中位数是( )。

  (2)在52、60、48、60、41、72中( )是众数,( )是中位数。

  (3)在1,2,3,4,4,3,2,1中,众数是( )

  指出:中位数是唯一的数,而众数不是唯一的。

  (4)红星电子配件厂第一生产组有11名工人,4月份每人的日均生产零件个数是:42,44,44,46,48,48,48,50,51,51,56,请根据这组数据求出这些工人日产

  量的平均数、中位数和众数。

  提出:在一组数据中,平均数、中位数和众数可以是相同的数。

  【提高练习】

  1. 某小组进行跳绳比赛,每个成员1分钟时间跳的次数如下:

  234,133,128,92,113,116,182,125,92.

  (1)分别计算这组数据的平均数和中位数。

  (2)你认为平均数、中位数哪一个能更好地表示这组同学的跳绳水平?

  2. 某商店销售5种领口尺寸分别为38cm,39cm,40cm,41cm,42cm的衬衫,

  商店统计了某月的销售情况(见下表)。 (五)、联系生活 突出现实意义

  2008年8月8日,北京举行第29届奥林匹克运动会。在28大项,302小项的运动项目中,跳水比赛是受欢迎的比赛项目之一,那你知道跳水比赛是怎么打分的?为什么这样做?

众数中位数教案6

  一、教材分析

  A、教材的地位与作用:①本节教材是初三代数第十四章统计初步第二节,它是上节平均数的延续。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。本节教学使学生进一步体会用样本估计总体的统计思想方法,形成运用数学知识解决简单应用问题的能力。学好本节课,也将为本章后继内容的学习打下良好的基础。②本节内容在中考命题中也占有重要地位,如:2003年河南中考选择题16题.2000年河南中考选择题19题,1997年河南中考选择题3题,1996年河南中考填空题9题。“2000一高英才杯” 选择题3题。

  B.教学目标

  1、知识目标:

  ①使学生理解众数与中位数的意义。

  ②会求一组数据的众数和中位数。

  2、能力目标:培养学生的观察能力、计算能力。

  3、德育目标:

  ①培养学生认真、耐心、细致的学习态度和学习习惯。

  ②渗透数学知识来源于生活,反过来又服务于生活的思想。

  C、重点·难点·疑点

  1.教学重点:定义的理解及求一组数据的众数与中位数。

  2.教学难点:

  ①平均数、众数、中位数这三数之间的区别与联系。

  ②偶数个数据的中位数的求法。

  3.教学疑点:学生容易把一组数据中出现次数最多的数据的次数当做众数。

  二、教法设计

  问题情景教学法

  三、教学过程

  【引导回顾 搭建桥梁】

  ①怎样求一组数据的平均数?

  ②平均数与一组数据中的每个数据均有关系吗?

  这节课,我们将进一步学习另两个反映一组数据的集中趋势的特征数——众数和中位数。

  14.2众数与中位数(课件)

  【创设情境 探究新知】

  问题情景一:一家童鞋店在一段时间内销售了某种童鞋30双,其中各种尺码的鞋的销售量如下表所示:

  鞋的尺码(单位:厘米)

  18

  19

  20

  21

  21.5

  22

  22.5

  销售量(单位:双)

  1

  2

  5

  11

  7

  3

  1

  在这个问题里,如果你是鞋店老板,你最关心的是什么?

  问题情景二:某面包房,在一天内销售面包100个,各类面包销售量如下表:

  面包种类

  奶油

  巧克力

  豆沙

  香稻

  三色

  椰茸

  销售量(单位:个)

  10

  15

  25

  5

  15

  30

  在这个问题中,如果你是店主,你最关心的是什么?

  定义:在一组数据中,出现次数最多的数据叫做这组数据的众数。

  同时要强调众数的功能,即“当一组数据中不少数据多次重复出现时,常用众数来描述这组数据的集中趋势”。

  注意:①.众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数。例如:问题一中众数是(21厘米),不要把21厘米的鞋的销售量11当作所求的众数。

  ②一组数据中的众数有时不只一个,如数据2、3、-1、2、1、3中,2和3都出现了2次,它们都是这组数据的众数。

  例1、在一次英语口试中,20名学生的得分如下:

  70 80 100 60 80 70 90 50 80 70

  80 70 90 80 90 80 70 90 60 80

  求这次英语口试中学生得分的众数.

  请用观察法找出这组数据中哪些数据出现的频数较多,从而进一步找出它的众数;也可仿照问题一画表格找出众数。强调一下这个结论反映了得80分的学生最多。

  问题情景三:在初三数学竞赛中,我班其中5名学生的成绩从低分到高分排列名次是: 55 57 61 62 98,其中哪一个数据能用来描述这组数据的集中趋势?

  观察在这5个数据中,前4个数据的大小比较接近,最后1个数据与它们的差异较大。这时如果用其中最中间的数据61来描述这组数据的集中趋势,可以不受个别数据较大变动的影响。

  中位数定义:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

  注意:1.求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以。

  2.在数据个数为奇数的情况下,中位数是这组数据中的一个数据;如情景三的中位数是61。但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等。

  例2 10名工人某天生产同一零件,生产的件数是:

  15 17 14 10 15 19 17 16 14 12

  求这一一天10名工人生产的零件的中位数.

  请观察分析后,自解.

  【诱向深入 拓展思维】

  例3在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:

  成绩(单位:米)

  1.50

  1.60

  1.65

  1.70

  1.75

  1.80

  1.85

  1.90

  人数

  2

  3

  2

  3

  4

  1

  1

  1

  分别求这些运动员成绩的众数,中位数与平均数(平均数的计算结果保留到小数点后第2位)。

  观察表格,分析回答下列问题:①表中国共产党有多少个数据?其中哪个数据出现的次数最多?这组数据的众数是什么?说明什么?

  ②表里的17个数据可看成是按什么顺序排列的?其中第几个数是最中间的数据?这组数据的中位数是多少?说明什么?

  ③可选用哪个公式求这组数据的平均数?所求得的平均数能说明什么?这样分析例题,可使学生加深理解平均数、众数、中位数的概念之间的联系与区别,体会到这三个数在描述一组数据集中趋势时的`不同角度。

  【展示应用 评价自我】

  补充练习1、已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x值及这组数据的中位数。

  解:∵10,10,x,8的中位数与平均数相等

  ∴ (10+x)= (10+10+x+8)

  ∴x=8, (10+x)=9

  ∴这组数据中的中位数是9。

  补充练习2、当5个整数从小到大排列,其中位数是4,如果这个数集的唯一众数是6,则这5个整数可能的最大的和是( )

  A.21 B.22 C.23 D.24

  分析:设这5个整数按从小到大排列为a1,a2,a3,a4,a5,由于中位数是4,所以a3=4,又6是唯一众数,所以a4=a5=6,此时,a2最大只能取3,a1最大取2,故a1+a2+a3+a4+a5=2+3+4+6+6=21

  解:选(A)

  3、教材P159中1、2、3

  【链接知识 归纳小结】

  1.知识小结:这节课我们学习了众数、中位数的概念,了解了它们在描述一组数据集中趋势时的不同角度和适用范围。

  2.方法小结:①众数由所给数据可直接求出,(一组数据中的众数可能不止一个,众数是一组数据中出现的次数最多的数据,而不是该数据出现的次数.如果有两个数据出现的次数相同,并且比其他数据出现次数都多,那么这两个数据都是这组数据的众数)。②求中位数时,首先要先排序(从小到大或从大到小),然后计算中位数的序号,分数据为奇数个与偶数个两种来求.(既找出最中间的一个数据或最中间两个数并算出它们的平均数)。

  3.知识网络:平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动;众数着眼于对各数据出现的频数的考察,其大小只与这组数据中的部分数据有关。当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;中位数则仅与数据的排列位置有关,某些数据的变动对它的中位数没有影响。当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。

  【布置作业】教材P163A组1、2、3,B组。

  【板书设计】

  14.2 众数与中位数

  1.定义 例1 例2 例3

  众数: 练习1 练习2

  中位数

  一、教材分析

  A、教材的地位与作用:①本节教材是初三代数第十四章统计初步第二节,它是上节平均数的延续。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。本节教学使学生进一步体会用样本估计总体的统计思想方法,形成运用数学知识解决简单应用问题的能力。学好本节课,也将为本章后继内容的学习打下良好的基础。②本节内容在中考命题中也占有重要地位,如:2003年河南中考选择题16题.2000年河南中考选择题19题,1997年河南中考选择题3题,1996年河南中考填空题9题。“2000一高英才杯” 选择题3题。

  B.教学目标

  1、知识目标:

  ①使学生理解众数与中位数的意义。

  ②会求一组数据的众数和中位数。

  2、能力目标:培养学生的观察能力、计算能力。

  3、德育目标:

  ①培养学生认真、耐心、细致的学习态度和学习习惯。

  ②渗透数学知识来源于生活,反过来又服务于生活的思想。

  C、重点·难点·疑点

  1.教学重点:定义的理解及求一组数据的众数与中位数。

  2.教学难点:

  ①平均数、众数、中位数这三数之间的区别与联系。

  ②偶数个数据的中位数的求法。

  3.教学疑点:学生容易把一组数据中出现次数最多的数据的次数当做众数。

  二、教法设计

  问题情景教学法

  三、教学过程

  【引导回顾 搭建桥梁】

  ①怎样求一组数据的平均数?

  ②平均数与一组数据中的每个数据均有关系吗?

  这节课,我们将进一步学习另两个反映一组数据的集中趋势的特征数——众数和中位数。

  14.2众数与中位数(课件)

  【创设情境 探究新知】

  问题情景一:一家童鞋店在一段时间内销售了某种童鞋30双,其中各种尺码的鞋的销售量如下表所示:

  鞋的尺码(单位:厘米)

  18

  19

  20

  21

  21.5

  22

  22.5

  销售量(单位:双)

  1

  2

  5

  11

  7

  3

  1

  在这个问题里,如果你是鞋店老板,你最关心的是什么?

  问题情景二:某面包房,在一天内销售面包100个,各类面包销售量如下表:

  面包种类

  奶油

  巧克力

  豆沙

  香稻

  三色

  椰茸

  销售量(单位:个)

  10

  15

  25

  5

  15

  30

  在这个问题中,如果你是店主,你最关心的是什么?

  定义:在一组数据中,出现次数最多的数据叫做这组数据的众数。

  同时要强调众数的功能,即“当一组数据中不少数据多次重复出现时,常用众数来描述这组数据的集中趋势”。

  注意:①.众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数。例如:问题一中众数是(21厘米),不要把21厘米的鞋的销售量11当作所求的众数。

  ②一组数据中的众数有时不只一个,如数据2、3、-1、2、1、3中,2和3都出现了2次,它们都是这组数据的众数。

  例1、在一次英语口试中,20名学生的得分如下:

  70 80 100 60 80 70 90 50 80 70

  80 70 90 80 90 80 70 90 60 80

  求这次英语口试中学生得分的众数.

  请用观察法找出这组数据中哪些数据出现的频数较多,从而进一步找出它的众数;也可仿照问题一画表格找出众数。强调一下这个结论反映了得80分的学生最多。

  问题情景三:在初三数学竞赛中,我班其中5名学生的成绩从低分到高分排列名次是: 55 57 61 62 98,其中哪一个数据能用来描述这组数据的集中趋势?

  观察在这5个数据中,前4个数据的大小比较接近,最后1个数据与它们的差异较大。这时如果用其中最中间的数据61来描述这组数据的集中趋势,可以不受个别数据较大变动的影响。

  中位数定义:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

  注意:1.求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以。

  2.在数据个数为奇数的情况下,中位数是这组数据中的一个数据;如情景三的中位数是61。但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等。

  例2 10名工人某天生产同一零件,生产的件数是:

  15 17 14 10 15 19 17 16 14 12

  求这一天10名工人生产的零件的中位数.

  请观察分析后,自解.

  【诱向深入 拓展思维】

  例3在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:

  成绩(单位:米)

  1.50

  1.60

  1.65

  1.70

  1.75

  1.80

  1.85

  1.90

  人数

  2

  3

  2

  3

  4

  1

  1

  1

  分别求这些运动员成绩的众数,中位数与平均数(平均数的计算结果保留到小数点后第2位)。

  观察表格,分析回答下列问题:①表中国共产党有多少个数据?其中哪个数据出现的次数最多?这组数据的众数是什么?说明什么?

  ②表里的17个数据可看成是按什么顺序排列的?其中第几个数是最中间的数据?这组数据的中位数是多少?说明什么?

  ③可选用哪个公式求这组数据的平均数?所求得的平均数能说明什么?这样分析例题,可使学生加深理解平均数、众数、中位数的概念之间的联系与区别,体会到这三个数在描述一组数据集中趋势时的不同角度。

  【展示应用 评价自我】

  补充练习1、已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x值及这组数据的中位数。

  解:∵10,10,x,8的中位数与平均数相等

  ∴ (10+x)= (10+10+x+8)

  ∴x=8, (10+x)=9

  ∴这组数据中的中位数是9。

  补充练习2、当5个整数从小到大排列,其中位数是4,如果这个数集的唯一众数是6,则这5个整数可能的最大的和是( )

  A.21 B.22 C.23 D.24

  分析:设这5个整数按从小到大排列为a1,a2,a3,a4,a5,由于中位数是4,所以a3=4,又6是唯一众数,所以a4=a5=6,此时,a2最大只能取3,a1最大取2,故a1+a2+a3+a4+a5=2+3+4+6+6=21

  解:选(A)

  3、教材P159中1、2、3

  【链接知识 归纳小结】

  1.知识小结:这节课我们学习了众数、中位数的概念,了解了它们在描述一组数据集中趋势时的不同角度和适用范围。

  2.方法小结:①众数由所给数据可直接求出,(一组数据中的众数可能不止一个,众数是一组数据中出现的次数最多的数据,而不是该数据出现的次数.如果有两个数据出现的次数相同,并且比其他数据出现次数都多,那么这两个数据都是这组数据的众数)。②求中位数时,首先要先排序(从小到大或从大到小),然后计算中位数的序号,分数据为奇数个与偶数个两种来求.(既找出最中间的一个数据或最中间两个数并算出它们的平均数)。

  3.知识网络:平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动;众数着眼于对各数据出现的频数的考察,其大小只与这组数据中的部分数据有关。当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;中位数则仅与数据的排列位置有关,某些数据的变动对它的中位数没有影响。当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。

  【布置作业】教材P163A组1、2、3,B组。

  【板书设计】

  14.2 众数与中位数

  1.定义 例1 例2 例3

  众数: 练习1 练习2

  中位数

众数中位数教案7

  教学内容:北师大版小学数学五年级下册第七单元中位数和众数。

  教材简析:

  本节课是在学生已掌握平均数基础上来学习的。通过挖掘生活中丰富的课程资源,让学生经历统计活动的过程中,学会求中位数和众数并理解它们的实际意义,学会对数据进行分析,进一步培养学生初步的统计能力。

  学生分析:

  学生已经具有一定的统计能力,并善于在生活中发现问题,乐于在合作、探究中解决问题,所以本节课主要是引导学生在自主、探究的活动中来获取新知。

  教学目标:

  1.通过对数据的分析,会求中位数与众数,并能根据具体问题解释其实际意义。

  2.培养学生发现问题、分析问题、解决问题的能力,并在具体活动中培养学生的探究意识与合作能力。

  3.感受统计在生活中的应用,增强统计意识,培养统计能力。

  教学重点:会求中位数和众数,能结合情境理解其实际意义。

  教学难点:能根据具体问题情境选择适当的统计量表示数据的不同特征。

  教学设想:

  首先创设小明找工作时遇到问题的情境,通过对平均数的分析引发学生认知冲突,引出寻找中位数的必要性;然后通过对数据的观察、分析、比较,学会确定中位数和众数。

  通过调查学生的体重、年龄、鞋号,让学生经历数据收集、整理、分析的过程,加深对中位数和众数意义的理解,体会统计知识在生活中的应用,从而进一步培养学生的统计能力。

  教学过程:

  一、创设情境,引发认知冲突

  1.师:老师想了解你们长大以后都想做什么呢?

  生:军人。

  师:多远大的志向啊!共和国的卫士。

  生:教师。

  师:人类灵魂的工程师。

  师:看来你们每个人都有自己的想法,为了实现你们的理想,一定要从小做起加倍努力呀!老师想问你们一个问题,假如你现在刚刚大学毕业,在找工作时你应该关注什么?

  生:关注公司的实力。

  生:关注公司的工作环境。

  生:我比较关注我的工资是多少?

  师:是啊,工资的确是人们比较关注的一个条件,很多人在找工作时都要考虑这个问题。我的一位好朋友张明在求职的过程中就遇到了这方面的问题,我们一起来看一下。

  2.师出示课件,指名读招聘启事。

  师:从招聘启事中你能获得哪些信息?

  生:我知道了这家公司要招聘员工。

  生:我还知道这家公司员工的平均工资是20xx元。

  师:对啊,平均工资20xx元,小明一看比较符合他的要求,于是就兴冲冲地来到了招聘处,经理对他进行了全面考核后对他说:根据你应聘的岗位我们给你的工资是1400元。(出示课件。)

  师:如果你是小明,听到这个消息你会怎么想?

  生:招聘启事上不是说平均工资是20xx元吗?为什么给我的工资却是1400元?

  生:这是一家骗人的公司,明明是20xx元的基本工资,为什么只给我这些呢?

  师:小明也有这些疑问,经理自然也有他的道理,这时他拿出该公司员工月工资表。

  师:大家认真观察这组数据,你能发现什么?

  生:大多数员工的工资都在20xx元以下。

  生:我发现老板没有骗人,因为这些员工的工资有高有低,平均工资的确是20xx元。

  师:老板没有骗人,可是大多数员工的工资又都在20xx元以下?那到底问题出在什么地方呢?

  生:因为两个经理的工资特别高,所以使得员工的工资比平均工资都低。

  生:因为经理的工资高,所以把平均值拉高了。

  师:同学们分析得很有道理,由于平均数20xx受到较大数据的影响,已经不能合理地反映这家公司工作人员工资一般水平了。

  二、揭示问题,自主探究新知

  1.中位数。

  师:再观察这组数据,你认为哪个数据最能代表员工工资的一般水平?自己先想一想,然后和你的同桌或其他同学交流一下。(学生交流并汇报。)

  师:你认为应该是哪个数据更能表示这家公司员工工资的一般水平?

  生:我认为是1800元,因为它和20xx元比较接近。

  生:我们组认为应该是1500元,因为它在9个数据的最中间。

  生:我认为是1300元,因为去掉经理和副经理的工资,它在这组数据的中间。

  师:现在大家意见不统一,比较一下这3个数,你觉得哪一个数更合理呢?可以在小组中再讨论一下,交流一下你们的想法。

  生:我认为应该是1500元,因为它在工资表的最中间的位置。

  生:我们也认为是1500元,因为它在中间更能表示员工工资的一般水平。

  生:我们也认为是1500元,因为它不高也不低,能代表一般水平。

  师:通过第一次的交流大家说出了自己的想法,进一步的讨论和研究让我们达成了共识,现在大家都认为1500元最能代表员工工资的一般水平。观察1500在这组数据中处于什么位置?

  生:中间位置。

  师:(板书:中间。)那它前面有几个比它大的数据?(4个。)后面有几个比它小的数据。(4个。)它处于9个数据的最中间的位置。

  师:那我们看这9个数据是怎么排列的啊?

  生:从大到小。(板书:大小。)

  师:(手势)这样呢?(从小到大。)

  师:我们把具有这样特点的数就叫做中位数。(板书:中位数。)

  师:你能不能根据自己的理解说一说什么是中位数?

  师:你的概括能力真强,通过刚才的学习大家对中位数的理解越来越全面了,我们一起来看一下大屏幕。(出示中位数概念并指名读。)

  师:你认为中位数和平均数哪一个更能表现这家公司员工工资的一般水平?

  生:中位数。

  师:那么作为商店经理为什么要在招聘启事中打出平均数呢?

  生:是因为在这里平均数比中位数要高,能吸引更多的人来。

  师:看来啊,这是商家的一种策略。我们分析一组数据时,由于所站的角度不同,往往关注点就不同,所以才会选择不同的统计量来表示一组数据的不同特征。

  师:我的朋友小明考虑再三,还是接受了这份工作。他的加入使工资表发生了变化,那现在这组数据的中位数是多少呢?

  生:1500。

  生:1400。

  生:这组数据最中间是1500和1400,中位数就应该是它俩中间的数。

  生:我认为它俩中间的数就是它们两个的`平均数。

  师:你同意他的观点吗?口算一下应该是多少?(电脑出示求法。)

  师:对照这两组数据中位数的求法,你能发现什么规律?

  生:当数据个数是奇数时,中位数就是最中间的那个数;当数据个数是偶数时,中位数就是最中间两个数的平均数。

  师:同学们可真聪明,不但会分析问题,还能在分析的过程中发现规律。看来中位数只和数据的位置和排列有关系。

  2.众数。

  师:其实生活中中位数的应用很多,老师想调查一下你们的体重是多少好不好?

  师:你们发现老师在写这些数据时,是怎么写的?

  生:是按照从大到小的顺序写的。

  师:观察这组数据的中位数是多少?它表示什么?你的体重和这组数据对照,处于什么水平?

  生:中位数是80,它表示这一组同学的体重一般是80斤。

  生:我的体重是62斤,和这组同学比较我处于中等偏下的水平。

  生:我的体重是96斤,和他们比较我处于中等偏上的水平。

  师:有和这几个同学的体重一样的吗?

  生:我的体重是80斤。

  生:我的体重也是80斤。

  师:我们观察现在的这组数据,除了能找出中位数以外,你还发现它有什么特点?

  (出示数据:62768083978080。)

  生:我发现有3个同学的体重是一样的,是80斤。

  师:说明80出现的次数最多。

  (板书:出现次数最多。)

  师:具有这样特点的数我们就叫众数。(板书:众数。)

  师:根据你的理解说说什么是众数?

  生:我认为众数就是一组数据中出现次数多的数。

  师:(电脑出示众数概念并指名读。)我们看这组数据的众数是多少?

  生:80。

  师:说明在调查的这几个同学中,体重是80斤的最多。看来众数只和数据出现的次数有关系。

  师:王老师还想了解一下,同学们今年多大了?(10、11、12。)10岁的举手我们看一下,11岁的举手,那12岁的呢?你们说咱班十几岁的同学最多?(11。)那么11就是我们班同学年龄(众数。)

  3.新课小结。

  师:通过我们共同研究不仅对平均数有了新的认识,还结识了两位新朋友:中位数和众数。(板书。)根据你的理解说说它们3个统计量都有什么特点?

  生:平均数和每个数据都有关系。

  生:中位数是一组按照一定顺序排列的数据中最中间的那个数。

  生:一组数据中出现次数最多的数就是众数。

  生:我知道了当一组数据个数是奇数时,中位数就是最中间的那个数;而当数据个数是偶数时,中位数就是最中间两个数的平均数。

  师:其实统计知识在我们生活中有着非常广泛的应用。

  三、联系生活,突出现实意义

  师:老师还想做一个现场小调查。你们都知道自己穿多大号码的鞋吗?现在分别统计一下男女同学的鞋号。(生分男、女生组开始统计,记录员进行整理。)

  师:我们来观察这两张统计表,你能从中获得哪些信息?

  生:我知道了穿37号鞋的同学最多,穿40号鞋的最少。

  师:如果你是一家儿童鞋店的经理,针对这两组数据提供的信息,会对你有什么帮助?

  生:多进37号的鞋,因为穿它的人多。

  生:我想再多进一些38号的鞋,因为随着学生长大脚也会变大。

  生:少进一些34号、40号的鞋,因为穿这些号的人少。

  师:通过这节课的学习,同学们不但会分析数据,还能根据数据进行决策呢,看来你们的收获可真不少。

  四、全课小结

  师:其实数学知识能帮助我们解决生活中许多实际问题,生活中处处离不开数学,如果你是个有心人,就到生活中去寻找吧!

  反思:

  本节课教学中,师生在共同研讨、交流、互动中三维目标得到了很好的落实,学生的能力得到了提高。学生在解决问题的过程中加深了对概念的理解,并且体会到

  平均数、中位数、众数三者的不同特征及其实际意义。

  回顾本节课,主要有以下几方面的特点:

  (一)有冲突才有探究,有认知才会建构。

  通过开放性的问题设计引发学生思考,使学生在认知结构上产生冲突,使之成为学生重新建构认知的良好契机。在学生主动探索、思考、发现过程中,体会到中位数的产生过程及实际背景。这样,学生不但完成了对新知的整合与建构,而且把探索求知、发现新知的权利真正交给了学生。

  (二)有合作才有交流,有补充才愈完善。

  在本节课中,无论从概念的得出、问题的解决、还是决策的制定,合作与交流贯穿整个教学过程。通过组内讨论、同桌交流体现了各层次学生对知识的不同理解;在交流过程中,每个学生的思维与智慧都被整个群体共享,学生对概念的理解更全面,更深入。

  以上几点是本节课把握比较成功的地方,但仍然存在着遗憾和不足:例如众数的学习虽然很自然很容易,但认识比较浅显,如果能再充分地利用这组数据,引导学生发现一组数据中的众数可能有1、2个或可能没有,那样学生对众数的认识会更全面。中位数在学生的生活中运用不是很多,如何通过丰富的事例让学生感受到中位数和众数在生活中的意义和作用,还值得我们进一步去研究。

  总之,整节课学生经历着在观察中思考,在思考中发现,在发现中争论,在争论中提升的过程。我们把课堂真正还给了学生,师生在共同的研讨、交流中感受数学学习的乐趣。

众数中位数教案8

  教学目标:

  1.通过对数据的分析,会求中位数与众数,并能根据具体问题解释其实际意义。

  2.培养学生发现问题、分析问题、解决问题的能力,并在具体活动中培养学生的探究意识与合作能力。

  3.感受统计在生活中的应用,增强统计意识,培养统计能力。

  教学重点:认识并会求中位数和众数,能结合具体情境理解其实际意义。

  教学难点:根据具体问题情境选择适当的统计量表示数据的不同特征。

  教学准备:课件

  教学过程:

  一、创设情景激趣引入

  很高兴今天能够在这里认识大家,今天我主要是想给大家介绍两个朋友。

  先请欣赏一段视频。

  师问:你们知道他们是在干什么吗?

  生齐答:开运动会。

  师:是的,前几天我们学校举办了20xx年春季田径运动会,在这次运动会上我记录了立定跳远一个小组的预赛成绩,如下表(课件出示):

  姓名陈银刘俊胡榜刘敏向旺胡周吴坤蒋奎汤浩

  成绩(cm)15515015015014814714511060

  师:刚才同学们看了他们的竞赛成绩,下面请同学们帮忙算算他们的平均成绩好吗?

  学生动手计算然后汇报。(平均数:135)

  师:那么请同学们想一想如果我用平均数135cm来代表这个组的同学跳远的水平,同学们觉得合适吗?

  学生思考后汇报。(因为就除了两个同学是以外其他同学的成绩的`都要比这个数大)

  过渡:由于有一个数很小,平均数在这里不能真实反映这个组同学的跳远水平。

  二、合作探究探索新知

  1、师:你认为用怎样的数表示这个组同学的跳远水平比较合理,为什么?先自己想一想,然后和你们组的同学讨论一下。

  学生汇报:

  预设:1、用148cm比较合适;

  2、用150cm比较合适;

  (针对学生的汇报情况引导学生一一加以分析,在分析解决问题的同时认识中位数和众数。)

  2、认识中位数和众数

  1)师:我们来看一看148在成绩表中所处的位置有什么特点?

  生:在最中间。

  师:这就是中位数。

  (这就是今天要给同学们介绍的第一个朋友:中位数)

  板书:中位数

  (揭示中位数的概念)中位数:将一组数从小到大(或从大到小)

  排列,中间的数称为这组当数的中位数。(出示幻灯片)

  2)我们再来看看一看150这个数,我们发现在这一组数中出现最多的就是它,像这样的数我们把它叫做众数。

  (这就是我要给同学们介绍的第二个朋友:众数)

  师:你能说说什么是众数吗?

  学生回答。教师总结:

  众数:一组数据中出现次数最多的数称为这组数据的众数。(出示幻灯片)

  教师小结:(回到本课开始的问题进行进一步的解释)数据148处于中间,反映的是这个组男同学跳远的中等水平,能表示这组数据的中等水平。150出现次数最多,体现的是多数同学的水平;由于一个同学情况特殊成绩较差,使平均数一下子变小了,平均数135已经不能合理的这些同学的跳远水平了。

  三、做游戏以完善概念

  师:刚才我们认识了两位新朋友,下面我们来玩个游戏轻松一下。

  游戏1:找朋友。

  游戏2:猜年龄。

  先简单介绍游戏规则。

  游戏结束后教师简单总结求一组数的中位数和众数的方法。

  四、解决问题。

  师:刚才我们已经学会了怎样求出一组数的中位数和众数,那么中位数和众数在我们的生活中究竟有哪些用处呢?下面我们就利用平均数、中位数和众数的反映特征解决生活中的问题。

  1、下列几种情况一般使用什么数?

  (1).要表示同学们最喜欢的动画片,应该选取()。

  a.平均数b.中位数c.众数

  (2).五年(1)班有50人,五(2)班有45人,要比较两个班平均成绩,应该选取()。

  a.平均数b.中位数c.众数

  (3).在一次数学单元检测中,某个选手想知道自己在全班处于什么水平,应该选取()。

  a.平均数b.中位数c.众数

  2、某小组进行跳绳比赛,每个成员1分种时间跳的次数如下:

  2351351309011012018012590。

  (1)分别计算这组数据的平均数和中位数。

  (2)你认为平均数、中位数哪一个能更好地表示这组同学的跳绳水平?

  3、某商店销售5种领口分别为38cm,39cm,40cm,41cm,42cm的衬衫,为了了事各种领口的衬衫的销售情况,商店统计了某月的销售情况(见下表)

  领口尺寸/cm3839404142

  售出件数131934159

  你认为商店应多进那种衬衫?

  五、小调查:老师上完这节课,后面的评委就要给老师打分,在计算我的最后得分时往往去掉一个最高分和一个最低分,再计算剩下的得分的平均数,你知道这是为什么这么吗?学生讨论交流后教师总结.

  学生讨论交流。

  六、小结:通过这一节课的学习你有收获吗?能把你的收获告诉我们吗?

  学生回答。(教师肯定)

  七、板书设计:中位数和众数

  结束语:今天这节课我们一起学习了中位数和众数,在我们以后的生活中,我们会经常用到平均数、中位数和众数的知识解决问题。我们要根据要求和数据特点灵活选择。生活处处离不开数学,如果你是个有心人,就到生活中去寻找数学问题并运用数学知识解决问题吧!

众数中位数教案9

  第一步;理解体验:

  1、复习平均数、中位数和众数定义

  2、引入课本P146R的例子

  思路点拨:商场统计每位营业员在某月的销售额组成一个样本,从样本数据中的平均数、中位数、众数中得到信息估计总体的趋势,达到问题的解决。

  由例题中(2)问和(3)问的不同,导致结果的不同,其目的是告诉学生应该根据题目具体要求来灵活运用三个数据代表解决问题。

  本例题也客观的反映了数学知识对生活实践的指导有重要的意义,也体现了统计知识与生活实践是紧密联系的。

  第二步:总结提升:

  平均数、众数和中位数这三个数据代表的异同:

  平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。平均数是应用较多的`一种量

  平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.

  众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.

  平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.

  中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.

  实际问题中求得的平均数,众数,中位数应带上单位.

  第三步:随堂练习:

  1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:

  得分5060708090100110120

  人数2361415541

  分别求出这些学生成绩的众数、中位数和平均数.

  2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)

  甲群:13、13、14、15、15、15、16、17、17。

  乙群:3、4、4、5、5、6、6、54、57。

  (1)、甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。

  (2)、乙群游客的平均年龄是岁,中位数是岁,众数是岁。其中能较好反映乙群游客年龄特征的是。

  答案:1.众数90中位数85平均数84.6

  2.(1)15、15、15、众数(2).15、5.5、6、中位数

  第四步:课后练习:

  1、某公司的33名职工的月工资(以元为单位)如下:

  职员董事长副董事长董事总经理经理管理员职员

  人数11215320

  工资5500500035003000250020001500

  (1)、求该公司职员月工资的平均数、中位数、众数?

  (2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)

  (3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?

  2、某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示

众数中位数教案10

  一、活动目标

  1、培养幼儿相互合作,有序操作的良好操作习惯。

  2、发展幼儿的观察力及比较判断的能力。

  3、引导幼儿学习比较高矮,知道高矮是通过比较而来的,学习在同一高度平面上比较高矮,并能按高矮给物体排序。

  二、活动准备

  1、每人一套操作材料(大矿泉水瓶、小矿泉水瓶、椰奶瓶、旺仔牛奶瓶)。

  2、事先设置好表演情境。

  三、活动过程

  1、引导幼儿学习在同一平面上比较两个物体的`高矮。

  设置表演情境。请两个小朋友比高矮,甲站在地板上,乙站在椅子上,问:他们俩究竟谁高,谁矮呢?这样能比出高矮来吗?为什么?鼓励幼儿充分讨论。

  教师小结:比较高矮时,俩人必须都站在同一平面、同一高度上,这样才能比较出谁高谁矮。

  幼儿示范正确的比高矮方法。

  2、引导幼儿发现高矮是通过比较而来的。

  请一个比前面二个小朋友更矮的小朋友上来与他们比高矮,问:怎么一会儿说这个小朋友矮,一会儿又说这个小朋友高,到底他是矮还是高呢?

  引导幼儿观察、思考得出结论:说一个人是高还是矮要看他和谁比。

  3、引导幼儿不受物体大小、形状的影响,按高矮给物体排序。

  指导语:一天,几只瓶子在一起吵吵嚷嚷,它们想出去走走,可是不知道该怎么排队,现在请小朋友都来帮它们排排队,排好以后要说说你们是怎么给它们排的队。

  4、幼儿通过自身参与,进一步体验物体的高矮是比较出来的。

  玩游戏《比高矮》:将幼儿分成几个小组,选出每组的小朋友,再派出来比赛,选出全班的小朋友,颁发奖牌,并鼓励小朋友,多吃饭菜、多运动,才长得高。

  四、活动延伸

  带领幼儿观察幼儿园的房屋、树木、运动器械等,并比较它们的高矮。

  活动反思:

  我认为本次活动设计是遵守循序渐进的原则,先请两个幼儿上台比较高矮,让幼儿作为活动的主体,比起图片来更直观,先让幼儿自己来比较,更能激发幼儿的学习兴趣,再来观察图片比较高矮,最后进行排序。幼儿学起来是层层递进的,对高矮概念掌握的较好,完成原先设立的目标。

众数中位数教案11

  一、教材结构与内容简析

  《中位数与众数》是北师大版义务教育课程标准实验教科书小学数学第十册第七单元第三节的内容。在此之前,学生已学习了简单的数据统计、认识了简单的条形统计图、折线统计图、扇形统计图,会求平均数,这为本节的学习起着重要的铺垫作用。《中位数和众数》一课是《数学课程村准》对小学数学教学内容的一个新的要求,本节课主要是让学生在实际情境中认识并会找一组数据的中位数和众数,能解释其实际意义。这是一节概念课,同时也是学生学会分析数据,作出决策的基础课。既是对前面所学知识的深化与拓展,又是联系现实生活培养学生应用数学意识和创新能力的非常好的素材。

  教学目标:

  1.在实际情境中,认识并会求一组数据的中位数、众数,并解释其实际意义。

  2.根据具体的问题,能选择恰当的统计量表示数据的不同特征。

  3.感受统计在生活中的应用,增强统计意识,发展统计观念。

  教学重点:

  认识并会求一组数据的中位数、众数,并解释其实际意义。

  教学难点:

  根据具体的问题,能选择恰当的统计量表示数据的不同特征。

  二、说教学、学法

  本节课,结合概念教学的特点以及小学生的学情,教学中以具体情境为背景,通过直观图示、视频等方式,让学生充分感知。采用启发式、小组合作与尝试练习相结合的教学方法,突出体现以学生为主体的探索性学习活动。以调动学生学习的自觉性、积极性。并依据学生的认知规律,对例题进行加工、调整。在探求规律时适当给予启发、引导学生逐步学会通过比较、归纳,最后概括出一类事物的本质属性的学习方法。从而达到感知新知,概括新知,应用新知,巩固和深化新知的目的。

  三、教学过程

  (一)创设情景,提出问题

  我运用跳绳比赛这样一个问题情境,播放跳绳比赛视频,随之提出问题,问学生哪组同学跳绳的中等水平好一些?让学生进行大胆的猜测。然后教师出示这两同学比赛的平均成绩,让学生进行比较。最后再完整地出示小组成员中每人的跳绳成绩。引导学生比较,观察,引导学生感知,平均数130不能很好地代表这组同学跳绳的中等水平,只要找到能代表这组同学跳绳中等水平的数字,才能做出比较。

  这个环节我采用了创设问题情境的教学方法,引发学生的认知冲突,体会学习中位数的必要性。学生在自主观察思考的过程中初步体会中位数的意义,为解决本课的重点打下伏笔。

  (二)合作探讨、探究新知

  1、探究中位数。

  出示第一小组跳绳成绩表,请学生找出哪个数能够很好地代表这一小组同学跳绳的中等水平,先独立思考,然后小组交流,全班汇报,说明选哪个数。

  (设计意图:问题的引入让学生在思考中初步感知求中位数的方法。通过讨论交流,培养了学生的自主探索、合作交流的意识与能力。)

  根据学生的`回答,教师说明,我们应该选择中间的数117来代表第一小组同学跳绳的中等水平。像这样能代表一组数据中等水平的数字在数学上我们称它为这组数据的中位数。

  板书:中位数

  这时教师紧跟着提问:还有补充吗?如果没有补充就加以引导:将李苹和员李扬跳绳成绩换下位置。引导学生说出:必须将一组数据从大到小或从小到大排列好,中间的数才是中位数。

  板书:大小排列中间的数

  然后练说什么是中位数,解释中位数117实际意义。

  师强调找中位数的方法:先排序,再找中位数

  (设计意图:这个环节我采用了建立模型的教学方法让学生进行观察思考,引导学生一步步准确、完整地说出中位数的意义,从而突破重点。)

  (2)探究数据个数是奇数时中位数的求法。

  师课件出示第二小组同学跳绳成绩,请学生求出这组数据的中位数,解释实际意义。

  小结:从中位数来比较,第二组跳绳中等水平高于第一小组。所以第二小组跳绳的中等水平好一些。

  (设计意图:此环节的设计,及时的巩固找中位数的方法,并通过情景的选择,加深理解学习中位数的必要性。)

  (3)探究数据个数是偶数时中位数的求法。

  教师继续延续刚才的情境,比赛规则发生改变,由原来的七人变成了八人出示这时成绩统计表,问:现在中位数是多少?先自己试做,然后小组交流。得出中间是两个数时中位数的求法,(设计意图:本环节通过变换情境的方法继续引导学生进行探究思考,解决重难点,让学生在情境中应用知识,在情境中解决问题。)

  (4)总结中位数的求法。

  大屏幕出示刚才的数据,比较这两组数据中位数的求法发现其中的规律。引导学生回答:当数据的个数是奇数时,中位数是中间的数;当数据的个数是偶数时,中位数是中间两个数的平均数。

  (设计意图:通过对之前求中位数方法的学习,引导学生进行解题方法的归纳,加深对中位数求法的掌握。)

  (5)及时练习:出示某超高员工工资表。

  师问:哪个数能代表超高员工工资的中等水平?学生独立完成

  2、探究众数。

  (1)认识众数。

  教师再次利用刚才的情境,比赛规则变成十人参加。出示这时的统计表,请学生找出现在哪个数能代表这一小组多数人的跳绳水平。得出众数的意义

  板书:众数解释实际意义

  (设计意图:本环节引导学生主体观察,建立众数模型,从而让学生掌握另一重点---众数。)

  (2)认识众数的不唯一性。

  教师修改数据:由于同学勤加苦练,同学们的跳绳成绩都有所提高,出示统计表。

  请学生找出众数,得出众数的不唯一性。

  板书:不唯一解释实际意义。

  小结,师板书课题。

  师进一步强调:众数只和数据的个数和位置有关接着是通过对学生体重和鞋号的统计数据进行分析,练习中位数和众数。

  (设计意图:及时巩固、归纳、总结本节课的内容,有助于学生对新知的学习得到进一步提高,达到强化理解新知的目的。)

  之后是用三道选择题对学生的学习情况进行检测。

  (当堂检测是我校近期实施的构建高效课堂方案的策略之一,这种检测形式具有及时性,实效性,有助于教师及时掌握学生对新知的理解程度,并有效提高课堂效果。这道题就是检测学生是否理解本课知识,能否将概念应用于生活实际之中,具有较强的实效性。)

  最后是课堂总结,让学生谈谈自己的收获。

  我在本节课的教学设计中紧紧围绕课程标准中指出的,要让学生感受知识的产生和应用的过程,形成问题情境建立模型解释与应用的基本模式这一宗旨。在情境中引发学生的认知冲突,体会学习中位数的必要性;在情境中理解中位数和众数的意义,学会求法;在情境中应用知识,解决生活中的实际问题。体现了数学来源于生活,又高于生活,并运用于生活,为生活服务的教学理念。

  三、板书设计

  中位数和众数

众数中位数教案12

  一、教学目标

  【知识与技能】

  掌握中位数、众数的概念,能正确找出一组数据的中位数和众数。

  【过程与方法】

  通过自主探索、小组讨论、合作交流探索的过程,提升分析和解决问题的能力。

  【情感、态度与价值观】

  体会数学和生活之间的联系,提升学习数学的自信心和乐趣。

  二、教学重难点

  【重点】中位数、众数的概念。

  【难点】正确找出一组数据的中位数和众数。

  三、教学过程

  (一)导入新课

  创设求职情境,多媒体出示某公司员工的月工资表,提问:这个公司员工的收入水平怎样?

  预设学生计算出月平均工资为2700元。

  追问平均工资能否作为这个公司工资水平的代表。

  预设学生根据绝大多数员工达不到平均工资得出平均工资不具有代表性。

  教师说明本节课学习其他统计指标。引出课题。

  (二)讲解新知

  多媒体出示经理、职工C、职工D对工资的描述,提问:你能试着说明他们是如何看待工资的吗?

  针对问题,组织前后桌四人一组,5分钟时间进行讨论。

  学生思考、交流、探究,教师明确:月平均工资2700元,指所有员工工资的平均数是2700元,说明公司每月将支付工资总计2700×9=24300元;职员C的工资1900元,恰好居于所有员工工资的正中间,恰有4人的工资比他高,有4人的工资比他低,我们称它为中位数;9个员工中有3个人的工资为1800元,出现的`次数最多,我们称它为众数。

  提问:哪个数据描述该公司员工收入的集中趋势更合适?

  明确此情境中中位数比平均数更具代表性。

  追问:为什么收入的平均数比中位数高得多?观察数据明确平均数受到被极端值拉高。

  (三)课堂练习

  出示一组数据,请学生计算平均数、中位数、众数,选择合适的数据描述集中趋势。

  (四)小结作业

  小结:提问学生今天有什么收获。

  作业:总结平均数、中位数和众数各自的特征。

众数中位数教案13

  一、教学目标:

  1、进一步认识平均数、众数、中位数都是数据的代表。

  2、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。

  3、能灵活应用这三个数据代表解决实际问题。

  二、重点、难点和突破难点的方法

  1、重点:了解平均数、中位数、众数之间的差异。

  2、难点:灵活运用这三个数据代表解决问题。

  3、难点的突破方法:

  首先应复习平均数、众数和中位数的定义,将这三者进行比较,归纳三者的各自特点,以保证学生在应用过程中不致盲目乱用。以下是这三个数据代表的异同。

  平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。平均数是应用较多的一种量。另外要注意:

  平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.

  众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.

  平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.

  中位数仅与数据的排列位置有关,某些数据的`移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.

  实际问题中求得的平均数,众数,中位数应带上单位.

  例题6的讲解要到位,分析要清楚,既要讲明白例题,也要使学生通过这个例题知道怎样去应用这三个数据代表分析问题,具体的注意事项将在例习题的意图分析中介绍。

  三、例习题的意图分析:

  教材P146例6的意图

  (1)、这是在学习过数据的收集、整理、描述与分析之后涉及到这四个环节的一个例题,从分析和解答过程来看它交待了该如何完整的进行这几个过程,为该怎样综合运用已学的统计知识解决实际问题作了一个标准范例。教师在授课过程中也应注意,对已学知识的巩固复习。

  (2)、从分析和解答过程来看,此例题的一个主要意图是区分平均数、众数和中位数这三个数据代表的异同。

  (3)、由例题中(2)问和(3)问的不同,导致结果的不同,其目的是告诉学生应该根据题目具体要求来灵活运用三个数据代表解决问题。

  (4)、本例题也客观的反映了数学知识对生活实践的指导有重要的意义,也体现了统计知识与生活实践是紧密联系的。

  四、课堂引入:

  本节课的课堂引入可以通过复习平均数、中位数和众数定义开始,为完成重点、突破难点作好铺垫,没有必要牵强的加入一个生活实例作为引入问题。

  五、例习题的分析:

  例题6中第一问是在巩固平均数定义、中位数定义和众数的定义。可以引导学生从问题中词语特点分析它们分别指哪个数据代表,教师也可以顺便加一个发散性问题,一般地哪些词语是指平均数、中位数和众数呢?

  例题6中的第二问学生一般不易想到,教师要将较高目标衡量标准引向三个数据代表身上,这样学生就不难回答了。

  第三问要抓住一半左右应与哪个数据代表的意义相符这个问题。即要很好的回答第三问,学生头脑必须很清楚平均数、中位数、众数的特点。

  六、随堂练习:

  1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:

  分别求出这些学生成绩的众数、中位数和平均数.

  2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)

  甲群:13、13、14、15、15、15、16、17、17。

  乙群:3、4、4、5、5、6、6、54、57。

  (1)、甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。

  (2)、乙群游客的平均年龄是岁,中位数是岁,众数是岁。其中能较好反映乙群游客年龄特征的是。

  答案:1.众数90中位数85平均数84.6

  2.(1)15、15、15、众数(2).15、5.5、6、中位数

  七、课后练习:

  1、某公司的33名职工的月工资(以元为单位)如下:

  (1)、求该公司职员月工资的平均数、中位数、众数?

  (2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)

  (3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?

  2、某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示:

  根据表中的信息填空:

  (1) 该公司每人所创年利润的平均数是 万元。

  (2) 该公司每人所创年利润的中位数是 万元。

  (3) 你认为应该使用平均数和中位数中哪一个来描述该公司每人所创年利润的一般水平?答

  答案:1.(1).20xx 、500、1500

  (2).3288、1500、1500

  (3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平。

  2.(1)3.2万元 (2)2.1万元 (3)中位数

众数中位数教案14

  一、教学内容:

  《实验教材·数学》五年级上册第107-109页。

  二、教学目标:

  1、 知识与技能:在现实背景中,理解并体会中位数和众数的意义;会求中位数与众数。

  2、过程与方法:

  (1)体会“平均数”“中位数”和“众数”各自的特点;

  (2)根据现实生活中具体的情况,选择适当的统计量表示数据的不同特征。

  3. 情感、态度、价值观:培养学生具体问题具体分析的能力;体会数学服务于生活。

  三、教学重点:

  1、结合情境理解并体会中位数和众数的意义;

  2、对统计量的选择能力。

  四、教学难点:

  1、根据具体问题情境选择适当的统计量表示数据的集中趋势。

  2、根据统计量进行简单的预测或作出决策。

  五、教学过程:

  (一)认识众数:

  小马在网上看到一则招聘广告:

  招聘广告:

  我公司现招聘员工,员工的月平均工资是3000元。(谁来读一读?)

  小马觉得待遇不错,就应聘到了这家公司。一个月后,他拿到了工资但却产生了疑问(投影)什么疑问?他找到主管,质疑招聘广告内容有假,这时,人家给他拿出了这个月员工的工资表,并很自信的告诉他招聘广告内容是真实的。

  小马拿过工资表就赶紧算,算什么?怎么求月平均工资?

  (板书:平均数:总量÷总份数)咱们快帮小马算算吧。

  果真是3000元,看来招聘广告内容不假,小马怎么会对招聘广告真实性有质疑呢?

  招聘广告怎么改才不至于使应聘者产生这样的误会?为什么用1500元?

  在统计学中把这样的数起叫众数(板书:众数)你怎样确定一组数中的众数呢?一组数据中出现次数最多的那个数。板书:(最多)

  出示老师踢毽照片:

  第一组:

  教师

  (1)

  (2)

  (3)

  (4)

  (5)

  (6)

  (7)

  (8)

  (9)

  个数

  9

  9

  8

  6

  2

  9

  7

  4

  9

  第二组

  教师

  (1)

  (2)

  (3)

  (4)

  (5)

  (6)

  (7)

  (8)

  (9)

  (10)

  个数

  7

  10

  7

  11

  7

  9

  7

  10

  7

  5

  两组教师踢毽个数的平均数、众数分别是多少?

  在统计学里还经常用到另一个数:中位数。板书:中位数

  位是位置的位,你认为第一组教师踢毽个数的中位数是几?

  个数

  9

  9

  8

  6

  2

  9

  7

  4

  9

  排序:从小到大或从大到小,居中的`那个数。

  小组合作找出第一组教师踢毽个数的中位数,用实投汇报。(引导划数法)

  用划数法找到第二组教师踢毽个数的平均数。

  讨论:怎么找?为什么?

  二、练习:

  这是一组教师在规定时间内跳绳个数记录:

  34、40、36、39、40、34、38

  这一共有七个数据,师:、众数是多少?中位数?

  这时发现漏记了一个成绩,加上这个成绩从大到小排列后是:

  40、40、39、38、36、X、34、34

  师:现在这组数据,中位数是?平均数是谁?

  师:那中位数是谁?

  小结:中位数只和一组按大小顺序排列数据的中间位置上数据有关,如果单数个数据就是最中间的那个,要是双数个数据,就是最中间两个数的平均数而平均数与数据中的每一个都息息相关。

  平均数说明的是整体的平均水平;众数说明的是数据中的多数情况;中位数说明的是数据中的中等水平。

  2、综合应用

  1、射击队准备从两名运动员中选一名去参加射击比赛,下面是他们的选拔成绩(单位:环):

  甲:9.1、9.1、9.8、9.0、9.1、9.1

  乙、9.8、9.9、9.8、9.8、3.7、9.8

  给出平均数后问:你认为应选谁去?为什么?

  2、五(3)班准备在两名女生中选一名参加投篮比赛,下面是她们8次投篮的成绩记录(单位:个)

  甲:6、7、5、8、6、6、5、9

  乙:3、7、5、7、4、8、3、7

  平均数 中位数 众数

  甲:6.5 6 6

  乙:5.5 6 7

  3、五(3)班一次数学调研测试的成绩,如下表(单位:分)。

  100

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  95

  94

  94

  93

  92

  91

  91

  91

  90

  88

  88

  87

  85

  85

  85

  84

  83

  80

  75

  70

  63

  仔细观察这次测验成绩,说说发现了什么?

  政府的听证会的目的。

  谈收获。

众数中位数教案15

  一。 教材分析

  1、教材的地位和作用

  在信息社会“数字”社会里,常常需要在不确定的情况下,根据大量纷繁杂芜的数据做出一个合理的决策,而统计正是通过对数据的收集、整理和分析,为人们更好地制定决策提供依据及建议。平均数,众数,中位数是描述一组数据的集中趋势的3个统计特征量,是帮助学生学会用数据说话的基本概念。本节内容是继平均数学习之后的后续内容,既是对前

  面所学知识的深化与拓展,又是联系现实生活培养学生应用数学意识和创新能力的良好素材。

  2、课时安排和说明

  参照新教材教师用书建议:“10。2平均数、中位数和众数”这一节准备安排三个课时,第一课时主要承上启下地回顾探索平均数的一些性质及简单应用。第二课时探索得到众数和中位数的概念,并会正确计算众数和中位数,了解平均数、众数和中位数的各自适用范围。 第三课时是练习实践课,目的是巩固和深化本节知识及会用计算器计算平均数,用计算机计算平均数、众数和中位数。本次说课内容为第二课时。

  3、教学重点和难点

  教学重点:众数和中位数两概念的形成过程及两概念的简单运用。

  教学难点:利用收集的数据整理分析,对刚接触统计不久的学生来说,他们原有的认知结构中尚缺乏这方面的知识经验,因此,对统计数据从多角度进行全面分析,使学生形成一定的统计观念(即数据感)是教学难点。

  二.学情分析

  认知分析:学生已初步了解统计的意义,理解平均数的含义及会计算平均数,这两者形成了学生思维的“最近发展区”。

  能力分析:学生已初步具备一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养。

  情感分析:多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,尚需通过营造一定的学习氛围,来加以带动。

  基于以上分析,在学法上,引导学生采用自主探索与互相协作相结合的.学习方式,尽量让每一个学生都能参与研究,并最终学会学习。

  三.教学目标

  根据教材分析和学生的认知特点,本节课设置的教学目标为:

  知识目标:理解众数和中位数的含义,会正确计算众数和中位数。

  能力目标:进一步发展学生类比、归纳、猜想等合情推理能力;让学生接触并解决一些现实生活中的问题,逐步培养学生的应用能力和创新意识。

  情感目标:通过各种真实的,贴近学生生活的素材和适当的问题情境,激发学生学习数学的热情和兴趣;在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。

  四.教学方法

  根据本节课的教学内容和建构主义教学理论,从发展学生认识问题、探索问题、研究问题的能力角度考虑,准备采用“以问题为中心”的讨论发观法:即课堂上,教师或学生提出适当的数学问题,通过学生与学生(或教师)之间相互讨论,相互学习,在问题解决过程当中发现概念的产生过程,思想方法的概括过程从而逐步建立完善的认知结构。

  具体说本节课由五个基本环节组成:创设情境,提出问题--合作交流,探索问题--理性概括,构建新知――实践应用,鼓励创新――归纳小结,反思提高。

  五.教学过程

  1. 创设情境,提出问题

  (1) 创设情境(用多媒体课件演示

  某小厂欲招工人一名,小张应征而来,经理告诉他:“我们这里报酬不错,平均工资水平是每周300元。”小张工作几天后,找到经理说:“你骗我,多数工人的工资水平没有超过每周200元,”这时,工会主席过来说:“小张,经理说得没错,其实我们厂有一半人达到或超过中等工资水平即每周250元,不止每周200元的!不信,看看这张工资表。”看后,小张感慨:“难道是我错了?”

  基于学生原有认知结构的问题情境,更诱发了学生的认知冲突,从而引发学生提出问题:究竟什么数据能反映工人的真实工资水平? (2) 问题:真是公说公有理,婆说婆有理,平均数真能客观反映工人的真实工资水平吗?

  2. 合作交流,探索问题

  在导出以上问题后,分三人小组开小型辩论会(三人分别充当经理、小张、工会主席三个角色展开辩论)。各小组再拿出最能反映工人真实工资水平的数据全班交流。

  学生会用人数最多的工种的工资200元或中等水平工资250元来回答,从而引出:今天要学习的内容----众数和中位数。

  通过学生合作交流,相互完善,在自主探索中发现概念的形成过程。让学生体验生活中的角色,认识到研究数据的必要性。

  3.理性概括,构建新知

  (!)启发建构

  在上述数据中象“200”这样的数我们就叫做这组数据的众数,象“250” 这样的数我们就叫做这组数据的中位数,它们与其它几个数相比是不同的,有何不同?我们能用自己的语言来描述它们吗?在学生描述的基础上为加深印象,教师可适时补充说明:“众数”中“众”即多,也就是某个数据在一组数据中出现次数最多;而“中位数”中“中位”是指位置居于中间,即某个数据在按照大小顺序排列的一组数据中,位置处于最中间。形象语言的描述更易新知的构建。

  (2)完善建构

  练习:

  ① 在一次英语考试中,11名同学得分如下:80 70 100 60 80 70 90 50 80 70 90 请指出这次英语考试中,11名同学得分的中位数和众数。

  ② 10名工人某天生产同一零件,生产的件数是:13 15 10 14 19 17 16 14 12

  你能说出这一天10名工人所生产零件数的众数和中位数吗?

  学生独立思考后讨论回答。

  结合学生回答的实际情况,对练习追问:a、能说出1 2 3 4 5 6 的众数吗?b、如何求一组数据的中位数?c、在一组数据中平均数,众数和中位数会都是同一个数吗?d、实话实说,对平均数、众数和中位数知道多少?谈谈它们的区别和共同特点.

  归纳探索结果:

  众数、中位数都是用来描述一组数据的集中趋势。众数是一组数据中出现次数最多数据;一组数据中的众数可能不止一个,也可能没有。中位数是指:将一组数据按大小依次排列,处在最中间位置的一个数据(或最中间两个数的平均数),一组数据中的中位数是惟一的。

  这一环节,由浅入深设置问题链,使学生思维分层递进,目的是突出本节重点;通过追问层层引导,又把学生的探索逐步引向最近发展区,启发学生运用类比、归纳、猜想等思维方法探究问题,揭示概念的实质,不断完善新的知识结构。同时体验了知识的形成过程和发现的快乐,继而转化为进一步探索的内驱力。

  4.实践应用,鼓励创新

  (!)请你当厂长

  某鞋厂生产销售了一批女鞋30双,其中各种尺码的销售量如下表所示:

  ② 从实际出发,请回答①中三种统计特征量对指导本厂的生产是否有实际意义? ① 计算30双女鞋尺寸的平均数、中位数、众数

  问题①在同一具体问题中分别求平均数,中位数,众数,目的是为了比较三个量在描述一组数据集中趋势时的不同角度,有助于了解三个概念之间的联系与区别。问题②具有很强的生活色彩,体现了众数,中位数在日常生产上的应用。

  (2)请你评判

  甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入的个数经统计计算后得到下表:

  由已知中位数估计"中间"位置,培养学生的逆向思维,同时也是从不同角度理解概念。 请你评判两班的学生成绩的平均水平、优秀率(每分钟输入汉字数≥150个为优秀)的高低。

  (3)请你参政:

  某市实行中考改革,需要根据该市中学生体能的实际状况,重新制定中考体育标准为此抽取了50名初中毕业的女学生进行一分钟仰卧起坐次数测试,测试情况见如下统计图:

  (图中右边的人数是指取得对应左边次数的女生人数)

  请你运用所学知识对以上数据进行分析,并思考:该市中考女生一分钟仰卧起坐项目测试的合格标准应定为多少次较为合适?请简要说明理由。

  由学生独立思考后,全班交流。在学生解答的基础上追问:

  追问:据上述你认为合格的标准,试估计该市中考女生一分钟仰卧起坐项目测试的合格率是多少?

  让学生会用数据多角度进行全面分析,制定科学决策,在用数学中学会创新.

  这一环节通过对实践问题的分析解决,突破教学难点,强化学生对知识的理解,促进知识的迁移、深化、巩固,进一步完善知识结构;鼓励学生用数学的眼光分析实际问题,增强用数学意识。

  引例的解决:

  略解:经理的工资数据与其它数据大小悬殊,用平均数不能反映工人的真实工资水平。这时用众数(200元)或中位数(250元)来表示工人的真实工资水平比较合适。

  追问学生:如果你找工作,你会怎样去了解工作报酬?

  由于前面已将问题的难点进行分解突破,问题的解决水到渠成。同时也使学生更深层地意识到:要学会用数据说话,科学地分析身边的事例,以免上当受骗。

  5. 归纳小结,反思提

  教师采用谈话法与学生小结交流:

  (1) 列表对比

  作业: (2)在生活中可用平均数、众数和中位数这三个特征数来描述一组数据的集中趋势,它们各有不同的侧重点,需联系实际选择。

  (1)巩固型作业:课本P101,练习:1 2

  (2)实践操作型作业:(一周后交)

  每分钟的心跳次数也称为心率,请你们分组抽样调查初一年级50名同学的心率,并思考若你是医务室的医生,请你谈谈初一年级学生的心率情况,据此数据向校长提出一些合理建议。

  布置一短一长作业,巩固本节和上节知识,也为下节课学习作好铺垫,同时也是为课本P125的课题学习“心率与年龄”的开展打好扎实基础;既让学生了解自身,同时引导学生参与研究性学习,促进学生的全面发展。

  六、设计说明:

  1.板书设计

  2.时间安排

  课题引入约5分钟,概念探索约18分钟,实践应用约17分钟,小结与作业约5分钟。(注:一节课45分钟)

  3。 教学特色

  1)以问题作为教学主线,在趣味性情境中发现问题,在层层递进的问题链中,展开探索,在实践应用性问题中感悟数学的思维与方法,培养统计观念。

  2)以课堂作为教学的辐射源,通过教师、学生、多媒体多点辐射,带动和提高所有学生的学习积极性与主动性。

  个人简介:徐小路,男,1971年生,浙江杭州人,杭州市长征中学一级教师,硕士

  通讯地址:310005 浙江省杭州市长征中学 电话:0571-88084357-8034

【众数中位数教案】相关文章:

中位数和众数教案03-30

《中位数和众数》教学反思11-15

中位数众数教学反思04-20

众数教学反思04-06

认识中位数教学反思04-02

众数教学反思15篇04-16

众数教学反思(15篇)04-16

小班教案小班教案03-10

教案幼儿中班教案02-15