《最小公倍数》教案

时间:2024-05-17 10:44:03 教案 我要投稿

《最小公倍数》教案

  作为一位杰出的教职工,往往需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。那么什么样的教案才是好的呢?以下是小编帮大家整理的《最小公倍数》教案,仅供参考,欢迎大家阅读。

《最小公倍数》教案

《最小公倍数》教案1

  教学目标

  (1)使学生能比较熟练地掌握求最大公约数和最小公倍数的方法,并且能够根据不同,灵活运用简捷的方法。

  (2)综合运用知识,进一步沟通知识间的联系。

  教学重点、难点

  重点、难点:能够根据不同,灵活运用简捷的方法。

  教具、学具准备

  教 学过程

  备 注

  一、基本练习

  1、填空。(课本第67页第7题)

  (1)9和27这两个数,()能被()整数,()是()的倍数,()是()的约数。

  (2)20以内既是偶数又是素数的数是(),既是奇数又是合数的数是()

  (3)在4、9和16中,成互质数的两个数有()和();()和()。

  (4)三个素数的最小公倍数是42,这三个素数是()、()和()。

  (5)如果甲数=2×3×5,乙数=2×3×7,那么甲数与乙数的最大公约是(),最小公倍数是()。

  学生先填在书上,再集体交流讨论,注意让学生说说思考方法。

  2、很快说出下面每组数的最大公约数和最小公倍数。

  11和49和65、10和20

  16和1580和20年5、6和7

  说的过程中注意让学生说出思考的过程及理由。

  3、求下面各组数的最大公约数和最小公倍数。

  80和10015、8和30

  25和330、60和75

  19和388、9和10

  让学生用短除法做,选做三题,交流时注意用短除法要注意的地方,同时让学生说说还有其他的思考方法。

  二、综合练习

  1、你能用下面的一个或几个概念和一个或几个数连起来说一句话吗?

  整数自然数整除约数倍数

  奇数偶数合数素数质因数

  公约数最大公约数公倍数最小公倍数

  教学过程

  备 注

  例2:2和8都是自然数,8能被2整除,8是2的倍数。

  2、动脑筋:下面每组数中,你能找出不同类的数吗?

  (1)1473.82345

  (2)21216223647

  (3)23792943

  学生找出不同类的数并说明理由,教师要注意答案的开放性,学生的答案只要有理由,就应该肯定和鼓励.

  3、猜一猜老师家的电话号码.

  老师家的电话号码是七位数,排列如下:

  ()最小的素数

  ()7的`最大约数

  ()8的最小倍数

  ()最小的自然数

  ()最小的合数

  ()最小的一位奇数

  ()既不是素数也不是合数的数

  三、课堂

  师:本单元知识概念较多,同学们要注意这些概念的区别和联系,并能够综合练习。还有什么疑问吗?

  四、作业

  1、课本上第9、10题中剩余题目各选一列。

  2、《作业本》

  教学过程中,重在引导学生根据不同情况,灵活运用简捷的方法求最大公约数和最小公倍数

《最小公倍数》教案2

  教材分析:

  该内容是在学生已经学习了约数和倍数的意义、质数和合数、分解质因数、最大公约数等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习通分所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的.一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。

  学情分析:

  五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

  教学目标:

  1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。

  2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。

  3、渗透集合思想,培养学生的抽象概括能力

  教学重点:

  公倍数与最小公倍数的概念建立。

  教学难点:

  运用公倍数与最小公倍数解决生活实际问题

  教法学法:

  为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。

  教学过程:

  一、任务导学

  师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。

  师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)

  师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。

《最小公倍数》教案3

  教学目标

  1、会利用列举法和短除法找出两个数的公倍数和最小公倍数。

  2、理解分倍数和最小公倍数的含义。

  3、在探索中发现,在发现中体验数学的自身规律的魅力,从而激发学生持久的学习兴趣。

  教学重点

  教学难点理解两个数的公倍数和最小公倍数的.意义,能正确地运用和列举法和短除法确定两个数的最小公倍数。

  教学方法合作学习法、小组探究法、知识迁移法

  教学准备复习题

  教学过程:

  一、温故知新

  1、什么叫公因数?

  2、什么叫最大公因数?

  3、写出下列各组的最大公因数

  3和7 4和6 9和18 12和30

  引出新课

  二、师生共研

  1、公倍数和最小公倍数的认识。

  以4和6这组数为例,就在50以内数表中找一找。你发现了什么?

  (1)4的倍数:4、8、12、13、20、24、28、32、36、40、44、48。

  (2)6的倍数:6、12、18、24、30、36、42、48。

  (3)两个都有的:12、24、36、48。

  引出课题:公倍数和最小公倍数

  2、怎样找出两个数的最小公倍数介绍短除法

  (1)让学生以小组的形式探讨,看看如何用短除法来求两个数的最小公倍数。再交流。

  (2)反馈时围饶着以下几个方面交流:

  短除式中除数是2的什么数?

  为什么在得出商2和3时不再往下除?

  4和6的最小公倍数是怎么计算的?

  (3)师生共同探究与交流。

  (4)试一试:你能找出12和16的公倍数和最小公倍数吗?

  让学生用自己喜欢的方式找一找,再用另一种验证。

  重点反馈短除法。

  3、探究特殊关系的两数怎样确定它们的最小公倍数。

  先让学生独立完成

  思考后交流自己的发现

  三、全课总结

  1、这节课我们交的新朋友是什么?你现在对它知道多少?

  2、怎样找两个数的最小公倍数?

  (1)先定关系

  (2)确定用什么方法找

  3、有什么问题或发现?

  四、布置作业:

  2、3、4、5

《最小公倍数》教案4

  教学目标

  1.使学生掌握求三个数的最小公倍数的方法,并能正确,合理地求三个数的最小公倍数。

  重点难点

  用短除法求三个数的最小公倍数。求三个数的最小公倍数的计算过程。

  主要教学方法

  新授课 讲解法讨论法

  操作过程

  板书设计:求三个数的最小公倍数

  例3求12、16和18的最小公倍数。

  121618

  把所有的除数和商连乘起来。

  〔12、16、18〕=2×2×3×1×4×3=144

  两种特殊的情况:1如果三个数中较大数是另外两个数的倍数,那么较大数就是它们的最小公倍数。

  2如果三个数两两互质,那么它们的乘积就是它们的'最小公倍数

  师活动:预计时间()分钟

  学生活动;预计时间()分钟

  一. 复习准备

  1填空。

  4的倍数有:(4、8、12、16、20、24......)

  6的倍数有:(6、12、18、24、30......)

  8的倍数有:(8、16、24、32

  ......)

  4、6和8的最小公倍数是24

  2把4、6、8和24分解质因数。

  4=2×2

  6=2×3

  8=2×2×2×3

  归纳:三个数的最小公倍数,就是三个数的公有质因数和任意两个数的公有质因数和各自独有质因数。

  二.新课

  1.例3求12、16和18的最小公倍数。

  (1)用3个数公有的质因数2去除。

  (2)用6和8的公有质因数2去除,9移下来。

  (3)用3和9的公有质因数3去除,4移下来。

  (4)除到两两互质为止。

  〔12、16、18〕=2×2×3×1×4×3=144

  注意:用短除法求三个数的最小

  公倍数,先用三个数的公约数,然后再用任意两个数的公约数

  去除。

  2.看书第106页例3

  3.练一练第1题

  学生口答

  1.名板演,其余自练。

  2.观察分解质因数情况,你发现了什么?

  讨论:

  1.为什么当商是6、8和9时,还要用两个数的公约数2继续除?

  2.除到什么时候可以不必再除?

  3.最后这个最小公倍数怎么求?为什么?

  1.学生看书

  2.疑问难,学生练习

  说说求三个数的最小公倍数与

  三

  san三

  求三个数求

  延伸练习

  反 馈

  与

  矫正

  目标达成情况

《最小公倍数》教案5

  教学目标

  (一)认识公倍数和最小公倍数。

  (二)理解求两个数的最小公倍数的算理,掌握方法。

  (三)通过教学,培养学生的比较推理和抽象概括的能力。

  教学重点和难点

  (一)几个数的公倍数和最小公倍数的概念。

  (二)理解求最小公倍数的算理、掌握计算方法。

  教学用具

  投影片,有数轴的小片子。

  教学过程设计

  (一)复习准备

  教师:请说出几个4的倍数,几个6的倍数。(学生口答教师板书。)

  4                       6

  8                       12

  12                      18

  16                      24

  20                      30

  ……                    ……

  教师:我们列出的两组倍数,都分别是4或者是6一个数的倍数。前面我们已研究过两个数的约数,今天来研究两个数的倍数。

  (二)学习新课

  1.公倍数与最小公倍数。

  (1)投影片出示数轴。

  老师:请在数轴上分别找出表示4的倍数和6的倍数的点。

  学生用两种不同颜色的点在自己的数轴(小片子)上分别描出这些点。教师:从数轴上可以看出4和6公有的倍数是哪些?最小的是几?有没有最大的?(学生口答后,老师再在投影片上表示出来。)

  教师:想一想我们已经学过的公约数和最大公约数,谁能给几个数公有的倍数,和其中最小的一个取个名字?(公倍数、最小公倍数。)

  教师:请说一说什么是公倍数和最小公倍数?(学生口答老师板书。)板书:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

  教师:研究两个数的倍数,主要是研究公倍数和最小公倍数。这节课我们就学习这个内容。板书课题:最小公倍数。

  教师:为什么集合圈里要写上省略号?(一个数的倍数是无限的,几个数的公倍数也是无限的。)  (3)练习:(投影片)

  把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几。

  请一位同学填在投影片上,其余同学填在书上。集体订正。

  2.求两个数的最小公倍数。

  教师:上面我们用列举的方法找到两个数的最小公倍数,下面来研究如何直接求出两个数的最小公倍数。

  请回忆一下,求最大公约数是通过什么途径研究的?(分解质因数。)

  (1)教师:我们也从分解质因数入手,看一看一个数和它的倍数的质因数之间有什么关系。(用口答复习题的板书,把4,6的倍数逐个分解质因数。)

  板书:

  4=2×2                    6=2×3

  8=2×2×2                  12=2×2×3

  12=2×2×3                 18=2×3×3

  16=2×2×2×2              24=2×2×2×3

  20=2×2×5                 30=2×3×5

  24=2×2×2×3              36=2×2×3×3

  ……                      ……

  教师:请观察4的倍数的质因数与4的质因数有什么关系?6的倍数的质因数与6的质因数有什么关系?

  学生口答后,教师板书:(或贴出小黑板)

  4的倍数的质因数包含了4的全部质因数;6的倍数的质因数包含了6的全部质因数。

  教师:12是4的倍数吗?请说明理由。

  (2)板书例2,求18和30的最小公倍数。

  请用短除式分解质因数。(学生口答,教师板书。)

  教师:请观察板书,哪些是18和30相同的质因数?哪些是18和30各自独有的质因数?

  学生口答后,老师用红色粉笔将2,3框上,说明这是公有的质因数,其余的3是18独有的,5是30独有的质因数。

  教师:请讨论①18和30的公倍数应包括哪些质因数?②18和30的最小公倍数是多少?这个最小公倍数包含了哪些质因数?

  学生讨论时老师巡视。然后学生总结,老师板书:18和30的最小公倍数是:

  2×3×3×5=90  (3)教师指板书问:为什么18和30全部公有的质因数只各选一个数(即“代表”)?

  学生讨论后归纳:为了保证倍数最少。

  教师:请再说一说几个数的最小公倍数里包含哪些质因数?(学生口答后教师板书。)

  (4)老师:利用分解质因数的方法可以求出两个数的最小公倍数,为了简便,通常用一个短除式来分解。板书介绍写法。

  方法:用公有的质因数2去除,用公有的`质因数3去除,商3,5为互质数。把所有的除数和最后的商乘起来。

  练习:求30和45的最小公倍数。(一位同学写投影片,其余同学写本上。)

  订正时要求说出过程。教师:除数是什么质因数?商呢?

  (公有的,各自独有的。)

  教师:请说一说用短除式求两个数的最小公倍数的方法?

  引导学生归纳:先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。

  (三)巩固反馈

  1.口答:(投影片)

  10的倍数(    );15的倍数(    );

  10和15的公倍数(    );10和15的最小公倍数(    )。

  2.口答:(投影片)

  60=2×2×3×5;90=2×3×3×5;

  60和90公有的质因数是(    );

  60独有的质因数是(    );

  90独有的质因数是(    )。

  3.A=2×2×3×5,B=2×3×7,A,B的最小公倍是(    ),A,B有没有最大公倍数?为什么?

  4.用短除式求下面两组数的最小公倍数。

  18和 27                    36和 42

  5.讨论解答:

  A=2×5×7                  B=(    )×(    )×5

  A,B的最小公倍数是2×3×5×7=210。

  (四)课堂总结和课后作业

  1.公倍数,最小公倍数。两个数的质因数里包含哪些质因数。

  2.用短除法求两个数的最小公倍数的方法。  3.作业:课本75页练习十五,1,2。

  课堂教学设计说明

  本节课根据教材编排顺序,先利用倍数的旧知识,和数轴表示数引入公倍数和最小倍数概念,再用集合图表示来加强概念的理解。求最小公倍数的方法,关键是要让学生理解几个数的最小公倍数里包含了全部公有的质因数和各自独有的质因数。教学中,安排学生借助分解质因数式子进行对比讨论,使学生认识到几个数的公倍数里,要包含这几个数的全部质因数,几个数的最小公倍数里,公有的质因数只选一次,即是选“代表”,否则将不是“最小”。在学生理解了算理、了解了算法后再介绍用短除式求最小公倍数的一般形式,进而归纳出求解的步骤。

  新课学习分两部分。

  第一部分学习公倍数和最小公倍数的概念。

  第二部分学习求两个数的最小公倍数。

《最小公倍数》教案6

  教学内容 第十册数学P72—74最小公倍数

  教学目标

  1、在原有知识结构的基础上,通过自主建构,形成新的知识结构,掌握最小公倍数的意义及求法。

  2、培养学生的迁移、判断、推理、分析能力。学会反思,学会合作。

  3、培养学生的积极学习情感,学会欣赏他人。

  教学过程

  一、再现原有知识结构

  1、用短除法求30与45的最大公约数

  独立完成,一人板演,集体订正。

  师提问:怎样用短除法求两个数的最大公约数?

  (评析:根据教材的内容与学生的实际需要设计课堂引入环节,实实在在,利于学生再现原有知识结构,为构建新的知识结构做好了知识准备与心理准备。)

  二、构建新的知识结构

  1、揭示课题

  今天我们来研究最小公倍数。(板书课题)

  2、明确意义

  师:你认为什么是最小公倍数?

  生1:两个数公有的最小的倍数。

  师:说的很好,你很会扩写。(生笑)

  生2:两个数公有的'倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。

  生3:公倍数可以是两个数公有的倍数,也可以是三个或四个数公有的倍数。我认为应改成几个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。师:太好了,谁能再说一遍。

  生说完师出示,齐读。

  (评析:有了最大公约数的认知基础,学生很容易通过迁移实现对最小公倍数这一概念的自主建构。因此教师直接揭示课题,让学生根据自己的理解,互相补充完善最小公倍数的概念,取得了很好的效果。)

  3、探讨求法

  出示:求4与5的最小公倍数。

  师:你认为可以怎样求两个数的最小公倍数?

  生1:用短除法。(师板书:短除法)

  师:oh,你会吗?

《最小公倍数》教案7

  教学目标:

  1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。

  2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

  3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学准备:

  长3厘米、宽2厘米的长方形纸片16张,边长6厘米和8厘米的正方形纸片;练习四第4题的方格图、红棋和黄棋。

  教学过程:

  复习

  今天我们所学的知识与倍数有关,这在四年级我们已经学过了,同学们还记得吗?

  那谁能连续的说几个2的倍数?有什么特征?3的倍数呢?

  看来大家四年级的知识掌握的不错,那么今天我们就再来继续研究关于倍数的知识。

  一、经历操作活动,认识公倍数

  1、操作活动

  提问:(在投影仪上摆出长3厘米、宽2厘米的长方形纸片,以及边长6厘米和8厘米的正方形纸片)用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米和正方形,能铺满哪个正方形?请大家猜猜看

  拿出手中的图形,动手拼一拼。

  学生独立活动后,指名在黑板上用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米的正方形。

  提问:通过刚才的活动,你们发现了什么?(用上面的长方形纸片可以正好铺满边长6厘米和正方形,但不能正好铺满边长8厘米的正方形)

  引导:用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?(在边长6厘米的正方形下面板书:6÷3=2,6÷2=3)

  铺边长8厘米的正方形呢?每条边都能正好铺完吗?(在边长8厘米的正方形下面板书:8÷3=2......2,8÷2=4)

  2、想像延伸

  提问:根据刚才铺正方形过程,在头脑里想一想,用长3厘米、宽2厘米的长方形纸片还能正好铺满边长多少厘米的正方形?在小组里交流。

  生可能的想法:

  ⑴、能正好铺满边长12厘米、18厘米、24厘米......的正方形。

  在学生回答后,提问:你是怎么想的'?(引导学生明确:12、18、24......除以2和3都没有余数)

  ⑵、能正好铺满的正方形,边长的厘米既是2的倍数,又是3的倍数。

  如果学生说不出这一点,可提问:6、12、18、24......这些数与2有什么关系?与3呢?

  3、揭示概念

  讲述:6、12、18、24......既是2的倍数,又是3的倍数,它们是2和3的倍数。(板书:公倍数)

  说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,同样可以用省略号来表示。

  引导:用长3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方形,说明什么?(8不是2和3的公倍数)为什么?

  二、自主探索,用列举的方法求公倍数和最小公倍数

  1、自主探索

  提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?

  学生自主活动,然后在小组里交流。

  生可能想到的方法:

  ⑴依次分别写出6和9的公倍数,再找一找。

  提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小公倍数的?

  ⑵、先找出6和倍数,再从6的倍数中找出9的倍数。

  ⑶、先找出9的倍数,再从9的倍数中找出6的倍数。

  引导:第⑵种和第⑶种方法有什么相同的地方?你觉得哪一种方法简捷一些?

  2、明确6和9的最小的公倍数是18后,指出:18就是6和9的最小公倍数。(完成课题板书)

  3、用集合图表示。

  说明:我们可以用下图表示两个数的公倍数。先出示一个圈,表示6的倍数。想一想,里面可以填哪些数?旁边一个圈,表示9的倍数。想一想,里面可以填哪些数?指出:6和9的公倍数要填在两个圈相交的部分。想一想,里面应该填哪些数?

  引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?

  4、做“练一练”

  要求:(出示数表)先在2的倍数上画“△”,在5的倍数上画“○”,然后填空。

  集体交流:2和5的公倍数有什么特点?(是10的倍数,个位是0的自然数)

  三、巩固练习,加深对公倍数和最小公倍数的认识

  1、做练习四的第1题

  要求:把50以内6和8的倍数、公倍数分别填在题目下面的圈里,再找出它们的最小公倍数。

  提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个前提条件呢?

  2、做练习四第2题

  要求:先在表中分别写出两个数的积,再填空。

  引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?

  3、做练习四的第3题

  要求:自己找出每组数的最小公倍数。

  集体交流,说说是怎样找的,让学生进一步掌握用列举法找两个数的最小公倍数。

  四、全课小结

  提问:今天学习的内容是什么?什么是两个数的公倍数和最小公倍数?怎样找两个数的最小公倍数?

  引导:你还有什么疑问吗?

  五、游戏活动

  要求:下面我们来做个游戏。出示练习四第4题:红棋每次走3格,黄棋每次走4格。你能在两种棋都走到的方格里涂上颜色吗?在小组里先玩一玩,再想一想。

  提问:涂色的方格里写的数与3和4有什么关系?

《最小公倍数》教案8

  教学目标:

  1、理解两个数的公倍数和最小公倍数的意义。

  2、探究找公倍数的方法,会利用列举法找出两个数的公倍数和最小公倍数。

  3、培养学生自主探究的精神和观察、分析、概括的能力;让学生体会数学与生活的紧密联系,树立学好数学的信心。

  教学重点:理解两个数的公倍数和最小公倍数的意义。

  教学难点:探究找公倍数和最小公倍数的方法。

  教具准备:多媒体课件

  教学过程

  一、创设情境

  教师谈话:,乐乐就放假了,很想爸爸妈妈带她出去玩。可乐乐的妈妈从七月一日起每工作3天休息一天,爸爸从七月一日起每工作5天休息一天,他们打算等爸爸妈妈同时休息时,全家一块儿去西湖公园玩。(出示:七月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?

  请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找乐乐妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出乐乐爸爸和妈妈共同的休息日了。

  根据学生的回答,教师逐步完成以下板书:

  妈妈的休息日:4、8、12、16、20、24、28

  爸爸的休息日:6、12、18、24、30

  他们共同的休息日:12、24

  其中最早的一天:12

  二、尝试探讨

  1、几个数的公倍数和最小公倍数的概念教学

  我们一起来看妈妈的休息日,把这些数读一读(学生读数),你发现这些数有些什么特点?

  师:对了,这些数都是4的倍数。(教师顺势把板书中“妈妈的休息日”改成了“4的倍数”。)

  师:刚才我们是在30以内的数中,依次找出了这些4的倍数,如果继续找下去,4的倍数还有吗?有多少个?(学生举例,教师在4的倍数后面添上了省略号。)

  我们再来看“爸爸的休息日”有什么特点?6的倍数有多少个?(把“爸爸的休息日”改成“6的倍数”并添上省略号)

  师:下面我们再来看“他们共同的休息日”,这些数和4、6有什么关系?

  师:对了,这些数既是4的倍数,又是6的倍数,你能给它一个新的名字吗?(把板书中“他们共同的休息日”改为“4和6的公倍数”。)

  师:刚才我们从30以内的数中找出了4和6的公倍数有12、24,如果继续找下去,你还能找出一些来吗?可以找多少?(学生举例,老师根据学生回答,在后面添上省略号。)

  师:这“其中最早的一天”,我们一起给它起个名字,叫什么?

  (根据学生回答,把板书中“其中最早的一天”改为“4和6的最小公倍数”。)

  板书:

  4的倍数:4、8、12、16、20、24、28、……

  6的倍数:6、12、18、24、30、……

  4和6的公倍数:12、24、……

  4和6的最小公倍数:12

  教师谈话:4的倍数、6的倍数、4和6的公倍数、最小公倍数,我们还可以用这样的图来表示:

  出示集合图:

  4的倍数6的倍数4的倍数6的倍数

  4和6的公倍数

  三、深化概念

  师:通过找“共同的休息日”,我们分别求出了这组数的公倍数和最小公倍数。

  请同学们把书翻到51页看例子,填一填

  师:什么是公倍数?

  生:两个数公有的倍数就是他们的公倍数。

  师:公倍数有多少个?

  生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。

  师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?

  生①:举例:2、4和5的公倍数是20。

  生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。

  师:那你能找出最大的或最小的公倍数吗?

  生:没有最大的,只有最小的。

  师:为什么?

  生:因为公倍数的个数是无限的,所以没有最大公倍数。谁能用自己的话说一说什么叫公倍数?什么叫最小公倍数?

  板书:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

  这就是我们今天要学习的内容。(揭示课题:最小公倍数)

  师:那么我们刚才是怎么找出最小公倍数的呢?

  生说,师写(列举法)

  [点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的.数学化的过程。]

  4.[出示]找最小公倍数

  2和69和186和245和353和9

  3和57和54和99和11

  让学生找出每组数的公倍数。

  师:有的同学找得很快,能给大家说一说你的方法吗?你发现了什么?

  小组讨论,之后汇报。

  生:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。

  生:2和6的最小公倍数是12,并不是它们的乘积。

  生:大数要是小数的倍数,大数就是它们的公倍数,而且是最小公倍数。例如2和6,9和18,最大的数都是它们的最小公倍数。

  师:你们还能发现了什么?

  生③:第二排每一组都是互质数。例如3和5两个数是互质数。互质数的最小公倍数是它们的乘积。

  师总结

  师;你们能举一些这类的例子吗?

  5、请同学们用刚才的发现做书本52页的第3题,求下面各组数的最小公倍数

  3和610和83和95和46和59和42和76和8

  [点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。]

  四、利用最小公倍数解决生活问题,

  出示:

  (1)“五(1)班同学参加植树劳动,按6人一组或8人一组都正好分完。五(2)班参加植树的至少有多少人?”

  齐读两次,找出题中的关键字,引导中理解题意后放手让生自己完成,同桌间比对。

  (2)人民公园是1路和6路汽车的起点站。1路汽车每3分钟发车一次,6路汽车每5分钟发车一次。这两路汽车同时发车以后,至少再过多久又同时发车?

  (设计理念:借助于生活实例进行对知识的应用,这样不仅可以让生对抽象概念得以理性认识,而且也能切身的体会到数学知识是为生活服务的,在分析中我紧抓关键字突破难点,这样可以让生学会解决问题的技巧。)

  五、小结

  今天学习了什么内容?什么叫最小公倍数?

  我们今天学习了求最小公倍数的哪几种情况?

  怎样才能很快地求出它们的最小公倍数?

  板书:找最小公倍数

  一般关系列举法

  倍数关系较大数

  特殊关系

  互质关系两数的乘积

《最小公倍数》教案9

  教学过程:

  一、基础练习

  找出下面每组数的最小公倍数。

  4和6 3和7 5和9 10和6

  二、完成第25页的5~8题。

  1、出示第5题

  ⑴ ①让学生观察左边4题,说说这几组数有什么共同的特点。

  ②找出每组两个数的最小公倍数。

  ③比较和交流:有什么发现?

  (两个数的最小公倍数就是它们的乘积。)

  ⑵独立完成右边4题,再比较交流发现了什么?

  2、出示第6题

  先由学生独立完成。

  然后说说分别是什么方法求出每组上数的最小公倍数的?

  3、出示第7题

  先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过程实

  际上就是求7和8的最小公倍数。

  4、出示第8题

  先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的最小公倍数,再让学生独立解答。

  三、小结:

  通过今天这一节课的.学习,你有什么收获?

  四、思考题

  提示:先用列举法找3、4和6的最小公倍数。

  习题超市:

  在〔 〕里写出下面各组数的最小公倍数.

  2和3〔 〕 5和6〔 〕 2和7〔 〕

  7和1〔 〕 6和8〔 〕 18和6〔 〕

  4和6〔 〕 4和12〔 〕 19和20〔 〕

  5和8〔 〕 10和15〔 〕 7和11〔 〕

  8和9〔 〕 3和14〔 〕 9和12〔 〕

  52和13〔 〕 13和6〔 〕 10和8〔 〕

  6和72〔 〕 17和4〔 〕 36和27〔 〕

  动脑筋:

  1.一个自然数除以2、5、7,商都是整数,没有余数,这个数最小是多少?

  2.有两根绳子,第一根长18米,第二根长24米,要把它们剪成同样长短的跳绳,而且不能有剩余,每根跳绳最长多少米?一共可剪成几根跳绳?

  3、73路汽车3分钟发一次车,96路汽车5分钟发一次车。73路和96路汽车同时出发后,再过多少时间会同时发车?

《最小公倍数》教案10

  教学目标:

  理解公倍数,最小公倍数的意义。

  会用列举法,分解质因数,短除法求两个数的最小公倍数。

  会求是互质数或有倍数关系的两个数的最小公倍数。

  在知识的探究过程中,培养大胆质疑的习惯。

  教学过程:

  一,导入:

  同学们,从我们学校到中山公园可乘坐A,B两种车,A车大约每隔400米设有一个车站,B车大约每隔600米设有一个车站。天气越来越热了,我们少先队员开展送爱心活动,在这条线路上摆几个慰问点,为驾驶员,售票员送上毛巾擦擦汗,送上凉水解解渴。现在请你们小组商量一下,慰问点设在哪里可以同时慰问两条线路的司售人员,并且要说明你的理由。

  慰问点设在距学校1200米,2400米处。

  2,在这里,我们找A,B两车的车站就是运用了有关倍数的知识,那么,你是否知道同时有两个车站的这几个数字表示的是什么呢

  出示课题:公倍数谁能用自己的话说一说什么叫公倍数

  (几个数共有的倍数,叫做这几个数的公倍数)

  这一个是最小的,我们又称它为什么

  补充课题:最小公倍数谁能再来说一说什么叫最小公倍数

  (其中最小的一个,叫做这几个数的最小公倍数)

  今天我们就来研究公倍数与最小公倍数。

  二,探究:

  看了这个课题,你想在这节课中了解些什么,请学生写在纸上,并贴到黑板上。

  (为什么不求最大公倍数,求最小公倍数有哪些方法,哪些情况下可以很快说出两个数的最小公倍数是几等)

  四人一组合作解决1~2个问题,举例说明,组长笔录。可以翻书请教,在P.69~71。

  成果汇报:

  (1)公倍数有多少个(公倍数的个数是无限的,没有最大公倍数。)

  (2)求最小公倍数的'几种方法:

  ①枚举法:

  根据学生举例填写集合圈并说出各部分所表示的内容:

  的倍数的倍数

  和的公有倍数

  ②分解质因数:如:12与30的最小公倍数

  12= 2 × 2 × 3

  30= 2 × 3 × 5

  60= 2 × 3 × 2 × 5

  12独有的质因数30独有的质因数

  最小公倍数是两个数全部公有质因数与各自独有之因数的乘积。

  [12,30]=2×3×2×5=60

  从这两个分解质因数的式子里你能看出12于30的最大公约数是几

  最大公约数与最小公倍数之间有什么关系

  (12= 6 × 2

  30= 6 × 5

  6 × 2 × 5 = 60)

  最大公约数:各自独有的质因数

  最小公倍数是两个数的最大公约数与各自独有质因数的乘积。

  ③短除法:如:36和45的最小公倍数

  3 36 45用公约数去除

  3 12 15

  4 5除到商是互质数为止

  [36,45]=3×3×4×5=180

  讨论:与求最大公约数比较有什么异同之处

  (相同处:都用公约数去除,除到商是互质数为止。

  不同处:求最大公约数只要把公有的质因数相乘,求最小公倍数还要乘以各自独有的质因数。)

  短除法与分解质因数有什么联系

  任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):

  16和20 65和130 4和15 18和24

  得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;

  当两个数有倍数关系时,最小公倍数是较大的数。

  4,总结:今天你们根据自己所提出的问题进行了研究学习,对于今天所学的内容还有什么疑问

  三,回家作业布置:(感兴趣的同学做)

  世纪大道是浦东新区最为壮观的轴线大道,它横贯陆家嘴益融贸易区,起于东方明珠电视塔,止于花木行政文化中心,全长4200米。请你做一个设计师,在大道的一旁每隔()米种一棵香樟,在大道的另一旁每隔()米种一棵银杏,那么,每隔()米一棵香樟和一棵银杏正好面对面,这样的情况共有()组相对的树木。

《最小公倍数》教案11

  教学目标

  1.使学生理解公倍数和最小公倍数的含义,能用排列法找出两个数的公倍数和最小公倍数。

  重点难点

  1.掌握公倍数和最小公倍数的概念。

  主要教学方法

  新授课讲解法尝试法

  操作过程

  板书设计:公倍数、最小公倍数的认识

  例1.从小到大,顺次写出几个6的倍数和几个9的倍数,找出6和9公有的倍数,最小的一个公倍数是几?

  6的倍数有:6、12、18、24、36、42......

  9的`倍数有:9、18、27、36、45、54......

  6和9公有的倍数有:18、36......其中最小的一个是18

  用图表示如下:

  6的倍数9的倍数

  6和9的公倍数

  几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

  教师活动:预计时间()分钟

  学生活动;预计时间()分钟

  一. 准备题

  1.什么叫约数?什么叫倍数?

  2.用什么方法求一个数的倍数?

  3.一个数最小的倍数是什么?有没有最大的倍数?

  二.教学新课

  1.出示例1。

  2.学生尝试

  6的倍数有:6、16、18、24、30、36、42、......

  9的倍数有:9、18、27、36、45、......

  6和9公有的倍数有:18、36......

  3.教师讲评:也可以用图来表示:

  6的倍数9的倍数

  6和9的公倍数

  4.引导学生归纳出公倍数和最小公倍数的含义。

  三.练一练:

  1.第1题填在书上。

  2.第2、3两题

  3.独立练习:第4、5题

  四.课堂总结:这节课学习了什么?你有什么收获?

  学生口答

  1.学生读题

  2.尝试:指名板演,其余自练。

  3.先理解图意,再填入公倍数。

  1.指名说说

  2.把书上的发现告诉同学。

  3.看书上写的是不是与我们发现的相同?

  4.想一想:

  (1)有没有最大的公倍数?为什么?

  (2)倍数、公倍数和最小公倍数有什么区别?

  1.学生填在书上。

  2.找出相同点和不同点。

  相同点:找倍数和公倍数的方法相同。

  不同点:第2题前3个括号里要有省略号;第3题前3个括号里不该填上省略号。

  四.总结后做目标检测。

  延伸练习

  作业册70页

  反馈与矫正

  目标达成情况

《最小公倍数》教案12

  教学内容:

  教科书五年级下册第22--23页,练习四1--4题。

  教学目标:

  1、结合具体情境,体会公倍数和最小公倍数的应用,理解公倍数和最小公倍数的意义。

  2、探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

  3、培养学生推理、归纳、总结和概括能力。

  教学重点:

  学会用列举法找出两个数的最小公倍数。

  教学难点:

  理解公倍数、最小公倍数的意义。

  教学过程:

  一、以趣激疑

  比比谁的声音亮?请两组学生报数,并请报到2、3倍数的同学分别起立。问:你发现了什么?为什么有些人起立了两次?让学生初步感受有些数既是2的倍数又是3的倍数。(教师引导学生用“既是…又是…”来表达想法。)

  师:6、12、18、24……既是2的倍数又是3的倍数,我们就可以说6、12、18、24……是2和3的公倍数。(师板书“公倍数” )

  师:同学们,今天我们就一起来研究有关“公倍数”的问题。

  二、创设情境,感知概念

  1、两个数的公倍数和最小公倍数的概念教学

  师:同学们,你们喜欢阿凡提吗?为什么喜欢他?(他聪明、机智、幽默、……)今天老师也给你们讲个阿凡提的故事:从前有个长工,在巴依老爷家干了一年也没有拿到一个铜板。长工们于是自发地组织了起来并邀请阿凡提帮他们去向巴依老爷讨工资。巴依老爷含着烟斗冷笑着说:“工资我可以给你,不过我的钱都在我的账房先生那里。从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。到了某天,他真的从巴依老爷家帮长工拿到了工钱。

  请大家想一想,阿凡提是哪天去巴依老爷家的?他用的是什么办法找到这个日期的?你准备如何解决这个问题?

  让学生独立思考,整理解决问题的思路,并在四人小组里交流、讨论。全班汇报,交流想法。(同学们达成共识:要先分别找出巴依老爷、账房先生的休息日、再找出他们两人的共同休息日。)

  同桌两人合作,通过在日历上圈一圈、本子上写一写等方式,寻求解决的办法。师巡视,并重点引导学生辨析休息日的日期应是4和6的公倍数,而不是3和5的公倍数。

  全班交流,汇报。

  师板书:巴依老爷的休息日:4、8、12、16、20、24、28

  账房先生的休息日:6、12、18、24、30

  他们八月份的共同休息日:12、24

  这些数据说明了什么?如果阿凡提8日这天去巴依老爷家行吗?那18日这天去巴依老爷家行吗?引导学生明确阿凡提要把事情办好,只有在巴依老爷和账房先生都在家休息的日子去才行。所以阿凡提可以在12日和24日这两天去找巴依老爷和账房先生。

  你们猜猜阿凡提会哪一天去巴依老爷家呢?

  师板书:最早的共同休息日:12

  师:你们真聪明,用自己的智慧解决了问题。现在我们一起用数学的眼光,来看看巴依老爷和账房先生的休息日的数据有什么特点?根据学生的发言,教师把板书“巴依老爷的休息日、账房先生的'休息日、他们八月份的共同休息日”相应地改写成“4的倍数、6的倍数、4和6的倍数”。

  师:“4和6的倍数”还可以怎么说?(4和6的公倍数)“公”是什么意思?(你有我也有、共有)数据“12”是什么?(4和6的最小公倍数)

  你还有其他的表示方式吗?(集合圈的图示方式)

  谁能说说什么是公倍数?什么是最小公倍数?教师板书课题。

  2、加深学生对公倍数和最小公倍数现实意义的理解。

  现在我们再来帮助小朋友解决问题。教师出示图,一些小朋友在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。”请大家猜猜这些学生可能有几人?

  细细体会班长说的话,你知道了什么?学生独立思考,解决。全班交流想法,要求总人数就是求6和8的公倍数。

  引导学生介绍用“大数翻倍法”等,简化步骤,不断改进方法。注意学生用省略号表示不同的可能性。

  师:如果这些学生的总人数在50以内,那么他们最多有几人?我们所求出的“48人”是6和8的最大公倍数吗?为什么?为什么不用学习求最大公倍数呢?(因为每一个数的倍数的个数都是无限的,两个数的公倍数的个数也是无限的。因此,两个数没有最大的公倍数。)

  3、归纳求最小公倍数的方法。

  师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)

  4、看书22--23页内容,你还有什么问题?

  师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?

  教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。

  三、解决问题,深化理解

  1、互质数和倍数关系的数的最小公倍数

  师出示书第90页的“做一做”,让学生独立解决,填写在书上。

  观察一下这里的每一组中的两个数有什么关系?

  它们的最小公倍数与这两个数有什么关系?

  (提示:3和5这两个数有什么关系?3和5的公倍数有哪些?最小公倍数是几?15与3、5这两个数有什么关系?)

  提问:根据刚才的分析,你有没有发现什么规律?

  (当两数成倍数关系时,较大的数就是它们的最小公倍数。当两数只有公因数1时,这两个数的积就是它们的最小公倍数。)

  2、打电话游戏。

  师:梁老师家的电话号码是一个七位数,从高位到低位依次是:(1)2和8的最小公倍数(2)最小的质数(3)既是6的倍数又是6的因数(4)5和15的最大公因数(5)既是偶数又是质数(6)比所有自然数的公因数多7的数(7)2和3的最小公倍数。你能说说老师家的电话吗?

  师:你是怎样知道的?

  师:你们分析得多好啊!真了不起!

  四、课堂小结

  今天你学到了什么?收获最大的是什么?你有什么学习经验介绍给大家?

  五、作业

  运用这单元学习的知识,也给你的朋友编一个谜语,让他们猜猜你们家的电话号码。

《最小公倍数》教案13

  关键词:观察、分析、猜测、推理、验证与交流;自主探索、合作交流

  内容:九年义务教育六年制小学教科书第十册P67-73求特殊情况下两个数的最大公约数和最小公倍数。

  课堂实录:

  一、复习:

  1、求两个数的最大公约数和最小公倍数的方法各是什么?

  2、求出每组数的最大公约数和最小公倍数(用短除法)

  20和2436和5428和1413和40

  [评析:复习用短除法求每组数的最大公约数和最小公倍数,体现了教学新旧知识的联系,又体现了知识的循序渐进。]

  二、导入新课:

  前面我们学习了用短除法来求两个数的最大公约数和最小公倍数,那么是不

  是对所有求两个数的最大公约数和最小公倍数的题都要用短除法呢?这就是我们本节课所要研究的内容————求特殊情况下两个数的最大公约数和最小公倍数(板书课题)。

  [评析:学源于思,思源于疑,人类思维活动往往是由于解决当前面临的问题而引发的。因此,设置疑问导入新课,能激发学生的好奇心,引起学生的求知欲,开拓学生的思路,使学生兴趣盎然地去探求知识。]

  三、新授:

  1、电脑出示下面几组数,让学生判断每组数成什么关系?

  7和218和912和3614和19

  生:7和21,12和36,成倍数关系;8和9,14和19成互质关系。

  师:那么成互质关系或倍数关系的两个数的最大公约数和最小公倍数不用短

  除法大家能很快求出来吗?

  生:能

  生:不能

  生:能

  师:下面我们共同来研究一下,看哪些同学说的对。

  师:请分别找出8,9的约数和倍数。韩晓斌严春花

  学生回答完后电脑出示:

  8的约数:1,2,4,8

  9的约数:1,3,9

  8的倍数:8,16,24,32,40,48,56,64,72,80,88,96……

  9的倍数:9,18,27,36,45,54,63,72,81……

  师:请同学们先找出8和9的最大公约数,再找出它们的最小公倍数。

  生:8和9的最大公约数是1。

  生:8和9的最小公倍数是72。

  师:请同学们再观察8,9,72这三个数之间有什么关系?

  生:8和9都是72的约数。

  生:72是8的倍数,也是9的倍数。

  生:8×9=72,即:72是8和9的乘积。

  师:大家都说得对,但是,有一位同学观察得更仔细,思考得更认真,他发现72是8和9的乘积,而72是8和9的最小公倍数,也就是说8和9的最小公倍数是它们的什么?

  生:8和9的最小公倍数是它们的乘积。

  师:又因为8和9成互质关系,那么我们从中能得出什么呢?

  生:成互质关系的两个数的最小公倍数是它们的乘积。

  师:那么是不是所有成互质关系的两个数的最小公倍数都是它们的乘积呢?

  师:写出几组成互质关系的两个数,让学生自己去验证(师边巡视边低声指导)。

  例如:7和94和53和5

  最后讨论得出:如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

  师:我们还知道8和9的最大公约数是1,下面请同学们联系前面那个结论的推导过程,想一想,然后分组讨论,看从这句话中能得到什么?

  生:成互质关系的两个数的最大公约数是1。

  同样让学生自己验证,最后讨论得出:

  如果两个数是互质数,它们的最大公约数就是1。

  2、请同学们分别找出7、21的约数和倍数。

  学生回答完后电脑出示:

  7的约数:1,7

  21的约数:1,3,7,21

  7的倍数:7,14,21,28,35,42……

  21的倍数:21,42,63……

  师:下面请同学们先找出7和21的最大公约数,再找出它们的最小公倍数。

  生:7和21的最大公约数是7。

  生:7和21的最小公倍数是21。

  师:请同学们观察7和21的最大公约数和最小公倍数,再和原数进行对照,

  想一想,有什么规律?

  生:7和21的最大公约数和最小公倍数就是这两个数。

  生:7和21的最大公约数和最小公倍数分别是这两个数当中的一个。

  生:7和21的最大公约数和最小公倍数与这两个数有关系,即:7和21的最大公约数是这两个数中的较小数7,它们的最小公倍数是这两个数中的较大数21。

  对

  生:因为7和21成倍数关系,所以,成倍数关系的两个数的最大公约数是这两个数中的较小数,它们的最小公倍数是这两个数中的较大数。

  生:求成倍数关系的两个数的最大公约数和最小公倍数时,大小,

  对

  小大。

  这时,学生们的思维都非常活跃,而且回答的内容逐渐趋向完整、准确,此时,教师让学生们根据以上同学的回答,看哪个更加完整、准确,如何概括成一句简练的话?

  这样,经过学生们的分组讨论,轻而易举的就得出了结论:如果两个数成倍数关系,那么它们的最大公约数就是两个数中的较小数;它们的最小公倍数就是两个数中的较大数。

  同时,让学生自己举例验证得出的结论是否正确。

  最后让学生打开课本,阅读完书上的'结论后进行比较,看与自己总结的是否一样,进而分享由自己的劳动成果所带来的喜悦。

  [评析:以学生的观察、分析、猜测、推理、验证与交流为认知结构,把抽象的数学知识具体化,从而激发了学生的求知欲和学习情趣。通过学生自主探索合作交流,真正理解和掌握了求特殊情况下两个数的最大公约数和最小公倍数的方法,同时获得了更为广泛的数学活动经验。]

  四、反馈练习:

  很快说出每组数的最大公约数和最小公倍数。

  9和367和1329和3013和5236和725和17

  [评析:通过反馈练习,不仅能锻炼学生的观察、思维、判断、表达等能力,而且无形当中也就提高了学生运用所学的数学知识和方法解决一些简单问题的能力。]

  五、总结:

  你有什么感想和收获?

  [评析:总结的设计,是本课教学的升华。在此,教师给学生提供了一个充分动脑、动口、表现自我的平台,不仅是所学知识的反馈,更是有效地促进数学课中学生口语表达的训练。]

  六、作业:(略)

  教学反思:

  数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有利于学生自主学习、合作交流的情境,使学生通过观察、分析、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣。所以,我在教学“求特殊情况下两个数的最大公约数和最小公倍数”这一课时,充分发挥了学生的主体作用,促使学生自主探索、合作交流,挖掘学生的思维潜能,培养学生的观察、分析、归纳、猜测、推理、交流能力,真正让学生学会思考,学会学习。

  学习任何知识的最佳途径是由自己去发现,因为这种发现最容易被理解,也最容易被掌握。因此,整堂课我始终以学生的活动为主,让学生自己去发现其中的规律和联系,我只是适当点拨、引导而已。显然,课堂气氛非常活跃,学生在快乐的气氛中轻松地学到了知识,发展了能力,同时也获得了成功的体验。

  反思本课教学,最大的启示是:在数学课堂教学中,只要我们转变教学观念,以学生为主体,充分调动学生的学习积极性,使之主动参与到学习过程中,就能提高课堂教学效率,使人人有所得,个个有收获。

  教学需改进之处———进一步处理好师生之间“教”与“学”的互动关系,充分发挥教师的“主导性”和学生的“主体性”作用,彻底改变习以为常的传统教学观念,为培养出数量多、素质高、能力强的跨世纪人才拼搏奋进!

《最小公倍数》教案14

  教学内容:人教版义务教育教科书数学五年级下册第68—69页。

  教学目标:

  1. 学生结合具体情境,体会并理解公倍数和最小公倍数的含义,会在集合图中表示两个数的倍数和公倍数。

  2. 通过自主探索,使学生经历找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

  3. 在探索交流的学习过程中,使学生获得成功的体验,激发学生的学习兴趣。 教学重点:理解公倍数和最小公倍数的含义。

  教学难点:用不同的方法求两个数的公倍数和最小公倍数。

  教学过程:

  一、游戏导入

  同学们都知道自己的学号吧,我叫到学号的同学请起立,看看谁的反应快。(课件出示:学号是4的倍数的同学请起立;是6的倍数的同学请起立)哪些同学站起来2次?请站起来两次的同学再次起立,依次报出你们的学号。

  师:想一想,他们为什么站起来两次?

  生:因为他们既是4的倍数也是6的倍数。

  师:你能给它起个名字吗?(板书公倍数)这节课我们就来研究关于公倍数的问题。 设计意图:说明通过报数游戏,让学生在研究现实问题的情境中学习数学,激发学生的学习积极性。

  二、自主探索

  (一)公倍数和最小公倍数的概念

  1. 回忆学习方法

  师:请同学们回忆,我们是怎样研究公因数的?

  生:先分别写出两个数的因数;从这些因数中找出相同的因数就是公因数;其中最大的一个因数就是这两个数的最大公因数。

  师:我们就用这样的方法来研究游戏中4和6的公倍数问题。

  2. 自主探究

  学生在练习本上独立找出4和6的公倍数。

  3. 汇报交流

  学生交流自己的学习成果,同学间互相讨论。(两个数有没有最大的公倍数?为什么?)

  4. 小结概念,课件演示集合图。

  12,24,36,……是4和6公有的.倍数,叫做它们的公倍数。其中,12是最小的公倍数,叫做它们的最小公倍数。

  设计意图:因为学生前面已经学习了公因数,这里让学生通过迁移的方法,很快地认识到这方面的知识,从而使学生获得成功的体验。

  (二)求两个数的公倍数和最小公倍数的方法。

  师:请用你想到的方法找出6和8的公倍数和最小公倍数。

  (1)学生独立完成,全班交流。

  (2)学生交流方法有:

  ①列举法:先找倍数,再找公倍数,最后找出最小公倍数。

  例如:6 的倍数:6,12,18,24,30,36,42,48,……

  8 的倍数:8,16,24,32,40,48,……

  6 和 8 公倍数:24,48,……6 和 8 的最小公倍数:24

  ②用集合图表示也很清楚。

  ③6 的倍数中有哪些是 8 的倍数呢? 或者8 的倍数中有哪些是 6 的倍数呢?

  师:这么多方法,你喜欢哪一种?

  通过观察,想一想:①两个数的公倍数和它们的最小公倍数之间有什么关系?

  练习:18和24 15和25

  三、课堂练习:

  找出下面每组数的最小公倍数,看看有什么发现?

  3 和 6 2 和 8 5和 6 4 和 9 3和9 5和10

  交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。

  你能举个例子吗?

  四、独立作业:数学书71页2题

  五、课堂小结:

  师:今天学习了什么知识?你有什么收获?

  生:几个数公有的倍数叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。

  找两个数公倍数和最小公倍数的方法等等。

  板书设计:

《最小公倍数》教案15

  教学目标

  1.掌握公倍数、最小公倍数两个概念.

  2.理解求最小公倍数的算理,掌握用分解质因数求最小公倍数的方法.

  教学重点

  建立公倍数和最小公倍数的概念,掌握求两个数最小公倍数的方法.

  教学难点

  理解求两个数最小公倍数的算理.

  教学步骤

  一、铺垫孕伏.

  1.导入:这节课我们开始学习有关最小公倍数的知识.

  (板书:最小公倍数)

  2.复习倍数的概念.

  二、探究新知.

  教学例1

  例1、顺次写出4的几个倍数和6的几个倍数.它们公有的倍数是哪几个?其中最小的是多少?

  4的倍数有:4、8、12、16、20、24、28、32、36……

  6的倍数有:6、12、18、24、30、36……

  4和6的公倍数有:12、24、36……

  其中最小的一个是12.

  1、学生分组讨论总结公倍数、最小公倍数的意义.

  2、用集合图表示4和6的公倍数.

  3、质疑:两个数的公倍数有什么特点?有没有最大的公倍数?

  明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的.因此,两个数没有最大的倍数.

  4、反馈练习.

  把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几.

  明确:50以内6和8的公倍数只有2个;如果扩展数的范围,也就是50以外6和8的公倍数则是无限的.

  (二)教学例2

  引入:我们用分解质因数的方法求两个数的最小公倍数.

  例2:求18和30的最小公倍数.

  1、用短除式分别把18和30分解质因数.

  板书:18=2×3×3

  30=2×3×5

  教师提问:18的倍数必须包含哪些质因数?

  (18的倍数包含18的所有质因数)

  30的倍数必须包含哪些质因数?

  (30的倍数包含30的所有质因数)

  18和30的公倍数必须包含哪些质因数?

  (既要包含18的所有质因数,又要包含30的所有质因数)

  2、观察集合图:18和30的最小公倍数应包含哪些质因数?

  教师明确:18和30的最小公倍数里,只要包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了.2×3×3×5=90,所以18和30的最小公倍数是90.

  3、小组讨论:如果少一个或多一个质因数行不行?

  教师明确:如果少一个质因数,就不能保证公倍数里包含18和30全部的质因数,因而就不能得到它们的最小公倍数;如果多一个质因数,虽是18和30的公倍数,但不能保证是最小公倍数.

  板书:

  18和30的最小公倍数是2×3×3×5=90

  4、反馈练习.

  (1)先把下面两个数分解质因数,再求出它们的最小公倍数.

  30=()×()×()

  42=()×()×()

  30和42的最小公倍数是()×()×()×()=()

  (2)A=2×2B=2×2×3

  A和B的最小公倍数是()×()×()=()

  (3)用分解质因数法求24和18的最小公倍数时,小华得72,小林得144.谁做错了?

  可能错在哪里?

  5、求最小公倍数的一般书写格式.

  ①引导学生把两个短除式合并成一个.

  板书:

  ②明确:综合短除式中所有除数和商与18和30的最小公倍数90所包含的所有质因数是一一对应的`,因此把短除式中所有的除数和商乘起来,就得到18和30的最小公倍数.

  ③反馈练习:求30和45的最小公倍数.

  ④总结方法:求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来.

  ⑤反馈练习:求下面每组数的最小公倍数

  6和824和20xx和2116和72

  三、全课小结.

  今天这节课我们主要研究了用什么方法求两个数的最小公倍数,它是为以后学习通分做准备的,希望大家能熟练的掌握这部分知识.

  四、随堂练习

  1.填空.

  A=2×2×5

  B=()×5×()

  A和B和最小公倍数是().A和B的最小公倍数是2×2×5×7=140.

  2.判断.

  (1)两个数的积一定是这两个数的公倍数.()

  (2)两个数的积一定是这两个数的最小公倍数.()

  五、布置作业.

  求下面每组数的最小公倍数.

  12和1530和4036和5422和33

【《最小公倍数》教案】相关文章:

《最小公倍数》教案03-03

《最小公倍数》教案(精选10篇)11-03

精选《最小公倍数》教案3篇04-11

公倍数与最小公倍数教案02-26

【精华】《最小公倍数》教案四篇04-25

【精品】《最小公倍数》教案四篇04-23

【精华】《最小公倍数》教案三篇04-24

有关《最小公倍数》教案3篇04-15

【热门】《最小公倍数》教案3篇04-24