二次根式教案

时间:2024-05-15 17:53:49 教案 我要投稿

二次根式教案常用【15篇】

  作为一名人民教师,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。那么写教案需要注意哪些问题呢?下面是小编为大家收集的二次根式教案,欢迎阅读与收藏。

二次根式教案常用【15篇】

二次根式教案1

  一、内容和内容解析

  1.内容

  二次根式的除法法则及其逆用,最简二次根式的概念。

  2.内容解析

  二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.

  基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的.性质,最简二次根式.

  二、目标和目标解析

  1.教学目标

  (1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

  (2)会进行简单的二次根式的除法运算;

  (3) 理解最简二次根式的概念.

  2.目标解析

  (1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;

  (2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.

  (3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.

  三、教学问题诊断分析

  本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.

  本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.

  四、教学过程设计

  1.复习提问,探究规律

  问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

  师生活动 学生回答。

  【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.

  五、目标检测设计

二次根式教案2

  一、学习目标:

  1.多项式除以单项式的运算法则及其应用.

  2.多项式除以单项式的运算算理.

  二、重点难点:

  重点:多项式除以单项式的运算法则及其应用

  难点:探索多项式与单项式相除的运算法则的过程

  三、合作学习:

  (一)回顾单项式除以单项式法则

  (二)学生动手,探究新课

  1.计算下列各式:

  (1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

  2.提问:①说说你是怎样计算的②还有什么发现吗?

  (三) 总结法则

  1.多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

  2.本质:把多项式除以单项式转化成______________

  四、精讲精练

  例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

  (3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

  随堂练习:教科书练习

  五、小结

  1、单项式的除法法则

  2、应用单项式除法法则应注意:

  A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

  B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

  C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

  D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.

  E、多项式除以单项式法则

  第三十四学时:14.2.1平方差公式

  一、学习目标:

  1.经历探索平方差公式的过程.

  2.会推导平方差公式,并能运用公式进行简单的运算.

  二、重点难点

  重点:平方差公式的.推导和应用

  难点:理解平方差公式的结构特征,灵活应用平方差公式.

  三、合作学习

  你能用简便方法计算下列各题吗?

  (1)20xx×1999 (2)998×1002

  导入新课:计算下列多项式的积.

  (1)(x+1)(x-1) (2)(m+2)(m-2)

  (3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

  结论:两个数的和与这两个数的差的积,等于这两个数的平方差.

  即:(a+b)(a-b)=a2-b2

  四、精讲精练

  例1:运用平方差公式计算:

  (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

  例2:计算:

  (1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

  随堂练习

二次根式教案3

  一、复习引入

  学生活动:请同学们完成下列各题:

  1.计算

  (1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

  二、探索新知

  如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

  整式运算中的x、y、z是一种字母,它的'意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

  例1.计算:

  (1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.

  解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算

  (1)(+6)(3-)(2)(+)(-)

  分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

  解:(1)(+6)(3-)

  =3-()2+18-6=13-3(2)(+)(-)=()2-()2

  =10-7=3

  三、巩固练习

  课本P20练习1、2.

  四、应用拓展

  例3.已知=2-,其中a、b是实数,且a+b≠0,

  化简+,并求值.

  分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?

二次根式教案4

  1.教学目标

  (1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;

  (2)会用公式化简二次根式。

  2.目标解析

  (1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;

  (2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式。

  教学问题诊断分析

  本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难。运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气。,培养学生良好的运算习惯。

  在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:

  (1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);

  (2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简。

  本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简。

  教学过程设计

  1、复习引入,探究新知

  我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除。本节课先学习二次根式的乘法。

  问题1什么叫二次根式?二次根式有哪些性质?

  师生活动学生回答。

  【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质。

  问题2教材第6页“探究”栏目,计算结果如何?有何规律?

  师生活动学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容。

  【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则。要求学生用数学语言和文字分别描述法则,以培养学生的符号意识。

  2、观察比较,理解法则

  问题3简单的根式运算。

  师生活动学生动手操作,教师检验。

  问题4二次根式的乘除成立的条件是什么?等式反过来有什么价值?

  师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质。

  【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况。乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力。

  3、例题示范,学会应用

  例1化简:(1)二次根式的乘除;(2)二次根式的乘除。

  师生活动提问:你是怎么理解例(1)的?

  如果学生回答不完善,再追问:这个问题中,就直接将结果算成二次根式的乘除可以吗?你认为本题怎样才达到了化简的效果?

  师生合作回答上述问题。对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质二次根式的乘除将其移出根号外。

  再提问:你能仿照第(1)题的解答,能自己解决(2)吗?

  【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向。积的算术平方根的性质可以进行二次根式的.化简。

  例2计算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除

  师生活动学生计算,教师检验。

  (1)在被开方数相乘的时候,就可以考虑因数或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先写成二次根式的乘除再分解;

  (2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的。对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;

  (3)例(3)的运算是选学内容。让学有余力的学生学到“根号下为字母的二次根式”的运算。本题先利用积的算术平方根的性质,得到二次根式的乘除,然后利用二次根式的乘法法则,变成二次根式的乘除,由于二次根式的乘除可以判断二次根式的乘除,因此直接将x移出根号外。

  【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算。让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用。

  教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号。可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题。

  4、巩固概念,学以致用

  练习:教科书第7页练习第1题。第10页习题16.2第1题。

  【设计意图】巩固性练习,同时检验乘法法则的掌握情况。

  5、归纳小结,反思提高

  师生共同回顾本节课所学内容,并请学生回答以下问题:

  (1)你能说明二次根式的乘法法则是如何得出的吗?

  (2)你能说明乘法法则逆用的意义吗?

  (3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?

  6、布置作业:教科书第7页第2、3题。习题16.2第1,6题。

  五、目标检测设计

  1、下列各式中,一定能成立的是( )

  A.二次根式的乘除B.二次根式的乘除

  C.二次根式的乘除D.二次根式的乘除

  【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础。

  2、化简二次根式的乘除______________________________。

  【设计意图】二次根式是特殊的实数,实数的相关运算法则也适用于二次根式。

  3、已知二次根式的乘除,化简二次根式二次根式的乘除的结果是()

  A.二次根式的乘除B.二次根式的乘除C.二次根式的乘除D.二次根式的乘除

  【设计意图】巩固二次根式的性质,利用积的算术平方根的性质正确化简二次根式。

二次根式教案5

  教案

  教法:

  1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;

  2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

  学法:

  1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

  2、阅读的'方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。

  3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。

  4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

  知识点

  上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。

  二、展示目标,自主学习:

  自学指导:认真阅读课本第3页——4页内容,完成下列任务:

  1、请比较与0的大小,你得到的结论是:________________________。

  2、完成3页“探究”中的填空,你得到的结论是____________________。

  3、看例2是怎样利用性质进行计算的。

  4、完成4页“探究”中的填空,你得到的结论是:____________________。

  5 、看懂例3,有困难可与同伴交流或问老师。

  课时作业

  教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm2,另一张面积为450 cm2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(≈1.414,结果保留整数)

二次根式教案6

  1.教学目标

  (1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;

  (2)会用公式化简二次根式.

  2.目标解析

  (1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;

  (2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.

  教学问题诊断分析

  本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.

  在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.

  本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.

  教学过程设计

  1.复习引入,探究新知

  我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.

  问题1 什么叫二次根式?二次根式有哪些性质?

  师生活动 学生回答。

  【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.

  问题2 教材第6页“探究”栏目,计算结果如何?有何规律?

  师生活动 学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.

  【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.

  2.观察比较,理解法则

  问题3 简单的根式运算.

  师生活动 学生动手操作,教师检验.

  问题4 二次根式的乘除成立的条件是什么?等式反过来有什么价值?

  师生活动 学生回答,给出正确答案后,教师给出积的算术平方根的性质.

  【设计意图】让学生运用法则进行简单的二次根式的`乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.

  3.例题示范,学会应用

  例1 化简:(1)二次根式的乘除; (2)二次根式的乘除.

  师生活动 提问:你是怎么理解例(1)的?

  如果学生回答不完善,再追问:这个问题中,就直接将结果算成二次根式的乘除可以吗?你认为本题怎样才达到了化简的效果?

  师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质二次根式的乘除将其移出根号外.

  再提问:你能仿照第(1)题的解答,能自己解决(2)吗?

  【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.

  例2 计算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

  师生活动 学生计算,教师检验.

  (1)在被开方数相乘的时候,就可以考虑因数或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先写成二次根式的乘除再分解;

  (2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;

  (3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到二次根式的乘除,然后利用二次根式的乘法法则,变成二次根式的乘除,由于二次根式的乘除可以判断二次根式的乘除,因此直接将x移出根号外.

  【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.

  教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.

  4.巩固概念,学以致用

  练习:教科书第7页练习第1题. 第10页习题16.2第1题.

  【设计意图】巩固性练习,同时检验乘法法则的掌握情况.

  5.归纳小结,反思提高

  师生共同回顾本节课所学内容,并请学生回答以下问题:

  (1)你能说明二次根式的乘法法则是如何得出的吗?

  (2)你能说明乘法法则逆用的意义吗?

  (3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?

  6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.

  五、目标检测设计

  1.下列各式中,一定能成立的是( )

  A.二次根式的乘除 B.二次根式的乘除

  C.二次根式的乘除 D.二次根式的乘除

  【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.

  2.化简二次根式的乘除 ______________________________。

  【设计意图】二次根式是特殊的实数,实数的相关运算法则也适用于二次根式.

  3.已知二次根式的乘除,化简二次根式二次根式的乘除的结果是(  )

  A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

  【设计意图】巩固二次根式的性质,利用积的算术平方根的性质正确化简二次根式.

二次根式教案7

  一、教学目标

  1.理解分母有理化与除法的关系.

  2.掌握二次根式的分母有理化.

  3.通过二次根式的分母有理化,培养学生的运算能力.

  4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想

  二、教学设计

  小结、归纳、提高

  三、重点、难点解决办法

  1.教学重点:分母有理化.

  2.教学难点:分母有理化的技巧.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、多媒体

  六、师生互动活动设计

  复习小结,归纳整理,应用提高,以学生活动为主

  七、教学过程

  【复习提问】

  二次根式混合运算的步骤、运算顺序、互为有理化因式.

  例1 说出下列算式的运算步骤和顺序:

  (1) (先乘除,后加减).

  (2) (有括号,先去括号;不宜先进行括号内的运算).

  (3)辨别有理化因式:

  有理化因式: 与 , 与 , 与 …

  不是有理化因式: 与 , 与 …

  化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的.方法(依据分式的基本性质).

  例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

  引入新课题.

  【引入新课】

  化简式子 ,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以 的有理化因式,而这个式子就是 ,从而可将式子化简.

  例2 把下列各式的分母有理化:

  (1) ; (2) ; (3)

  解:略.

  注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.

二次根式教案8

  一、教学过程

  (一)复习提问

  1.什么叫二次根式?

  2.下列各式是二次根式,求式子中的字母所满足的条件:

  (3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.

  (二)二次根式的简单性质

  上节课我们已经学习了二次根式的定义,并了解了第一个简单性质

  我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:

  这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?

  请分析:引导学生答如时才成立。

  时才成立,即a取任意实数时都成立。

  我们知道

  如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.

  例1计算:

  分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。

  例2把下列非负数写成一个数的平方的`形式:

  (1)5;(2)11;(3)1。6;(4)0。35.

  例3把下列各式写成平方差的形式,再分解因式:

  (1)4x2—1;(2)a4—9;

  (3)3a2—10;(4)a4—6a2+9.

  解:(1)4x2—1

  =(2x)2—12

  =(2x+1)(2x—1).

  (2)a4—9

  =(a2)2—32

  =(a2+3)(a2—3)

  (3)3a2—10

  (4)a4—6a2+32

  =(a2)2—6a2+32

  =(a2—3)2

  (三)小结

  1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.

  2.关于公式的应用。

  (1)经常用于乘法的运算中.

  (2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.

  (四)练习和作业

  练习:

  1.填空

  注意第(4)题需有2m≥0,m≥0,又需有—3m≥0,即m≤0,故m=0.

  2.实数a、b在数轴上对应点的位置如下图所示:

  分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.

  3.计算

  二、作业

  教材P.172习题11.1;A组2、3;B组2.

  补充作业:

  下列各式中的字母满足什么条件时,才能使该式成为二次根式?

  分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:

  (1)由—|a—2b|≥0,得a—2b≤0,

  但根据绝对值的性质,有|a—2b|≥0,

  ∴|a—2b|=0,即a—2b=0,得a=2b.

  (2)由(—m2—1)(m—n)≥0,—(m2+1)(m—n)≥0

  ∴(m2+1)(m—n)≤0,又m2+1>0,

  ∴ m—n≤0,即m≤n.

  说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.

  三、板书设计

二次根式教案9

  活动1、提出问题

  一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?

  问题:10+20是什么运算?

  活动2、探究活动

  下列3个小题怎样计算?

  问题:1)-还能继续往下合并吗?

  2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的`二次根式能合并,什么样的不能合并吗?

  二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。

  活动3

  练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)

  创设问题情景,引起学生思考。

  学生回答:这个运动场要准备(10+20)平方米的草皮。

  教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。

  我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。

  教师引导验证:

  ①设=,类比合并同类项或面积法;

  ②学生思考,得出先化简,再合并的解题思路

  ③先化简,再合并

  学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。

  教师巡视、指导,学生完成、交流,师生评价。

  提醒学生注意先化简成最简二次根式后再判断。

二次根式教案10

  一、案例背景:

  本节是九年级上学期数学的起始课。二次根式的学习,是对代数式的进一步学习。本节主要经历二次根式的发生过程及对二次根式的理解。掌握求二次根式的值和二次根式根号内字母的取值范围。为以后的运用二次根式的运算解决实际问题打好基础。

  二、案例描述:

  1、学习任务分析:

  通过对数和平方根、算术平方根的复习,鼓励学生经历观察、归纳、类比等方法理解二次根式的概念。在解决实际问题的时候,注意转化思想的渗透。体会分析问题、解决问题的方法,积累数学活动经验。比如求二次根式根号内的字母的取值范围,就是将问题转化为不等式来解决。注意学生数学书写格式的规范,为以后的学习打好基础。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用复习以前学过的知识导入新课。设计合作学习活动,引导学生操作、观察、探索、交流、发现、思维,解决实际问题的过程,真正把学生放到主体位置。

  2、学生的认知起点分析:

  学生已掌握数的平方根和算术平方根。这为经历二次根式概念的`发生过程做好准备。另外,学生对数的算术平方根的理解作为基础,经历跟此根式概念的发生过程,引导学生对二次根式概念的理解。

  案例反思:

  1.下列代数式若能作为二次根式的被开方数,则求出字母的取值范围?若不能,则说明理由。1-2a-2a2-1(2+a)2-(a-5)2

  以往对这类问题的回答都是全班回答,有些学生反面信息不能体现出来。采取的措施是全班举手势回答,可以做二次根式的被开方数举“布”,若不能举“拳头”。使班级能够全面参与,避免集体回答所体现不出的问题。

  2.合作活动:

  第一位同学——出题者:请你按表中的要求写完后,按顺时针方向交给下一位同学;

  第二位同学——解题者:请你按表中的要求解完后,按顺时针方向交给下一位同学;

  第三位同学——批改者:请你用蓝笔批改,若有错误,请与解题者商议并请其订正,完成交给你信任的同学用红笔复;

  第四位同学——复查者:请你一定要把好关哦!

  出题者姓名:

  解题者姓名:

  第一个二次根式:

  1. 要使式子的值为实数,求x的取值范围.

  2. 写出x的一个值,使式子的值为有理数,并求出这个有理数。

  3. 写出x的一个值,使式子的值为无理数,并求出这个无理数。

  第二个二次根式:

  1. 要使式子的值为实数,求x的取值范围。

  2. 写出x的一个值,使式子的值为有理数,并求出这个有理数。

  3. 写出x的一个值,使式子的值为无理数,并求出这个无理数。

  批改者姓名:

  复查者姓名:

  《课程标准》突出了学生在学习中的地位 -- 学生是学习的主人,同时,教师的地位、角色发生了变化,从 “ 主导 ” 变成了 “学生学习活动的组织者、引导者和合作者 ”。合作活动的安排就是对这一课程标准的体现。

二次根式教案11

  一、内容和内容解析

  1.内容

  二次根式的加减乘除混合运算.

  2.内容解析

  二次根式的混合运算是本章所学内容的综合运用,运算过程中用到乘法分配律,还需用多项式的乘法法则和整式的乘法公式,教学中要注意让学生体会二次根式的运算与整式运算的联系.

  基于以上分析,可以确定本课的教学重点是运用乘法分配律、多项式乘法法则及乘法公式进行二次根式的加减乘除混合运算.

  二、目标和目标解析

  1.目标

  (1)掌握二次根式混合运算的法则,合理使用运算律.

  (2)灵活运用运算律、乘法公式等技巧,使计算简便.

  2.目标解析

  达成目标(1)的标志是:学生能在有理数混合运算及整式的混合运算基础上,类比得出二次根式混合运算的法则及算理.

  目标(2)是通过类比整式乘法公式让学生能熟练进行二次根式混合运算.

  三、教学问题诊断分析

  二次根式的混合运算,困难在于让学生体会二次根式的运算与整式运算的联系.在二次根式运算中,法则和乘法公式仍然适用.

  本课的教学难点是:二次根式运算中,灵活运用多项式乘法法则及乘法公式.

  四、教学过程设计

  (一)提出问题

  问题1:计算

  (1);(2).

  问题2:计算

  (1);(2).

  师生活动:学生独立完成计算,小结算理.

  追问1:问题1、2中的字母、可以代表哪些数与式.

  师生活动:学生自由发言,引出、可代表二次根式.

  设计意图:类比整式运算引出二次根式混合运算的法则与算理.

  (二)探索新知,解决问题

  问题3:类比问题,完成计算:

  (1);(2).

  师生活动:学生独立思考完成,请学生板演,教师适时引导,两题均用乘法分配律.

  设计意图:让学生体会到数的扩充过程中运算律的一致性.

  问题4:在问题2中,若令,你能计算下列式子的值吗?

  (1);(2).

  师生活动:学生通过类比思考得出结论,教师引导学生得出二次根式运算中,多项式乘法法则和乘法公式仍然适用.

  设计意图:让学生感受到数的扩充过程中数式通性.

  (三)典型例题

  例1计算:(1);(2).

  例2计算:(1);

  (2);

  (3).

  师生活动:学生独立完成计算,教师适时给予评价.

  设计意图:加强学生运算技能的训练,进一步让学生认识二次根式和整式性质运算法则上的一致性.例2、例3在不能用乘法公式的情况下,可用多项式乘法法则.

  (四)课堂小结

  整式的运算法则和乘法公式中的.字母意义非常广泛,可以是单项式、多项式,也可以代表二次根式,所以整式的运算法则和乘法公式适用于二次根式的运算.

  设计意图:让学生加深数式通性的理解.

  (五)布置作业

  课本第15页第4题.

  五、目标检测设计

  1.计算:的值是.

  2.计算:=;=.

  3.计算:=.

  4.计算:=.

  5.计算:=.

  设计意图:通过练习熟悉二次根式的运算的法则与算理.

二次根式教案12

  1.请同学们回忆(≥0,b≥0)是如何得到的?

  2.学生观察下面的例子,并计算:

  由学生总结上面两个式的关系得:

  类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:

  (≥0,b0)

  使学生回忆起二次根式乘法的运算方法的推导过程.

  类似地,请每个同学再举一个例子,

  请学生们思考为什么b的取值范围变小了?

  与学生一起写清解题过程,提醒他们被开方式一定要开尽.

  对比二次根式的乘法推导出除法的运算方法

  增强学生的自信心,并从一开始就使他们参与到推导过程中来.

  对学生进一步强化被开方数的取值范围,以及分母不能为零.

  强化学生的解题格式一定要标准.

  教学过程设计

  问题与情境师生行为设计意图

  活动二自我检测

  活动三挑战逆向思维

  把反过来,就得到

  (≥0,b0)

  利用它就可以进行二次根式的化简.

  例2化简:

  (1)

  (2)(b≥0).

  解:(1)(2)练习2化简:

  (1)(2)活动四谈谈你的收获

  1.商的算术平方根的性质(注意公式成立的条件).

  2.会利用商的算术平方根的性质进行简单的二次根式的化简.

  找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足.

  二次根式的`乘法公式可以逆用,那除法公式可以逆用吗?

  找学生口述解题过程,教师将过程写在黑板上.

  请学生仿照例题自己解决这两道小题,组长检查本组的学习情况.

  请学生自己谈收获,并总结本节课的主要内容.

  为了更快地发现学生的错误之处,以便纠正.

  此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难.

  让学困生在自己做题时有一个参照.

  充分发挥组长的作用,尽可能在课堂上将问题解决.

二次根式教案13

  一、教学内容

  1、教学内容分析:二次根式是在数的开方的基础上展开的,是算术平方根的抽象与扩展,同时又为勾股定理和解一元二次方程打下基础.

  2、学生情况分析:本节课是二次根式的第一课时,是在学生学方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.对此班级中已初步形成合作交流、敢于探索与实践的良好学风,学生间互相提问的互动气氛较浓.

  二、教学设计理念

  根据基础教育课程改革的具体目标,结合我校初二学生的实际情况,改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,实施“三学六步”课堂改革教学模式.

  三、教学目标

  1、知识与技能:

  (1)了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围;

  (2)理解二次根式的非负性.

  2、过程与方法:通过对学、群学等方式培养学生分析、概括等能力.

  情感态度与价值观:培养学生认真参与、积极交流的主体意识和乐于探索、积极钻研的科学精神、合作精神,激发学生学习数学的兴趣.

  四、教学重点、难点

  1、教学重点:了解二次根式的概念,二次根式有意义的条件,并会求二次根式中所含字母的取值范围

  2、教学难点:理解二次根式的双重非负性

  五、教学方法、手段

  1、教学方法:探究法、讨论法、发现法

  2、教学手段:课件(ppt)

  六、教学过程

  (一)创设情境,导入新课

  问题1 你能用带有根号的的式子填空吗?

  (1)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系,如果用含有h 的式子表示 t ,则t= _____.

  (2)下球体过球心的横截面面积为S,则横截面圆形的半径r为 .

  (3)面积为3 的正方形的边长为_____,面积为S 的正方形的边长为_____.

  【师生互动】:学生独立思考,用算术平方根表示结果,教师适当引导和评价.

  【设计意图】:让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.

  探究新知,讲授新课

  1.抽象概括,形成概念

  问题2 上面所得的代数式:,它们的共同特点是什么?

  【师生互动】:学生独立思考并积极发言,教师归纳总结.

  【设计意图】:通过归纳总结引出二次根式的概念.

  问题3 根据以前所学知识,理解二次根式的定义,并且要注意什么.

  【师生互动】:学生小组讨论并且小组长做好记录,老师归纳总结.

  【设计意图】:加深对二次根式的理解.

  2.辨析概念,应用巩固

  问题4 (辩一辩) 判断给出式子是不是二次根式:①;

  ②;③;④;⑤;⑥

  【师生互动】:学生独立思考并积极发言,并对于他们的答案做出正确地评价,给予必要的鼓励.

  【设计意图】:该题是利用抢答来调动课堂气氛,理解二次根式的定义.

  问题5 根据要求编写二次根式:

  (1)请写出一个你喜欢的二次根式;

  请写出一个被开方数含x的二次根式.;

  请你写出一个被开方数含x,且当x为任何实数的二次根式.

  【师生互动】:学生独立思考并积极发言,其他同学来检验是否编写正确.

  【设计意图】:设计开放性题开拓学生思维,进一步加深对二次根式的理解.

  灵活运用,巩固提高

  问题6 当x是怎样的实数时,下列各式在实数范围内有意义:

  【师生互动】:

  (1)学生口答,老师板书规范解题格式,(2)(3)学生演板.学生完成之后小组讨论结果的正确性,同时对演板的'同学做出评价,老师再适时补充,(2)(3)评价增加一道变式,让学生能灵活运用知识.最后再归纳这类式子有意义要注意:

  (1)二次根式的被开方数为非负数;

  (2)分母中含有字母时,要保证分母不为0.

  【设计意图】:本题强化学生对二次根式被开方数为非负数的理解,同时考查学生的灵活运用的能力,训练学生的思维.

  发散思维,拓展延伸

  问题7 已知实数x,y满足,求:

  (1)x的取值范围;

  (2)以x,y的值为两边长的等腰三角形的周长.

  【师生互动】:学生先独立思考,再小组合作,将答案写在白板上,并请小组两位成员上台展示,其他同学提出质疑,补充,老师适当引导点评.

  【设计意图】:本题第一问进一步加深学生对二次根式被开方数为非负数的理解;第二问渗透分类思想,通过小组合作,上台展示体现学生为主体,发挥学生的能动性.

  问题8 (走进中考)已知,则 p(x,y)是第 象限.

  【师生互动】:学生先独立思考讲解思路,老师适当点评.

  【设计意图】:本题主要考察

  课堂小结,盘点收获

  一路下来,我们结识了很多新知识,你能谈谈自己的收获吗?说一说,让大家一起来分享.

  【师生互动】:学生举手发言,老师点评并鼓励.

  【设计意图】:学生总结,互相取长补短,再一次突出本节课的学习重点,帮助学生把握知识要点,理清知识脉络,体会数学中的分类思想.

  作业设计,巩固提高

  必做题:1.下列各式中:①;②;③;④;⑤ ,其中是二次根式的有 .(写序号)

  代数式有意义,则字母x的取值范围是 .

  3.代数式的值为0,则a= .

  选做题:1.已知,则的值为 .

  2.若式子 有意义,则P(a,b)在第 象限.

  小组合作题:

  1.已知m,n满足 ,求:(1)m,n的值.

  (2)将m,n的值 代入并化简:

  (3)请选一个你喜欢的x的值代入求值.

  【设计意图】:气氛通过分层作业,教师能及时了解学生对本节知识的掌握情况.必做题和选做题如果上课有时间打算用砸金蛋的形式调动课堂.

  (六)板书设计

  16.1.1 二次根式 定义:形如 的式子叫做 二次根式 注:(双重非负性) (老师板书) (学生演板)

二次根式教案14

  教学内容

  二次根式的加减

  教学目标

  知识与技能目标:理解和掌握二次根式加减的方法.

  过程与方法目标:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.

  情感与价值目标:通过本节的`学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.

  重难点关键

  1.重点:二次根式化简为最简根式.

  2.难点关键:会判定是否是最简二次根式.

  教法:

  1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;

  2、讲练结合法:在例题教学中,引导学生阅读,与同类项进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

  学法:

  1、类比的方法通过观察、类比,使学生感悟二次根式加减的模型,形成有效的学习策略。

  2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。

  3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。

  4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

  知识点

  自主检测、同伴互查

  1、师生共同解决“学法”问题与13页“练习1”;

  2、学生演板13页“练习2、3”。

  四、知识梳理、师生共议

  1、谈收获:

  (1)二次根式的加减法则是什么?有哪些运算步骤?

  (2)怎样合并被开方数相同的二次根式呢?

  (3)二次根式进行加减运算时应注意什么问题?

  2、说不足:。

  五、作业训练、巩固提高

  1、必做题:课本15页的“习题2、3”;

  课时练习

  1.揭示学法、自主学习

  认真阅读课本14页内容,完成下列任务:

  1、完成14页“例3、4”,先做再对照:

  (1)平方差公式__________,完全平方公式__________.

  (2)每步的运算依据是什么?应注意什么问题?

  (时间7分钟若有困难,与同伴讨论)

  三、自主检测、同伴互查

  1、师生共同解决“学法”问题;

  2、学生演板14页“练习1、2”。

  四、知识梳理、师生共议

  1、谈收获:

  (1)二次根式进行混合运算时运用了哪些知识?

  (2)二次根式进行混合运算时应注意哪些问题?

二次根式教案15

  【教学目标】

  1.运用法则

  进行二次根式的乘除运算;

  2.会用公式

  化简二次根式。

  【教学重点】

  运用

  进行化简或计算

  【教学难点】

  经历二次根式的乘除法则的探究过程

  【教学过程】

  一、情境创设:

  1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?

  2.计算:

  二、探索活动:

  1.学生计算;

  2.观察上式及其运算结果,看看其中有什么规律?

  3.概括:

  得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

  将上面的公式逆向运用可得:

  积的算术平方根,等于积中各因式的算术平方根的积。

  三、例题讲解:

  1.计算:

  2.化简:

  小结:如何化简二次根式?

  1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;

  2.P62结果中,被开方数应不含能开得尽方的因数或因式。

  四、课堂练习:

  (一).P62 练习1、2

  其中2中(5)

  注意:

  不是积的形式,要因数分解为36×16=242.

  (二).P67 3 计算 (2)(4)

  补充练习:

  1.(x>0,y>0)

  2.拓展与提高:

  化简:1).(a>0,b>0)

  2).(y

  2.若,求m的.取值范围。

  ☆3.已知:,求的值。

  五、本课小结与作业:

  小结:二次根式的乘法法则

  作业:

  1).课课练P9-10

  2).补充习题

【二次根式教案】相关文章:

二次根式教案09-22

【精选】二次根式教案三篇08-05

精选二次根式教案3篇08-08

精选二次根式教案4篇08-16

二次根式教案汇总7篇04-04

二次根式教案汇编六篇04-04

实用的二次根式教案三篇04-11

二次根式教案范文10篇04-05

有关二次根式教案三篇02-03

二次根式教案汇总九篇04-07