- 相关推荐
《求三个数的最小公倍数》教案
作为一名默默奉献的教育工作者,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么问题来了,教案应该怎么写?下面是小编收集整理的《求三个数的最小公倍数》教案,仅供参考,大家一起来看看吧。
《求三个数的最小公倍数》教案1
教学目标
1.使学生掌握求三个数的最小公倍数的方法,并能正确,合理地求三个数的最小公倍数。
重点难点
用短除法求三个数的最小公倍数。求三个数的最小公倍数的计算过程。
主要教学方法
新授课 讲解法讨论法
操作过程
板书设计:求三个数的最小公倍数
例3求12、16和18的最小公倍数。
121618
把所有的除数和商连乘起来。
〔12、16、18〕=2×2×3×1×4×3=144
两种特殊的情况:1如果三个数中较大数是另外两个数的倍数,那么较大数就是它们的最小公倍数。
2如果三个数两两互质,那么它们的乘积就是它们的最小公倍数
师活动:预计时间()分钟
学生活动;预计时间()分钟
一. 复习准备
1填空。
4的倍数有:(4、8、12、16、20、24......)
6的'倍数有:(6、12、18、24、30......)
8的倍数有:(8、16、24、32
......)
4、6和8的最小公倍数是24
2把4、6、8和24分解质因数。
4=2×2
6=2×3
8=2×2×2×3
归纳:三个数的最小公倍数,就是三个数的公有质因数和任意两个数的公有质因数和各自独有质因数。
二.新课
1.例3求12、16和18的最小公倍数。
(1)用3个数公有的质因数2去除。
(2)用6和8的公有质因数2去除,9移下来。
(3)用3和9的公有质因数3去除,4移下来。
(4)除到两两互质为止。
〔12、16、18〕=2×2×3×1×4×3=144
注意:用短除法求三个数的最小
公倍数,先用三个数的公约数,然后再用任意两个数的公约数
去除。
2.看书第106页例3
3.练一练第1题
学生口答
1.名板演,其余自练。
2.观察分解质因数情况,你发现了什么?
讨论:
1.为什么当商是6、8和9时,还要用两个数的公约数2继续除?
2.除到什么时候可以不必再除?
3.最后这个最小公倍数怎么求?为什么?
1.学生看书
2.疑问难,学生练习
说说求三个数的最小公倍数与
三
san三
求三个数求
延伸练习
反 馈
与
矫正
目标达成情况
《求三个数的最小公倍数》教案2
第三课时
教学内容:求三个数的最小公倍数
教学目标:
使学生学会求三个数的最小公倍数的方法,并能正确地,合理地求三个数的最小公倍数。
教学过程:
一、复习
什么是公倍数、最小公倍数
怎样求两个数的最小公倍数
求两个数的最小公倍数与最大公约数有什么联系
当两个数是倍数关系时,大数就是这两个数的最小公倍数,小数就是这两个数的最大公约数。
当两个数是互质数时,这两个数的最大公约数是1,这两个数的最小公倍数是这两个数的乘积。
二、揭示课题
这节课我们学习求三个数的最小公倍数。
三、教学新课
1、例3求12、16和18的最小公倍数。
2、学生自学完成。
3、对不懂的问题提出疑问。
4、注意:用短除法求三个数的最小公倍数时,先要用三个数的公约数去除,然后再用任意两个数的'公约数去除。最后的结果要两两互质。
5、试一试
求15、30和60,3.4和7的最小公倍数。
计算后,你发现了什么?
(1)其中一个数是其他两个数的倍数,那么最大的数就是这三个数的最小公倍数。
(2)当三个数是互质数时,三个数的乘积是这三个数的最小公倍数。
四、巩固练习
书本第57-58页
五、反馈
六、布置作业
反思:本节课的难点是让学生知道为什么在求出三个数的公约数后还要求出两个数的公约数。然后把所有的除数和商乘起来。
《求三个数的最小公倍数》教案3
教学目标
使学生学会求三个数的最小公倍数的方法,并能正确地、合理地求三个数的最小公倍数。
教学重点、难点
重点、难点:学会求三个数的最小公倍数的方法。
教具、学具准备
教 学过程
备 注
一、复习准备
1、回答下列每组书的最大公约数和最小公倍数:
6和712和3656和14
4和915和457和13
提问:互质数的最大公约数和最小公倍数各有是什么特点?倍数关系呢?
2、已知10=2×515=3×5,那么10和15的最小公倍数是()
谁能说一说最小公倍数的质因数有何特点?
3、求12和18,30和45的最小公倍数。
(1)全体笔练,两个做在投影片上。
(2)反馈(投影片)失声共同。
(3)提问引入:你会求三个数的最小公倍数吗?(揭示课题)
二、教学新知
1、教学例3:求12、16和18的最小公倍数。
(1)学生尝试练习(两人板演,有困难可以看书)
(2)师生共同讨论(并纠正)板演:
A、为什么当商是6,8和9时,还要用两个数的公约数2继续除?
(因为每个数独有的质因数也是最小公倍数的质因数)
B、除到什么时候可以不必再除?
C、最后这个最小公倍数怎么求?为什么?
(3):因为最小公倍数既含有几个数公有的质因数,又含有每个数独有的质因数,所以一直要除到每两个数都互质(简称“两两互质”)为止,并把除数和商全部连乘起来。
(4)练习:求下列每组数的最小公倍数
16、8和1215、30和408、9和12
A、学生练习。
B、投影反馈。
C、先同桌讨论,然后在回答:求三个数的最小公倍数与求三个数的最
教学过程
备 注
公约数有什么不同?
明确:求三个数的最大公约数只要除到三个数的商只有公约数1为止,而求三个数的最小公倍数必须除到“两两互质”为止;求三个数的最大公约数只要把除数乘起来,而求三个数的最小公倍数必须把除数和商都连乘起来。
(5)练习:求下列每组数的最小公倍数
4、12和169、18和2712、15和18
(学生练习后反馈,并互相检查)
2、探求规律
出示:(1)15、30和60(2)3、4和7
8、10和402、5和9
9、7和631、和15
(1)学生练习:求每组数的'最小公倍数
(2)反馈练习结果(生报教师板书)
[15、30、60]=60[3、4、7]=84
[8、10、40]=40[2、5、9]=90
[9、7、63]=63[1、8、15]=20
(3)第(1)组中每组数的最小公倍数有什么特点?每组中的三个数又有什么关系?第(2)组呢?
谁能用自己的话把你的发现说一说?
(4)讨论后:
若三个数中较大数上另外两个数的倍数,则较大数既是它们的最小公倍数;
若三个数两两互质,则它们的乘积就是它们的最小公倍数。
(注意加“。”内容的强调)
(5)练习:课本P62练一练2(先略做思考,再口答,并说出为什么。)
(6)综合练习课本P62练一练3(当堂反馈,矫正错误)
三、课堂
1、这节课学习了什么?怎样求三个数的最小公倍数?
2、通过这节课的学习,并还知道了什么?
3、在练习时要注意分析清楚每组数中各数之间的关系,再解答。
四、作业《作业本》
求三个数的最小公倍数,是本小节教学的难点,教学过程中要特别强调短除法式子中最后的结果(商)必须要两两互质。
【《求三个数的最小公倍数》教案】相关文章:
《求一个数是另一个数几倍》教学反思02-06
【精华】《最小公倍数》教案三篇04-24
求一个数的几倍是多少教学反思04-07
《最小公倍数》教案03-03
求因数的教案01-21
《求比一个数多几或少几的数》教学反思03-18
公倍数与最小公倍数教案02-26
精选《最小公倍数》教案3篇04-11
《最小公倍数》教案(精选10篇)11-03