- 相关推荐
七年级数学优秀教案
作为一名无私奉献的老师,常常需要准备教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。我们该怎么去写教案呢?以下是小编帮大家整理的七年级数学优秀教案,仅供参考,大家一起来看看吧。
七年级数学优秀教案1
教学目标
1、使学生能根据商品销售问题中的数量关系找出等量关系,列出方程,掌握商品盈亏的求法,;
2、培养学生分析问题,解决实际问题的能力;
3、让学生在实际生活问题中,感受到数学的价值。
教学难点 让学生知道商品销售中的盈亏的算法。
知识重点 弄清商品销售中的进价标价售价及利润的含义。
教学过程(师生活动)设计理念
引言前面我们结合实际问题,讨论了如何分析数量关系,利用相等关系列方程以及如何解方程。本节开始,我们将进一步探究如何用一元一次方程解决生活中的一些实际问题。利用一元一次方程解决实际问题前面已有所讨论,本节承上启下,进一步探究用一元一次方程解决生活中的实际问题。
引例①某商品原来每件零售价是元,现在每件降价 ,降价后每件零售价是 ;
②某种品牌的彩电降价 以后,每台售价为 元,则该品牌彩电每台原价应为 元;
③某商品按定价的八折出售,售价是 元,则原定价是 ;
④某商场把进价为1980元的商品按标价的八折出售,仍获利 ,则该商品的标价为 ;
⑤我国政府为解决老百姓看病问题,决定下调药品的价格,某种药品在1999年涨价30%后,20xx降价70%至 元,则这种药品在1999年涨价前价格为 元。学生对进价、标价、售价、打折等商品销售中的一些概念的含义已有一定的知识积累,通过引例,使学生在已有的知识经验基础上引入新课。
提出问题
探究新知问题(教科书93页探究1):某商店在某一时间以每件60元的价格卖两件衣服,其中一件盈利还是亏损?或是不盈不亏?通过实际生活中的实例,用问题的形式来探究新课内容,使学生感受数学来源于生活,生活中需要数学。
讨论交流解决问题①引导学生大体估算盈亏情况;
②教师提出问题,学生自主讨论解决;
(1)商品销售中的盈亏如何计算?
(2)两件衣服的进价、售价分别是多少?
③得出结论后,将结论与学生先前的'估算进行比较;
④教师归纳解决问题的大致过程。先由学生估算(培养学生敏感意识)然后通过师生合作交流,学生自主探索,得出结论,让学生品尝成功的喜悦。
巩固练习由学生自主探索解决。
问题:我国股市交易中每天、卖一次各交千分之七点五的各种费用,某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利为多少?
巩固本课中商品销售盈亏的求法,再次使学生感受到数学的应用价值。
小结与作业
课堂小结通过以下问题引导学生小结:
①由学生谈谈本节课学到了哪些知识?学后有何感受?
②商品销售中的基本等量关系有哪些?由学生概括本课中学到的知识,体现学生是学习的主人。
布置作业必做题:教科书97面习题2.4第2、3、4题;
备选题:
①某商品的进价是1000元,售价为1500元,由于情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店可降多少元出售此商品;
②一年定期的存款,年利率为 ,到期取款时须扣除利息的20%,作为利息税上缴国库,假如某人存入一年的定期储蓄1000元,到期扣税后可得利息多少元?
③某商场将某种DVD产品按进价提高35%,然后打出九折酬宾,外送50元打的费的广告,结果每台DVD仍获利208元,则每台DVD的进价是多少元?
④某企业生产一种产品,每件成本价是400元,销售价为510元,本季度销售了件,为进一步扩大市场,该企业决定在降低销售的同时降低生产成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润(销售利润=销售价-成本价)保持不变,该产品每件的成本应降低多少元?
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本课以学生已有的知识经验和生活中的实例入手引入新课,在新授过程中,以学生为学习的主人教师进行适当引导、点拔、启迪。在学生的自主探索、合作交流过程中弄清商品销售中的盈亏的算法。加法对进价标价售价及利润的实际意义的理解。使学生深切感受到数学生活实际中的应用。从而激发他们学习数学的兴趣。另外学生通过对新授问题的估算,最后计算得出正确的结论,品尝到成功的喜悦,从而也激发了学生探求知识的欲望。
七年级数学优秀教案2
教学目的
让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。
重点、难点
1、重点:通过分析图形问题中的数量关系,建立方程解决问题。
2、难点:找出“等量关系”列出方程。
教学过程
一、复习提问
1、列一元一次方程解应用题的步骤是什么?
2、长方形的周长公式、面积公式。
二、新授
问题3.用一根长60厘米的铁丝围成一个长方形。
(1)使长方形的宽是长的专,求这个长方形的`长和宽。
(2)使长方形的宽比长少4厘米,求这个长方形的面积。
(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?
不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。
(3)当长方形的长为18厘米,宽为12厘米时
长方形的面积=18×12=216(平方厘米)
当长方形的长为17厘米,宽为13厘米时
长方形的面积=221(平方厘米)
∴(1)中的长方形面积比(2)中的长方形面积小。
问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积呢?并加以验证。
实际上,如果两个正数的和不变,当这两个数相等时,它们的积,通过以后的学习,我们就会知道其中的道理。
三、巩固练习
教科书第14页练习1、2。
第l题等量关系是:圆柱的体积=长方体的体积。
第2题等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。
四、小结
运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。
五、作业
教科书第16页,习题6.3.1第1、2、3。
七年级数学优秀教案3
【学习目标】:
1、掌握正数和负数概念;
2、会区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念
【教学过程】:
一、知识链接:
1、小学里学过哪些数请写出来:
2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
二、自主学习
1、正数与负数的产生
(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的`量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动:两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示。
(3)阅读P2的内容
3、正数、负数的概念
1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:
1、 P3第1,2题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:?13,?2,3.14,+3065,0,-239;54
则正数有_____________________;负数有____________________。
4.下列结论中正确的是()
A.0既是正数,又是负数
C.0是最大的负数
【要点归纳】:
正数、负数的概念:
(1)大于0的数叫做,小于0的数叫做。
(2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【拓展训练】:
1.零下15℃,表示为_________,比O℃低4℃的温度是_________。
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________。
4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。
【课后作业】P5第1、2题
七年级数学优秀教案4
[教学目标]
1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力
2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题
[教学重点与难点]
重点:邻补角与对顶角的概念。对顶角性质与应用
难点:理解对顶角相等的性质的探索
[教学设计]
一。创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角
在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题
教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?
教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,
二。认识邻补角和对顶角,探索对顶角性质
1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配
共能组成几对角?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用
几何语言准确表达;
有公共的顶点O,而且的两边分别是两边的反向延长线
2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?
(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)
3学生根据观察和度量完成下表:
两条直线相交所形成的角分类位置关系数量关系
教师提问:如果改变的`大小,会改变它与其它角的位置关系和数量关系吗?
4.概括形成邻补角、对顶角概念和对顶角的性质
三。初步应用
题目:
下列说法对不对
(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角
(2)邻补角是互补的两个角,互补的两个角是邻补角
(3)对顶角相等,相等的两个角是对顶角
学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象
四。巩固运用例题:如图,直线a,b相交,求的度数。
[巩固](教科书5页题目)已知,如图,求:的度数
[小结]
邻补角、对顶角。
[作业]课本P9-1,2P10-7,8
七年级数学优秀教案5
一、目标
1、用它们拼成各种形状不同的四边形,并计算它们的周长。
(鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)
2、教师揭示以上这些工作实际上是在进行整式的加减运算
3、回顾以上过程思考:整式的加减运算要进行哪些工作?
生1:“去括号”
生2:“合并同类项”
师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用
二、揭示如何进行整式的加减运算
1、进行整式的加减运算时,如果有括号先去括号,再合并同类项。
2、教学例二例2求2a2-4a+1与-3a2+2a-5的差。
(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)
解:(2a2-4a+1)-(-3a2+2a-5)
=2a2-4a+1+3a2-2a+5
=5a2-6a+6
3、拓展练习
(1)求多项式2x -3 +7与6x -5 -2的`和。
提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)
(2)(-3x2 –x +2)+(4x2 +3x -5)(3)(4a2 -3a)+(2a2 +a -1)
(4)(x2 +5x –2)-(x2 +3x -22)(5)2(1-a +a2)-3(2-a –a2)
4、教学例3
先化简下式,再求值:
(做此类题目应先与学生一起探讨一般步骤:
(1)去括号。
(2)合并同类项。
(3)代值)
解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2,=3
=15a2b –5ab2+4ab2 -12a2b)
=3a2b –ab2
三、小结
1、进行整式的加减运算时,如果有括号先去括号,再合并同类项。
2、进行化简求值计算时
(1)去括号。
(2)合并同类项。
(3)代值
3、通过本节课的学习你还有哪些疑问?
四、布置作业
习题4.5 2.(3);4.(2);5.。
五、课后反思
省略
七年级数学优秀教案6
前面几节课,我们已经学习了平面直角坐标系及其相关概念,知道了利用平面直角坐标系可以确定平面内的一个点,反过来,给了一个有序数对,在坐标平面内可以找到一个点和它对应.利用我们所学的平面直角坐标系可以解决什么样的问题?这就是我们从今天开始研究的内容,从而引出课题.
设计意图:
通过教师引导学生复习已学过的平面直角坐标系的知识,导入新的课题,起了一个承上启下的作用,为学生学习用坐标表示地理位置作了一个铺垫.
师生活动:
由教师引导学生通过复习已学知识,引入课题.
活动1
用多媒体演示某城市地区的一部分.(如北京市、上海市或本地区的一部分)
问题:
如课本图6.2-1,这是北京市地图的一部分,同学们你知道怎样用坐标表示地理位置吗?
(1)如图6.2-1,你是怎样确定各条街道位置的?
(2)“东四十条街”和“天安门广场”的东、北各多少个格?“复兴门内大街”在“天安门广场”的西、南各多少个格?
(3)如果以“天安门广场”为原点作两条相互垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“东四十条街”的`位置吗?“复兴门内大街”的位置呢?
设计意图:
不管是出差办事,还是出门旅游,人们都愿意带上一幅地图,它给人们出行带来了很大方便这一事例,引入用坐标的形式表示某一区域内一些地点分布情况.问题选择人们熟悉的祖国首都,北京市地图的一部分,以天安门广场为原点建立直角坐标系,激起学生对已学过的用直角坐标思想的定位方式的回忆和重新认识.
生:
(1)用坐标可以表示各条街的位置.
(2)“东四十条街”和“天安门广场”的东5格,北8格处.
(3)如果以“天安门广场”为原点作两条相互垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,则“东四十条街”的位置是(5,8).
师:很好,在(3)的约定条件下,你能把其他街道的位置表示出来吗?
生:能,西长安街的位置是(-3,-1.3)
建国门内大街的位置是(5,-1).
……
在活动1中教师要关注:
(1)学生已有的知识水平;
(2)建立适当的直角坐标系.
七年级数学优秀教案7
学习目标:
1、学会用计算器进行有理数的除法运算。
2、掌握有理数的混合运算顺序。
3、通过探究、练习,养成良好的学习习惯
学习重点:有理数的混合运算
学习难点:运算顺序的确定与性质符号的处理
教学方法:观察、类比、对比、归纳
教学过程
一、学前准备
1、计算
1)(—0.0318)÷(—1.4)2)2+(—8)÷2
二、探究新知
1、由上面的问题1,计算方便吗?想过别的方法吗?
2、由上面的问题2,你的计算方法是先算法,再算法。
3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)
4、结合问题2,你先猜想,有理数的混合运算顺序应该是?
5、阅读P36,并动手做做
三、新知应用
1、计算
1)、18—6÷(—2)×2)11+(—22)—3×(—11)
3)(—0.1)÷×(—100)
2、师生小结
四、回顾与反思
请你回顾本节课所学习的主要内容
3页
五、自我检测
1、选择题
1)若两个有理数的和与它们的积都是正数,则这两个数()
A.都是正数B.是符号相同的`非零数C.都是负数D.都是非负数
2)下列说法正确的是()
A.负数没有倒数B.正数的倒数比自身小
C.任何有理数都有倒数D.-1的倒数是-1
3)关于0,下列说法不正确的是()
A.0有相反数B.0有绝对值
C.0有倒数D.0是绝对值和相反数都相等的数
4)下列运算结果不一定为负数的是()
A.异号两数相乘B.异号两数相除
C.异号两数相加D.奇数个负因数的乘积
5)下列运算有错误的是()
A.÷(-3)=3×(-3)B.
C.8-(-2)=8+2D.2-7=(+2)+(-7)
6)下列运算正确的是()
A.;B.0-2=-2;C.;D.(-2)÷(-4)=2
2、计算
1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7
3)(—48)÷8—(—25)×(—6)4)
六、作业
1、P39第7题(4、5、7、8)、第8题
2、选做题:P39第10、11、12、1314、15题
七年级数学优秀教案8
学习目标
1、经历观察、操作、想像、推理、交流等活动,进一步发展空
间观念,推理能力和有条理表达能力。
2.分析题意说理过程,能灵活地选用直线平行的方法进行说理。
学习重点:直线平行的条件的应用。
学习难点:选取适当判定直线平行的方法进行说理是重点也是难点。
一、学习过程
平行线的判定方法有几种?分别是什么?
二、巩固练习:
1、如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°,那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1题)(第2题)
2、如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求。
二、选择题。
1、如图,下列判断不正确的.是( )
A.因为∠1=∠4,所以DE∥AB
B.因为∠2=∠3,所以AB∥EC
C.因为∠5=∠A,所以AB∥DE
D.因为∠ADE+∠BED=180°,所以AD∥BE
2、如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答题。
1、你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法。
2、已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由。
七年级数学优秀教案9
教学目标
1、使学生在理解线段概念的基础上,了解线段的长度可以用正数来表示,因而线段可以度量、比较大小以及进行一些运算。使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想。
2、使学生学会线段的两种比较方法及表示法。
3、通过本课的教学,进一步培养学生的动手能力、观察能力。
教学重点和难点
对线段与数之间的关系的认识,掌握线段比较的正确方法,是本节的重点,也是难点。
教学过程设计
一、复习线段的概念,引出线段的长度的度量和表示
1、学生动手画出(1)直线AB。(2)射线OA。(3)线段CD。
2、提出问题:能否量出直线、射线、线段的长度?(如果有学生将直线、射线也量出了长度,借此复习直线和射线的概念。)
3、提出数与形的问题:线段是一个几何图形,而线段的长度可用一个正数表示。这就是数与形的结合。
4。线段的两种度量方法:(1)直接用刻度尺。(2)圆规和刻度尺结合使用。(教师可让学生自己寻找这两种方法)
5、教师再讲表示法:线段AB=7cm。
二、通过实例,引导学生发现线段大小的比较方法
教师设计以下过程由学生完成。
1、怎样比较两个学生的身高?提出为什么要站在一起,脚底要在一个平面上?
2、怎样比较两座大山的高低?只要量出它们的高度。
由此引导学生发现线段大小比较的两种比较方法:
重叠比较法将两条线段的各一个端点对齐,看另一个端点的位置。教师为学生演示,步骤有三:
(1)将线段AB的端点A与线段CD的端点C重合。
(2)线段AB沿着线段CD的方向落下。
(3)若端点B与端点D重合,则得到线段AB等于线段CD,可以记AB=CD。
若端点B落在D上,则得到线段AB小于线段CD,可以记作AB
若端点B落在D外,则得到线段AB大于线段CD,可以记作AB>CD。
如图1-6、
教师讲授此部分时,应用几个木条表示线段AB和线段CD,这样可以更加直观和形象。也可以用圆规截取线段的方法进行。
数量比较法用刻度尺分别量出线段AB和线段CD的长度,将长度进行比较。可以用推理的写法,培养学生的推理能力。写法如下:
因为量得AB=-cm,CD=-cm,
所以AB=CD(或ABCD)。
总结:现在我们学会了比较线段的大小,还会比较什么?学生可以回答出,可以比较数的'大小,进而再问:数的大小如何比较?(数轴)再问:比较线段的大小与比较数的大小有什么联系?
引导学生得到:比较线段的大小就是比较数的大小。
三、应用实例,变式练习:
1、如图1-7,量出以下图形中各条线段的长度,比较它们的大小。并比较一个三角形中任意两边的和与第三边的关系。可以得出什么结论?
2、如图1-8,根据图形填空。
AD=AB+______+______,AC=______+______,CD=AD-______。
3、如图1-9,已知线段AB,量出它的长度并找出它的中点、三等分点、四等分点。
4、如图1-10,根据图形填空,(1)AB=______+______+______。(2)AB-a=______+______。
四、小结
1、教师提问:怎样表示线段的长度?怎样比较线段的大小?通过本节课你对图形与数之间的关系有什么了解?
2、根据学生回答的情况,教师重点总结数与形的结合以及比较线段大小的两种方法。
五、作业
p。18,1、2题。p21,2、3、4题。
板书设计
课堂教学设计说明
1、本课的教学时间为1课时45分钟。
2、本课时设计的主导思想是:将数形结合的思想渗透给学生,使学生对数与形有一个初步的认识。为将来的学习打下基础,这节课是一堂起始课,它为学生的思维开拓了一个新的天地。在传统的教学安排中,这节课的地位没有提到一定的高度,只是交给学生比较线段的方法,没有从数形结合的高度去认识。实际上这节课大有可讲,可以挖掘出较深的内容。在教知识的同时,交给学生一种很重要的数学思想。这一点不容忽视,在日常的教学中要时时注意。
3、学生在小学时只会用圆规画圆,不会用圆规去度量线段的大小以及截取线段,通过这节课,学生对圆规的用法有一个新的认识。
4、在课堂练习中安排了度量一些三角形的边的长度,目的是想通过度量使学生对“两点之间线段最短”这一结论有一个感性的认识,并为下面的教学做一个铺垫。
5、为避免本节课的枯燥,可以用提问的形式,出现悬念。如:开始的提问“线段是几何图形,它与数字有什么联系?”“在我们学过的知识和生活中,什么东西可以比较大小?”等。这样就会调动学生的学习的积极性,提高他们的学习兴趣,积极思维,使课堂的气氛更加活跃。
6、如果感觉课堂密度小,还可以增加一些培养动手能力的题。如:
(1)量一量老师的大三角板中的等腰三角形各边的长,然后再量一量自己手中同样的小三角板各边的长,算一算相等的角所对的边长度的比值,是否相等。(为相似三角形的内容做一些铺垫)
(2)量一量课桌四条边的长,再量一量课本四条边的长,算一算长边与长边的比、短边与短边的比。(得到角相等的图形,边不一定成比例)
(3)在同一时间下,两棵高矮不同的大树的影子的长度自己量出,然后比较大小,想一想这两棵树哪一棵高?(对相似三角形的边角关系有一定的感性认识)以上的三个题对学有余力的同学是很好的认识数学世界的实例。使本节课的内容更加生动丰富,课堂气氛更加活跃。
七年级数学优秀教案10
一、内容和内容解析
1、内容
无限不循环小数;求算术平方根的更一般的方法——用有理数估算、用计算器求值。
2、内容解析
无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现是一个无限不循环小数的结论。发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程。
用有理数估计(一个带算术平方根符号的)无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力。
使用计算器可以求任何正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法。这完全可以让学生自己完成。
基于以上分析,确定本节课的教学重点为:用有理数估计一个(带算术平方根符号的)无理数的大致范围。
二、目标和目标解析
1、教学目标
(1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值。
(2)会利用计算器求一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律。
2、目标解析
(1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围。
(2)学生会概述利用计算器求一个正数的算术平方根的程序(按键的顺序);明白利用计算器求一个正数的算术平方根,计算器显示的结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动2位,它的算术平方根就相应地向右或向左移动1位,即被开方数每扩大(或缩小)100倍,它的'算术平方根就扩大(或缩小)10倍。
三、教学问题诊断分析
用有理数估计一个(带算术平方根符号的)无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的性质,还要判断被开方数在哪两个相邻的整数平方数之间。为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求。
基于以上分析,本课的教学难点是:用有理数估计一个(带算术平方根符号的)无理数的大致范围的过程,体验“无限不循环小数”的含义。
四、教学过程设计
1、梳理旧知,引出新课
问题1
(1)什么是算术平方根?怎样表示?
(2)负数有算术平方根吗?
师生活动学生回答,教师说明:我们上节课已经能求出一些平方数的算术平方根了,例如,=4;但实际生活中,我们还会遇到被开方数不是一个数的平方数的情况,这时,它的算术平方根又该怎祥求呢?
设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容。
2、问题探究,学习新知
问题2能否用两个面积为1dm的小正方形拼成一个面积为2dm的大正方形?
师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法。
追问(1)拼成的这个面积为2dm
的大正方形的边长应该是多少呢?
师生活动:学生自行解答,教师对解答有困难的学生进行指导。
追问(2)小正方形的对角线的长是多少呢?
师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长dm。
设计意图:通过实际问题的操作探究,说明实际生活中确实存在被开方数不是一个数的平方数的情况,激发学生学习积极性,追问(2)主要为后面介绍用数轴上的点表示作准备。
问题3
有多大呢?为了弄清这个问题,请同学们探究“
在哪两个整数之间呢?”
师生活动:先让学生思考讨论并估计大概有多大,由直观可知大于1而小于2,教师引导学生利用“被开方数越大,对应的算术平方根也越大”说明理由,教师板书推理过程。
追问(1)那么
是1点几呢?你能不能得到
的更精确的范围?
师生活动:学生用试验的方法可得到平方数小于2且最接近的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,所以大于1.4而小于1.5……在此基础上教师按教科书上的推理进行讲解并板书。说明是一个无限不循环小数,以及什么是无限不循环小数。并要求学生回忆以前学过的数,进行比较。
追问(2)实际上,许多正有理数的算术平方根,如等都是无限不循环小数。根据估计的大小的方法,请你估计的整数部分是多少?
设计意图:通过对大小的估计,初步掌握利用的一系列不足近似值和过剩近似值来估计它的大小的方法,并从中体会是一个无限不循环小数。让学生回忆以前学过的数,通过比较,了解无限不循环小数的特征,为后面学习无理数打下基础。追问(2)主要为及时巩固估算方法
3、用计算器,求算术根
例1用计算器求下列各式的值:
师生活动:教师指导学生操作,获得问题答案。解答完(2)后,让学生与上面所估计的大小进行比较,体会夹逼法的可行性。说明用计算器可以求出任意一个正数的算术平方根,但不同品牌的计算器,按键顺序可能有所不同。用计算器求出的算术平方根,有的是准确值,如题(1),有的是近似值,如题(2)。
设计意图:使学生会使用计算器求算术平方根。
练习教科书第44页练习1。
师生活动:学生独立完成后交流。
设计意图:巩固计算器求算术平方根。
4、综合应用,巩固所学
现在我们来解决本章引言中的问题。
问题4(1)你会表示
(2)用计算器求(用科学记数法把结果写成的形式,其中保留小数点后一位)
师生活动:学生理解题意,根据公式,可得,代入,利用计算器求出
设计意图:让学生体会计算器在解决实际问题中的应用。
问题5利用计算器计算下表中的算术平方根,并将计算结果填在表中。
师生活动:学生计算填表。
追问(1)你发现了什么规律?
师生活动:学生思考、讨论,教师归纳:被开方数的小数点向右或向左移动2位,它的算术平方根的小数点就相应地向右或向左移动1位。
追问(2)你能说出其中的道理吗?
师生活动:学生讨论,交流,教师引导学生从被开方数扩大的倍数与其算术平方根扩大的倍数思考回答。即当被开方数扩大(或缩小)100倍,10000倍…时,其算术平方根相应地扩大(或缩小)10倍,100倍……
追问(3)用计算器计算
(精确到0.001),并利用刚才的得到规律说出的近似值。
师生活动:学生计算,并根据所获规律回答。
追问(4)你能根据的值说出是多少吗?
师生活动:学生回答,因为被开方数30与3不符合上述规律,所以无法由的值说出是多少。
设计意图:巩固用计算器求算术平方根以及其在探究规律中的应用。
例2小丽想用一块面积为400cm的长方形纸片,沿着边的方向剪出一块面积为300cm的长方形纸片,使它的长宽之比为3:2。她不知能否裁得出来,正在发愁。小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片。”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?
师生活动:教师出示问题,学生理解题意,学生可能会和小明有同样的想法,此时教师进行如下引导:
(1)你能将这个问题转化为数学问题吗?
(2)如何求出长方形的长和宽?
(3)长方形的长和宽与正方形的边长之间的大小关系是什么?
最后给出完整的解答过程。
设计意图:让学生体验估算的实际应用。
5、归纳小结:
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)利用夹逼法来求算术平方根的近似值的依据是什么?
(2)利用计算器可以求出任意正数的算术平方根或近似值吗?
(3)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?
(4)怎样的数是无限不循环小数?
设计意图:让学生对本节课知识进行梳理,同时也帮助学生养成良好的习惯。
6、布置作业:
教科书习题6.1第6.9.10题。
五、目标检测设计
1、求整数部分。
【设计意图】主要考查学生的估算能力。
2、比较下列各组数的大小。
【设计意图】主要考查学生的估算和比较大小的能力。
【设计意图】主要考查学生对算术平方根概念以及有关规律的理解。
3、国际比赛的足球场的长在100m到110m之间,宽在64m到75m之间,现有一个长方形的足球场其长是宽的1.5倍,面积为7560m,问:这个足球场能用作国际比赛吗?
【设计意图】主要考查学生运用算术平方根解决实际问题的能力。
七年级数学优秀教案11
教 案
第一章 有理数
(1)本周小张一共用掉了多少钱?存进了多少钱?
根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?
夯实基础
(1)序号为几的零件最接近标准?
④-(-) 0.025.
第2课时 加法运算律
教学目标:
1.能运用加法运算律简化加法运算.
2.理解加法运算律在加法运算中的作用,适当进行推理训练.
教学重点:如何运用加法运算律简化运算.
教学难点:灵活运用加法运算律.
教与学互动设计:
(一)情境创设,导入新课
思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.
(二)合作交流,解读探究
计算:20+(-30)与(-30)+20两次得到的和相同吗?
得出结论:20+(-30)=(-30)+20
换几组数去试:得到加法交换律:a+b= (学生填).
其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)
计算:(1)[8+(-5)]+(-4);
(2)8+[(-5)+(-4)].
得出结论:加法结合律:(a+b)+c= .
【例1】计算:
16+(-25)+24+(-35)
【例2】课本P20例3
说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.
总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.
(三)应用迁移,巩固提高
【例3】 利用有理数的加法运算律计算,使运算简便.
(1)(+9)+(-7)+(+10)+(-3)+(-9)
(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)
(3)(+1)+(-2)+(+3)+(-4)+…+(+20xx)+(-20xx)
【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.
(1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?
(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?
(四)总结反思,拓展升华
本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.
(五)课堂跟踪反馈
夯实基础
1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( )
A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]
B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]
C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]
D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]
2.计算:(-2)+4+(-6)+8+…+(-98)+100.
提升能力
3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?
4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.
(1)问收工时距A地多远?
(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?
第3课时 有理数的减法
教学目标:
1.经历探索有理数减法法则的过程,理解有理数减法法则.
2.会熟练进行有理数减法运算.
教学重点:有理数减法法则和运算.
教学难点:有理数减法法则的推导.
教与学互动设计
(一)创设情景,导入新课
观察温度计:
你能从温度计看出4℃比-3℃高出多少度吗?
学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示?
按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生回答.
(二)动手实践,发现新知
观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?
结论:减去-3等于加上-3的相反数+3.
(三)类比探究,总结提高
如果将4换成-1,还有类似于上述的结论吗?
先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.
计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,
又因为(-1)+(+3)=2 ②,
由①②有(-1)-(-3)=-1+(+3) ③,
即上述结论依然成立.
试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?
让学生利用“减法是加法的.相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.
再试:把减数-3换成正数,结果又如何呢?
计算9-8与9+(-8);15-7与15+(-7)
从中又能有新发现吗?
让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.
归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.
减法法则:减去一个数,等于加上这个数的相反数.
用字母表示:a-b=a+(-b).
(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)
(四)例题分析,运用法则
【例】计算:
(1)(-3)-(-5); (2)0-7;
(3)7.2-(-4.8);(4)-3-5.
(五)总结巩固,初步应用
总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?
教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.
七年级数学优秀教案12
【知识与技能】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【过程与方法】通过题目,进一步熟悉开平方的运算过程,能熟练的进行开平方的运算过程。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】能熟练的进行开平方运算,并熟悉各种不同形式的开平方运算,为后续打下基础。
【教具准备】小黑板科学计算器
【教学过程】
一、导入
1、小刚家厨房的面积为10平方米的正方形,它的边长是多少米?边长的近似值是多少?(用四舍五入的方法取到小数点后面第二位)
2、用计算器分别求,得近似值。(用四舍五入的方法取到小数点后面第三位)
3、0.36的平方根是( )
4、(-5)2的.算术平方根是( )
二、题目内容
(一)填空
1、若=1.732,那么=( ) 2、(-)2=( )
3、 =( ) 4、若_=6,则=( )
5、若=0,则_=( ) 6、当_( )时,有意义。
(二)选择
1、下列各数中没有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是( )
A.B.C.D.; 2、4_2-49=0; 3、(25/81)_2=1;
4、求8+(-1/6)2的算术平方根;
5、求b2-2b+1的算术平方根;(b<1)
6、
7、 ;(用四舍五入方法取到小数点后面第三位)
8、肖明家装修用了大小相同的正方形瓷砖共66块,铺成了10.56平方米的房间,肖明想知道每块瓷砖的规格,请你帮助算一算。
三、小结与巩固
七年级数学优秀教案13
教学目标
1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;
2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)
3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点
深化对正负数概念的理解
知识重点
正确理解和表示向指定方向变化的量
教学过程(师生活动)
设计理念
知识回顾与深化
回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示。这就是说:数的范围扩大了(数有正数和负数之分)。那么,有没有一种既不是正数又不是负数的数呢?
问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论。(数0既不是正数又不是负数,是正数和负数的分界,是基准。这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数。那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?
问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0耽不是正数,也不是负数”也应看作是负数定义的一部分。在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。所举的例子,要考虑学生的可接受性。“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明。这个问题只要初步认识即可,不必深究。
问题3:教科书第6页例题
说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页)。
类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充。
这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健。这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出。
巩固练习教科书第6页练习
阅读思考
教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流
小结与作业
课堂小结以问题的形式,要求学生思考交流:
1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?
2,怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数。)
本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题
3,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的`向指
定方向变化的量。
2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分。在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助。由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课。
3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解。
4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识。通过实际例子的学习激发学生学习数学的兴趣。
七年级数学优秀教案14
一、教学内容分析:
在学完4.1…4.3这三小节的学习,学生意识到立体图形是由平面图形围成的。因此此时学生的心中有一种意犹未尽的感觉,他们希望有对所学知识作进一步探究及讨论的机会,因此平面图形这一节课由此而产生。平面图形是建立在学生具有一定空间观念基础上,对有关图形知识的一个再知过程。它是对学生空间观念,基本图形知识以及动手操作能力的一种综合培养。首先课本p140页图4.4.1给出了5幅形状各异的物体照片,向学生提问是否能画出它们的表面形状。并让学生举出类似的例子,由此引起学生的好奇心,激发学生的学习兴趣。其次,由学生动手得出的5个图形,引出多边形的定义以及多边形的分类。然后,让学生通过观察7个图形,思考当中那些是四边形,由四边形巩固并加深多边形,接着让学生展开充分的讨论与交流完成多边形的分割。最后的试一试以实际生活中的一些优美图案结尾,让学生找出其中的的平面图形,刚好与刚上课时的图4.4.1遥向对应,再次激起学生的探究学习的兴趣。
二、目标的设定与重难点的确立:
根据新课程标准的目标之一:“要使学生具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。”在教学设计上,通过创设的丰富背景,激发学生的学习兴趣和探究欲,引导学生积极参与和主动探索,并在实践中积累教学活动经验,发展有条理的思考。
由于在平面图形这节课中,除了要学习多边形的相关内容是重点外,还要经常识别图形或画图,因此观察并分析出图形的基本构成是平面图形这节课的关键,也是本课的难点所在,也是本节课学生所要达到的能力目标。
课程目标:
1、通过平面图形的学习,巩固有关图形知识,进一步建立空间观念。
2、掌握多边形的相关内容。
能力目标:
1、在探索和实践的过程中,培养学生观察图形、分析图形和初步的几何语言表达能力。
2、发展学生动手实践,自主探索的思考及想象、欣赏能力。
情感目标:培养学生勇于探索和积极参与的精神。
重点:多边形的识别及分类,并了解多边形分割为三角形的规律。
难点:在设计过程中,对图形基本构成进行有条理的分析,并能用自己的语言表达出来。
三、教法选择
1、教学结构和教学基本思路
针对七年级学生的年龄特点和心理特征,以及他们的认知水平,采用诱导式教学方法,师生互动,鼓励学生团结协作、大胆猜想并动手操作,以观察、实验、整理、分析、归纳、猜想为主,形象的背景下进行教学设计。生活是多姿多彩的,数学又来源于生活,首先以各种实际生活中的精美平面图形为背景,吸引学生的注意力,引发他们的学习热情。通过三角形,长方形这些熟悉的图形,向学生介绍了多边形的定义及特征。通过四边形的识别,进一步使学生了解空间中的图形。而由所由多边形可分割为三角形这一内容,了解三角形的特殊地位,为将来以后的三角形学习埋下伏笔。最后一部分的试一试,通过学生对图形构成的分析,再次激起学生的探究学习的兴趣,培养学生的观察能力,是引导学生探索平面图形的一个感性认识过程。
2、重难点突破法
书中是以实物图形的表面形状引出多边形的定义及分类,多边形的`有关内容是本节课的重点。教学时首先要求学生要自己动手画出图形。其次,在引出多边形时,应加强多边形的识别及分类,从而让学生更容易掌握。而在多边形的分割时,通过多个图形的实验,使学生获得感性认识,再猜想分割的规律,从而突出了重点。
分析平面图形构成是能否找出或画出其中所包含多边形的关键,也是本节课的深化。因此在突出重点的基础上,还要鼓励学生多观察,多动脑,多分析,充分展开合作与交流。必要时再加以适当的引导。特别是试一试中的图案,应给让学生足够的时间分析出图案的基本构成,在明确了基本构成后,应让学生按一定的顺序(由外到内或有大到小等)说出所含的图形,就能找出所有所含的图形,从而使难点消化,最终突破难点!
四、学法指导
本节课以学生的观察猜想为主,要求学生多观察,大胆猜想。这要求学生建立在有实物图形的基础上了解平面图形的相关内容。另外,在探索与实践过程中还要体现学生分析问题的能力和良好的口头表达能力。因此,在课堂上主要采取积极引导,主动参与,合作交流的方法来组织教学,使学生真正成为教学的主体,体会成功的喜悦,感知数学的奇妙。
五、教学辅助手段的使用
利用直观形象的图案模型来体现本节内容的知识性与趣味性,使得观察、猜想、讨论与分析一起进行。有利于吸引学生的注意力,激发学生学习与探索的热情。
六、作业设计
p143课后练习相对容易操作,让学生独立完成。但课后练习2,要说出理由,这对学生的语言表达能力有一定的要求,可以首先分成小组讨论。如果感到有难度,可以适当启发引导。
七年级数学优秀教案15
认识三角形教学目标:
1.知识与技能
结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系。
2.过程与方法
通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力。
3.情感、态度与价值观
联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生兴趣。
教学重点难点:
1.重点
让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题。
2.难点
探究三角形的三边关系应用三边关系解决生活中的实际问题。
教学设计:
本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、题目应用、课堂小结、探究拓展思考、布置作业。
第一环节回顾与思考
1、如何表示线段、射线和直线?
2、如何表示一个角?
第二环节情境引入
活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片。
活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中。培养学生善于观察生活、乐于探索研究的品质,从而更大地激发学生数学的兴趣
第三环节三角形概念的讲解
(1)你能从中找出四个不同的三角形吗?
(2)与你的同伴交流各自找到的三角形。
(3)这些三角形有什么共同的特点?
通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法。并出两道题,从题目中归纳出三角形的三要素和注意事项。
第四环节探索三角形三边关系第一部分探索三角形的任意两边之和大于第三边
活动内容:在四根长度分别是8cm、10cm、15cm、20cm的小木棒中选三根木棒摆三角形。学生统计能否摆成三角形的情况。
第二部分探索三角形的任意两边之差小于第三边
活动内容:通过让学生测量任意三角形三边长度来比较两边之差与第三边的关系,教师通过几何画板验证,从而得出结论。
第五环节题目提高
活动内容:
1.有两根长度分别为5厘米和8厘米的木棒,用长度为2厘米的木棒与它们能摆成三角形吗?为什么?长度为13厘米的木棒呢?
2.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为.若第三边为偶数,那么三角形的周长.
3.有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆。学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?
第六环节课堂小结
活动内容:学生自我谈收获体会,说说学完本节课的'困惑。教师做最终总结并指出注意事项。
学生对本节内容归纳为以下两点:
1.了解了三角形的概念及表示方法;
2.三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边。
注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可。当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边。
第七环节探究拓展思考
1.若三角形的周长为17,且三边长都有是整数,那么满足条件的三角形有多少个?你可以先固定一边的长,用列表法探求。
2.在例1中,你能取一根木棒,与原来的两根木棒摆成三角形吗?
3.以三根长度相同的火柴为边,可以组成一个三角形,现在给你六根火柴,如果以每根火柴为边来组成三角形,最多可组成多少个三角形?试试看。
第八环节作业布置
【七年级数学优秀教案】相关文章:
数学七年级上册教案11-08
大班优秀数学教案02-21
快乐数学大班教案优秀04-02
小学数学教案【优秀】07-06
小学数学除法教案优秀01-18
【优秀】小学数学教案07-31
小学数学教案(优秀)08-04
[优秀]小学数学教案08-19
(优秀)小学数学教案09-04