分数乘法教案

时间:2024-05-18 11:10:21 教案 我要投稿

分数乘法教案

  作为一名为他人授业解惑的教育工作者,往往需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那要怎么写好教案呢?以下是小编帮大家整理的分数乘法教案,仅供参考,欢迎大家阅读。

分数乘法教案

分数乘法教案1

  教学目标:

  1、继续巩固理解分数乘法的意义,通过折纸操作,理解分数乘以分数和意义,掌握其计算法则,能够比较熟练地进行计算

  2、对学生进行合作与主动思考、主动探究地教育,让学生在自主合作与学习中获得对数学的认知与感悟。

  教学重点:

  分数和分数相乘的意义及计算法则

  教学难点:

  求一个分数的几分之几是多少,用什么计算,如何计算。

  教具准备:卡片、小黑板、及实物投影仪

  课时安排:2课时

  第一课时:

  一、复习。说出下面算式表示的意义及计算方法,并口算出复数。

  ×3×612×

  问:整数乘以分数所表示的意义是什么,如何计算?

  引入新课:分数和分数相乘,又该怎么理解呢?

  二、导入新课

  出示左图:庄子这段话,说的是什么意思?为什么?学生分析。

  每天截一半,这里的一半,是指什么?如果用分数来表示,一半怎么表示?

  你能能乘法式子,表示出庄子说的这段话的意思吗?学生尝试,教师在黑板上板演。

  三、自主性学习,教师引导。

  投影示意图:学生读题。

  引导学生分析问:从图上看,一张长方形纸箱,第一次剪去它的,第二次也剪剩余部分的,从这句话中,你能得到哪些有用的数学信息?

  如果从这句话引申出数学问题,你觉得,应该怎么列出算式?学生分析。

  引导学生列出如下式子:

  想一想,方框中该怎么填数?

  学生分析:如果第三次再剪去余下部分的,那么余下部分占这张纸的几分之几呢?

  学生质疑。师生一起讨论:你还有什么问题吗?

  四、实践尝试:

  引导学生用如下的方式操作:

  在涂抹的过程中,让学生思考,这一次,我折的分数是多少呢?

  五、概括讨论,分析分数乘法的计算法则:

  1、先分析以下两个问题:

  2、你能总结分数乘法的计算法则吗?

  学生尝试分析黑板上所列的计算式子,得出计算方法。尽可能运用他们自己的言语。

  六、学生实践活动:

  边做左边习题,边思考这样一个问题:分数乘以分数,得到的`积一定比原来的分数大吗?还是小呢?你能发现什么规律?

  七、试一试:课堂板演,其余学生自行作业。

  P8,第3、4两题。板演后让学生尝试分析出现的问题。

  八、课堂讨论活动:

  1、你认为这里分数与分数、整数相乘的的计算过程里,哪些部分可以省略?

  试举例说明。

  他们的计算方法有什么相同与不同的地方吗?

  九、课堂作业:P6练一练部分。教师巡视辅导,对个别学困生重点解疑。

  第二课时:

  一、复习:

  说出你的理由

  二、分析练习题:P8

  学生分析,并在黑板上板演。教师针对学生情况,对重点可能出现的错误进行讲解。

  三、自主练习:

  1、

  2、分别由学生合作练习后,再在黑板上讲解。

  四、数学实践故事分析:

  看右图,听故事,试分析:这是怎么一回事呢?

  他们分到的,真的是同样多吗?请用数学知识,分析一下,说出你的理由,并列出相应的式子。

  五、学生质疑:

  学了分数乘法,你觉得还有什么疑问吗?你学会了什么?

分数乘法教案2

  教学目标:

  1.使学生通过自主探索,理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。

  2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

  教学重点:

  分数乘整数的意义和计算法则。

  教学难点:

  分数乘整数的计算方法以及算法的优化。

  教学方法:

  自主合作探究。

  教具准备:

  多媒体

  教学过程:

  一、复习引入

  1.同学们,我们已经学会了分数的加法和减法,下面口算。

  2.今天我们来学习分数乘法。板书

  谁能编一道分数乘法算式(择几道板书黑板一侧)

  分数乘法有很多,今天先研究其中一种:分数乘整数。

  看了今天的课题,可能有同学马上想知道分数乘法怎么算呢?其实,每一个新知识的产生都与原有的旧知密切相关,对于分数乘整数来说,当然也是如此。下面我们来讨论!

  二、探究

  1.理解意义。

  出示例题1:做一朵绸花用 米绸带。

  (1)小芳做了3朵这样的绸花,一共用了几分之几米绸带?

  课件: + + =(米)

  (2)小华做7朵这样的.绸花,一共用了几分之几米绸带?

  课件: + + + + + + =(米)

  (3)学校庆国庆活动一共要做15朵这样的绸花,你能用加法计算出几分之几米绸带?

  + + + + + + + + + + + + + + =?

  这么多米加起来,你有什么感觉?有没有什么好办法?有没有什么好办法?

  导入:如果把这道加法算式改写成乘法,你特别需要知道什么?

  板书: ×3= 7×= ×15=

  谁能说说 ×3表示什么意思?7×呢?

  前面大家所说的(黑板一侧板书的)乘法算式,谁能说说他们的意思?对比一下,你们觉得是分数加法简便,还是分数乘法简便?

  2.探究算法。

  现在我们来看分数乘整数怎样计算。我们先来研究×3, ×3=怎么算呢?请大家尝试解决。指名板演典型算法。

  ×3= =

  ×3=++=

  ……

  交流:第二种按照加法计算,不简便,重点体会第二种和加法有着联系:×3=+ + = = = (教师板书),符合加法计算结果,是正确的,也是简便的。同时借助直观图观察验证。

  练习:×7,与原来加法结果比较,完全正确。

  谁能试着总结一下分数乘整数的计算方法:分母不变,分子和整数相乘,所得积做分子。

  继续研究:×30

  提示:这道题与前面几题相比可能有些新情况,你看出来了嘛?先试试看,再同桌交流。

  指名板演新情况:都有相同点?(约分),不同是什么?(主要是约分的区别)

  讨论:约分的先后序。(先乘后约,还是先约后乘),体会到先约后乘的简便。

  练习:先判断可不可以约分?怎样约分?

  总结注意事项:能约分的先约分再乘。

  三、练习

  填一填:练习第一、二题。

  算一算:完成3第三、七题。

  四、总结

  本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

  五、作业

  练习八第2题、第4题。

分数乘法教案3

  教材首先是把分数看成一个数量再根据相关的乘法数量关系即求一个数的几倍用乘法这样的思路,列出了分数乘分数的算式,然后就直接得到了分数乘法算式的意义。省略了由乘法的数量关系的意义是如何过渡到分数乘法的意义的过程。这恰恰是分数乘法的意义的难点。

  学生在学习一个新的问题时,它的思路总是会依附于某一类旧的知识,并同它进行比较,力图寻找共同点并从中找出解决新问题的方法。

  学生在学习分数乘法的意义时首先让学生学会列出分数乘法算式,以一杯水重4/5千克,3/4杯重多少千克为例,在教学中发现好的学生会要根据乘法的数量关系去进行分析及列式,而中等的学生也会模糊的意识到用乘法计算,但是为什么要用乘法则讲不明白,旧的知识对新知的正向迁移能力不强,寻找共性的能力较弱,而差的学生由于归纳数理的能力不强,面对题目中出现的分数,不知所以,会用减法做。

  如何顺利过渡到分数乘法的意义?应让学生在解决相关的分数问题中,运用以前所学过的有关乘法的数量关系及分数的意义、带单位的分数的.意义进行感悟,首先从学生已学过的乘法意义着手进行引入,并可通过适当的动手操作等手段强化理解。

  如可以出示类似的问题(出示实物)

  一根绳子长6米,6米的4倍是多少米?

  一根绳子长6米,6米的2/3是多少米?

  一根绳子长6米,6米的5/6是多少米?

  学生尝试列式尝试说说算式的意义

  列式:6*4=意义表示6米的4倍是多少

  6*2/3=意义表示6米的2/3是多少

  6*5/6=意义表示6米的5/6是多少

  计算得数:根据分数乘法的意义直接算出结果

  再根据分数的意义算出结果(让学生画图或用图形进行操作)从而得出第二种算法

  6*4=246*4=24

  6*2/3=46/3*2=4

  6*5/6=5

  学生进行讨论。一个数乘整数表示求一个数的几倍是多少,想想一个数乘以分数表示什么意思?

  此环节的目的是让学生通过和求一个数的几倍进行对比,去理解一个数乘分数的意义也是求一个数的几分之几。

  第二环节出示课本例题

  运用分数的意义和分数乘法两种方法计算出结果,说明求一个数的几分之几是用乘法计算的,而反过来,如果是一个数乘分数也就表示求这个数的几分之几是多少

  第二环节出示课本例题

  一杯水重4/5千克,3杯水共有多少千克?

  一杯水重4/5千克,1/2杯水共有多少千克?

  一杯水重4/5千克,3/4杯水共有多少千克?

  一杯水重4/5千克,喝了这杯水的3/4,喝了多少千克?

  学生列式并说一说这些分数乘法算式的意义

  注意1/2杯水就是求一杯水的1/2,也就是求4/5的1/2是多少

  3/4杯水就是求一杯水的3/4,就是求4/5千克的3/4是多少

  此环节是分数乘分数的意义,比第一环节的整数乘分数形式的抽象性更进一步,但其意义是相同的。都是表示一个数的几分之几是多少。

  练习:1、课本的做一做

  2、说一说下面分数乘法的意义

  3*2/3表示

  2/3*3表示

  6/13*1/3表示

  1/3*6/13表示

  4/5*1/2表示

  3、计算:

  8的1/3是多少?

  21的3/7是多少?

  6的4/15是多少?

  6是8的几分之几?

  8是6的几倍?

  4、课本第七页第一题

  思考题:()的3/4是12

分数乘法教案4

  教学目标:

  能力目标:

  能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。

  情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重点、难点:

  学生能够熟练的计算出分数乘以分数的结果。

  教学方法:师生共同归纳和推理

  教学准备:教学参考书、教科书

  教学过程:

  一、复习导入:

  教师出示教学板书,请学生计算下列分数乘法运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)

  二、课堂练习:

  学生做第一题折一折,涂一涂。让学生用折纸的方式再次验证分数乘以分数的运算法则,注意让学生体会分数的几分之几是多少?

  学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。

  学生做第3题,让学生理解分数的几分之几与占整体“1”之间的关系。

  学生做第4题,让学生能够学会比较的和占整体“1”的大小。

  学生做第5题,教师注意让学生整体的.几分之几是多少?

  学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。

  学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。

  第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。

  四、课堂小结:

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  是整个操场“1”的,是整个操场“1”的。

  分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。

分数乘法教案5

  教学内容:

  分数乘法

  教学目标:

  1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  2、知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。

  3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  重点难点:

  学生能够熟练的计算出分数乘以分数的结果。

  教学方法:

  师生共同归纳和推理

  教学准备:

  教学参考书、教科书

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数乘法运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的`要约分。)

  二、课堂练习

  学生做第一题折一折,涂一涂。让学生用折纸的方式再次验证分数乘以分数的运算法则,注意让学生体会分数的几分之几是多少?

  学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。

  学生做第3题,让学生理解分数的几分之几与占整体1之间的关系。

  学生做第4题,让学生能够学会比较 的 和 占整体1的大小。

  学生做第5题,教师注意让学生整体的几分之几是多少?

  学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。

  学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。

  第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。

  三、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘法

  是整个操场 1的 , 是整个操场1的 。

  分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。

分数乘法教案6

  【教材简析】

  本课时的教学内容是在学生已经熟悉分数乘法的意义,初步掌握分数四则混合运算的基础上引导学生利用对求一个数的几分之几是多少以及其他相关数量关系的已有认识,解答一些稍复杂的与分数有关的实际问题。这些问题都是求一个数的几分之几是多少的实际问题的发展,需要学生用分数乘法和减法加以解决。

  例题是已知某小学六年级参加学校运动会的总人数以及其中男运动员占总人数的几分之几,求女运动员人数的实际问题。教学时,教材首先呈现一条表示运动员人数的线段,要求学生在这条线段上分别表示男、女运动员所占的部分。通过这样的操作,一方面能使男运动员人数与总人数的关系更加清晰,另一方面也有利于启发学生思考:要求女运动员的.人数,可以先算出男运动员有多少人。当学生画图操作后,教材不在呈现具体的分析过程,而是引导学生通过交流,进一步明确解题思路,并在此基础上列式解答。这样,引导学生根据自身的实际情况选择算法,有利于降低学习难度,也有利于促进学生更好地利用已有的解决问题的知识和经验。随后的练一练和练习十六的第1~2题中的数量关系都与例题相近,有利于学生进一步巩固和掌握例题所学习的分析和解决问题的方法。

  【教学目标】

  1、使学生学会用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用意识。

  2、使学生在运用已有知识和经验进行解决一些稍复杂的实际问题的过程中,进一步体会数学知识之间的内在联系,体会数学知识和方法在解决实际问题中的价值,从而提高数学学习的兴趣和学好数学的信心。

  【教学过程】

  一、谈话引入:

  同学们,你们参加过运动会吗?瞧!岭南小学举办了学生运动会(媒体同

  时出示例题文字)他们六年级有45人参加,其中男运动占5/9,谁能知道女运动员有多少人?(学生自由读题,了解题意。)

  评析:这一环节的设计,教师充分运用教材,以现实的、学生熟悉喜爱的活动场景引入新课,既加强了与实际生活的联系,又激发了学生参与学习活动的热情。

  二、探索新知:

  1、设问:从题中你知道了什么?(学生先自己说一说,再在小组里交流。)

  2、反馈。

  学生充分交流后,都能感受到:这是一个部分数与总数之间相比较的问题,他涉及两个基本数量关系,一个是男运动员人数与女运动员人数相加的和等于六年级运动员的总人数,另一个是男运动员人数与运动员总人数的分数关系。但一下子要想知道女运动员有多少人,问题的思路不是很清晰。

  3、以图促思。(媒体出示线段图。)

  4、谈话:这是一条表示运动员总人数的线段图,你能在图上分别表示出男、女运动员所占的部分吗?

  5、学生操作:

  学生动手操作后,教师设问:要求女运动员有多少人,可以先算什么?

  6、学生再一次交流,明确解体思路。(学生通过画图后,很容易想到,要求女运动员的人数,可以先算出男运动有多少人。再用总数减去男运动员的人数就能得到女运动员的人数了。)

  7、列式解答。指名一生板演,其余学生在书上完成。

  8、集体批改。(对解题正确的学生进行鼓励。)

  9、探讨其它算法。

  设问:想一想,还可以怎样算?

  如果有学生想出行如A(1-N/M)的式子,要给以表扬,但不要求学生都去掌握。

  评析:这一环节的设计,教师不是把解题思路和方法直接告诉学生,而是让学生通过观察、思考、操作、交流等活动,在充分感知的基础上,借助自己的经验,用自己的策略去解决问题。在探索出解题思路后,教师没有让学生用所谓公式化的方法,而是问学生:想一想,还可以怎样算?让学生自己体会,根据自身的实际情况选择算法,这样,不仅能促进学生更好地利用已有的解决问题的知识和经验,更有利于学生学习能力的培养。

  三、巩固深化

  1、完成练一练第1题

  (1)弄清题意。(媒体出示题目,让学生仔细阅读。)

  (2)谈话:要求还剩多少页没有看,可以先算出什么?

  (3)学生独立分析并解答。

  (4)集体反馈:指名汇报答案,教师重点问一问不同的方法先算的各是什么。

  2、完成练一练第2题

  (1)引导学生弄清题意。

  (2)让学生独立解答。

  (3)组内交流评议。

  3、完成练习十六第1、2题

  (1)指名两位学生板演,其余在自备本上完成。

  (2)组织交流。

  (3)集体反馈,重点让学生说一说解题时先算什么?

  评析:这一环节的设计,教师利用不同的形式,不同的方法组织练习,使学生所学知识不仅得以巩固,而且得以运用。在整个练习过程中,始终以自主探索,合作交流为主。

  四、总结回顾。

  1、通过今天的学习,你又有什么收获?

  2、用今天学到的方法可以解决生活中那些实际问题?课后可以留心观察,找到问题后进行解答,如在解答中遇到新的问题可以跟同学交流,也可以来问老师。

  评析:这一环节的设计,教师让学生自己对本堂课所学知识进行总结,既使学生认识到本堂课到底学了什么,又培养了学生的概括能力和口头表达能力。让学生课后留心观察,找到问题后进行解答,不仅给学生提供展示自我的机会,同时,也培养了学生独立解决问题的能力。

分数乘法教案7

  教学目标

  知识与技能

  结合具体情境理解一个数乘分数的意义就是“求一个数的几分之几是多少”。

  过程与方法

  通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

  情感态度与价值观

  通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

  教学重点 理解一个数乘分数的意义,掌握分数乘分数的计算方法。

  教学难点 推导算理,总结法则。

  教法与学法 直观演示法

  教学准备及手段 根据例题制作的挂图、投影片或多媒体课件。

  教学内容:

  教材第3页及相关教学内容”

  教学过程:

  一、复习导入

  1、计算下列各题并说出计算方法。

  ×4 ×4 ×14×

  2、引入:这节课我们来继续学习分数乘法的问题。(板书课题)

  二、探索新知

  (一)一个数乘分数的意义

  1.投影出示例题2。

  (1)问题一:3桶水共多少升?

  指名列出算式:12×3。

  提问:你是怎么想的?

  启发学生得出:求“3桶水共多少升?”就是求3个12L,也就是求12L的3倍是多少。(2)问题二:桶水共多少升?

  指名列出算式:12×。

  提问:根据什么列示的?

  启发学生思考:桶就是半桶,求桶是多少升?就是求12L的一半是多少,也就是求12L的是多少。

  (3)问题三:桶水共多少升?

  指名列出算式:12×。

  提问:你是怎么想的?

  启发学生思考:求桶是多少?就是求12L的是多少。

  2.结合上面的几个问题,你知道“12×”和“12×”这两个算式表示的意义分别是什么吗?

  12×表示12L的是多少:12×表示12L的是多少。

  3.总结:一个数乘分数的意义。

  一个数乘几分之几表示的是求这个数的几分之几是多少。

  4.完成教材第3页“做一做”。

  引导:这道题求吃了多少千克,也就是求3千克的是多少千克。

  (二)分数乘分数的计算方法。

  投影出示例题3。

  李伯伯家有一块公顷的地。种土豆的面积占这块地的,种玉米的面积占。

  1.问题一:种土豆的面积是多少公顷?

  (1)提问:求“种土豆的面积是多少公顷?”实际上就是求什么?怎样列示呢?

  (实际上就是求公顷的是多少公顷,列示是:×。)

  (2)探究×的计算方法。

  ①让学生拿出准备好的一张正方形纸表示一公顷,先画出它的,表示公顷。

  ②再涂出公顷的。

  引导理解:求公顷的是多少公顷,就是把公顷平均分成5分,取其中的1份。

  ③观察交流。

  观察手中的长方形纸,想一想,公顷的是多少公顷,你是怎么想的?

  先让学生在小组内交流,在组织全班交流。

  通过交流得出:求公顷的是多少公顷,就是把公顷平均分成5分,取其中的1份。也就是把1公顷平均分成(2×5)份,取其中的1份,即×1==。

  板书:×===(公顷)

  2.问题二:种玉米的面积是多少公顷?

  ⑴学生独立列出算式:×

  ⑵提问:“×”等于多少呢?你能用颜色表示的吗?

  ⑶学生动手操作,交流计算方法和思路。

  与前面一样,也是把这张纸平均分成(2×5)份,不同的是要取其中的3份,可以得到:×===(公顷)

  3.分数乘分数的计算方法。

  先小组讨论,再汇报交流。

  计算法则:分数乘分数,用分子相乘的积作分子,用分母相乘的积分母。(板书)

  三、巩固练习。

  1.教材第4页“做一做”第1题。

  这道题是有关一个数乘分数的意义的`练习。

  组织练习时,可以先让学生独立阅读理解,在教材上填一填。再指名汇报,并让学生说一说是怎么想的。

  2.教材第5页“做一做”第2题。

  这是一道看图计算的练习,皆在通过练习,培养学生的观察能力,加深对分数乘分数计算方法的理解。

  组织练习时,可以先让学生看图填一填,再让学生说一说思考过程。

  3.教材第5页“做一做”第3题。

  这道题是运用所学的分数乘法计算知识解决实际问题,在加深对一个数乘分数的意义理解的同时,又可以巩固整数乘分数的计算方法。

  4.教材第6页“练习一”第4、5题。

  先学生独立计算,并让学生说一说是怎么想的。

  四、全课小结。

  作业设计 练习二第3、4题。

  板书设计 分数乘法

  12×3

  想:求3个12L,也就是求

  12L的3倍是多少。⑴种土豆的面积是多少公顷?

  12××===(公顷)

  想:求12L的一半,就是求⑵种玉米的面积是多少公顷?

  12L的是多少。×===(公顷)

  12×分数乘分数,用分子相乘的积作分子,

  想:求12L的是多少。用分母相乘的积作分母。

分数乘法教案8

  教学目标

  1、知识与技能

  掌握分数乘以分数的计算方法以及结果与原分数的比较规律。

  2、过程与方法

  通过实践探究分数与分数相乘的计算方法, 再通过观察比较算式得出规律。

  3、情感态度和价值观

  拓宽了生活实用性,进一步提高了对生活中实际问题的解决能力。

  教学重难点

  掌握分数乘以分数的.计算方法以及结果与原分数的比较规律。

  教学过程

  一、知识回顾

  二、新课引入

  1、计算

  (1)我国古代著名哲学著作《庄子·天下》 中有这样一段话:“一尺之棰,日取其半,万世不竭。”意思是说,一尺长的木棍,每天截一半,永远也截不完。

  (2)3/4x1/4=? 用一张长方形的纸折一折,想一想,再算一算。

  2、两个分数相乘的计算方法是什么?

  3、一个数与分数相乘,积一定小于这个数吗?举例说明你的想法。

  5/76/77/78/79/7

  x14/3

  70/2184/2198/21=14/3112/21126/21

  说一说你的发现。

  4、总结归纳

  两个分数相乘,分子乘以分子,分母乘以分母,能约分的可以先约分。

  一个数如果乘一个小于1的分数,积一定小于这个数。

  一个数如果乘一个等于1的分数,积一定等于这 个数。

  一个数如果乘一个大于1的分数,积一定大于这个数。

  5、练习

  三、例与练

  例1:淘气过生日,妈妈买来一个蛋糕,切了1/3给淘气,淘气只吃了其中的1/2,淘气吃了蛋糕的几分之几?

  答:淘气吃了蛋糕的1/6。

  四、课堂小结

  五、拓宽延伸

  一个西瓜,八戒吃1/3,悟空吃剩下部分的1/2,八戒和悟空谁吃得多?

  答:八戒和悟空吃的一样多。

分数乘法教案9

  教学目标

  1.通过学生对生活情景的理解,生活信息的提取、加工,培养学生观察和提取信息的能力。

  2.会画线段图分析分数乘法两步问题的数量关系。

  3.通过学生灵活选择乘法运算定律解决实际生活问题的操作,培养学生完整的数学思维和清晰的表达能力。

  教学重点难点

  1.分析分数乘法两步问题的数量关系。

  2.抓住知识关键,正确、灵活判断单位“1”。

  课前准备:课件

  课时安排:2课时

  教学过程

  第一课时

  一、复习旧知,导入新课

  课件出示,学生回答。

  1.下面各题分别把什么看作单位“1”的量?谁是几分之几相对应的量?

  (1)一块布做衣服用去3÷5。

  (2)一条公路,已修了4÷7。

  (3)小明有一些零花钱,用去一部分后,还剩下3÷4。

  (4)水结成冰,体积膨胀1÷11。

  2.口头列式

  (1)32的3÷8是多少?

  (2)120页的1÷6是多少?

  3、揭示课题

  上节课我们学习了简单的`分数问题,今天我们继续研究稍复杂的分数乘法问题。

  二、自主探究 掌握新知

  1.世界文化遗产秦兵马俑被称为“世界第八大奇迹”。目前已发现3个兵马俑。

  2.课件出示兵马俑资料

  (1)1号坑内有6000尊陶俑、陶马,已清理出它的1÷6。

  (2)1号坑面积最大,比2号坑大5÷9,2号坑占地面积约9000平方米。

  (3)2号坑内的陶俑、陶马数比1好少3÷4。

  (4)3号坑最小,内有陶俑66尊。

  3.让学生认真阅读资料并思考:你们能提出什么问题?

  结论1:1号坑还剩下多少尊陶俑、陶马没有处理?

  生2:1号坑占地面积约有多少平方米?

  生3: 2号坑有多少尊陶俑、陶马?

  ……

  4.同学们的提问都很好,现在我们先来解决生1的问题。课件出示:1号坑还剩下多少尊陶俑、陶马没有处理?

  5.学生选择有关的信息分析数量关系,为了帮助理解,我们可以借助画线段图的方式。

  6.引导学生画线段图。

  怎样用线段图表示已知条件和问题呢?师和学生一起边画图。(图略)

  7.借助线段图分析数量关系,列式解答。(师巡视)

  8.汇报展示,交流评价。

  结论1:先求出清理出多少尊,再用总尊数—已清理出的尊数=剩下的尊数。

  6000—6000×1÷6

  =6000—1000

  =5000(尊)

  生2:先求出未清理的尊数占总尊数的几分之几。

  6000×(1—1÷6)

  =6000×5÷6

  =5000(尊)

  要求汇报时,让学生说出图中各部分表示什么,哪些是已知的,哪些是要求的,哪一个单位是表示单位“1”的量。

  刚才我们一起解决了生1的问题,现在我们再来解决生2的问题。

  1.课件出示:1号坑占地面积约多少平方米?

  2.让学生根据有关信息,自己画线段图,教师给予适当的提示。(图略)

  3.师生检查线段图画的对不对。

  4.尝试借助线段图分析数量关系,并列式解答。

  强调:谁是单位“1”?

  5.汇报展示,交流评价。

  结论1:先求1号坑比2号坑大多少平方米,再用2号坑的面积+大出的面积=1号坑的面积。

  9000+9000×5÷9

  =9000+5000

  =14000(平方米)

  生2:先求1号坑占地是2号坑的几倍。

  9000×(1+5÷9)

  =9000×14÷9

  =14000(平方米)

  6.对比两种解法,你更喜欢哪种解法?为什么?

  同学们,我们现在已经解决了两个问题,你们学会了吗?下面,你们能自己解决问题了吗?

  课件出示:2号坑有多少尊陶俑、陶马?

  说明:要求学生认真审题,画好线段图,分析数量、列式解答,师生订正。

  (1)6000-6000×3÷4 (2)6000×(1-3÷4)

  =6000-4500 =6000×1÷4

  =1500(尊) =1500(尊)

  二、全课总结

  今天我们学习了什么内容?解决稍复杂的分数问题,为了使数量关系更加清楚,我们可以借助什么方法?解决问题要注意方法多样性,有时可以选择更加简便的方法。

  三、巩固练习

  教材第81页第1题,填一填。

  学生独立完成,师生订正。

  板书设计

  两步分数乘法问题和简便运算

  1.1号坑还剩多少尊陶俑、陶马没有清理?

  6000-6000×1÷6 6000×(1-1÷6)

  =6000-1000 =6000×1÷6

  =5000(尊) =5000(尊)

  2.1号坑占地约多少平方米?

  9000+9000×5÷9 9000×(1+5÷9)

  =9000+5000 =9000×14÷9

  =14000(平方米) =14000(平方米)

分数乘法教案10

  教学目标:

  1、知识与技能 使学生掌握分数乘法的计算方法,并能运用这个方法进行相关计算;使学生能分辨清楚先乘后加减的运算顺序,并能熟练地应用乘法运算定律进行简便计算。

  2、过程与方法 回顾、整理、练习、订正。

  3、情感态度与价值观 培养学生良好的计算习惯和分析解决问题的能力。

  教学重点:

  引导学生找准单位1,分析应用题的数量关系。

  教学难点:

  让学生正确、独立地分析应用题的数量关系。

  教具运用:

  课件

  教学过程:

  一、创设情境,导入复习。

  出示:我们学校的图书室里有故事书400本,连环画是故事书的 ,作文书是连环画的 。学校图书室里有有多少本作文书?

  1、学生独立解决。

  2、汇报交流做法。

  3、提示课题:分数乘法的整理和复习

  二、回顾整理,建构网络。

  1、让学生说一说这个单元你学到了哪些知识?(小组内说一说,适当的时机师生进行点评)

  2、展示自己整理好的分数乘法的`知识。

  3、小组合作,优化整理。(课件演示)

  分数乘整数

  求几个相同分数和的简便运算

  计算方法:分子相乘的积作分子,分母相乘的积作分母。(能约分的先约分再计算)

  一个数乘分数

  求一个数的几分之几是多少

  分数乘加、乘减及乘法运算定律的灵活运用

  灵活运用运算定律,可以使计算简便。

  乘法交换律:a.b=b.a;

  乘法结合律(a.b).c=a.(b.c);

  乘法分配律(a+b)。c=a.c+ b.c;

  乘法分配律的逆运算:a.c+b.c=(a+b)。c

  解决问题

  1、求一个数的几分之几 是多少。

  2、稍复杂的求一个数的几分之几是多少。

  关系式:单位1的量(一个数)问题所对应的几分之几=所求问题

  三、自主检评,完善提高。

  1、计算下面各题,说一说分数乘法是怎样计算的?

  2、下面各题怎样计算比较简便?

  3、(1)骆驼驼峰中贮藏的脂肪,相当于体重的 ,一头体重225千克的骆驼,驼峰里含有多少脂肪?

  (2)一头体重225kg的骆驼,驮着比它体重还多 的货物。它驮着的货物重多少千克?

  4、(1)食堂运来24吨的煤,第一次用去 ,第二次用去的是第一次的 ,第二次用去多少吨?

  (2)食堂运来24吨的煤,第一次用去 ,第二次用去的这批煤的 ,第二次用去多少吨?

  (3)食堂运来24吨的煤,第一次用去 ,第二次用去的是第一次的2倍少3吨,第二次用去多少吨?

  四、课堂小结。

分数乘法教案11

  教学目标:

  1、使学生进一步理解求一个数的几分之几是多少的应用题的数量关系,掌握这类应用题的解题思路和解题方法。

  2、培养学生认真审题,独立思考的学习习惯。

  3、训练学生分析、解题问题的能力。

  教学过程:

  一、书上第44页上的第12题

  1、先引导学生观察每一组分数的大小特点,知道有一些分数比1大,有些分数比1小。计算后,再把每一个积分别与15(或36)比较。

  从而发现:一个数与比1大的分数相乘,所得的结果比原数大;一个数与比1小的分数相乘,所得的结果比原数小。

  2、书上第44页上的第13题

  引导学生根据第12题发现的规律,直接判断出每组两道算式得数的大小。

  二、说说分数的意义,并把数量关系补充完整

  (1)今年的产量比去年增产1/8。

  ×1/8=

  (2)钢笔枝数的2/5相当于圆珠笔的枝数。

  ×2/5=

  (3)花布的米数比白布长1/4。

  ×1/4=

  (4)实际每月比计划节约了1/10。

  ×1/10=

  (引导学生想到:单位“1”是哪个量,另一个量是多少,写出数量关系。)

  二、对比练习。

  1、有两块布,白布长15米,花布是白布的1/3,花布有多少米?

  2、有两块布,白布长15米,花布比白布长1/3,花布比白布长多少米?

  3、有两块布,白布长15米,花布长1/3米,白布比花布长多少米?

  (1)分别说说题中的分数是哪两个量比较的'结果,比较时把哪个量看作单位1?

  (2)比较3题有何异相点?

  三、综合练习。

  1、一种商品原价是250元,现价是原价的4/5,现价是多少?

  2、一种商品原价是250元,后来降价了1/5,降价多少?

  3、修路队修一条1米的路,第一天修了全长的1/6,第二天修了全长的1/4。

  (1)两天分别修了多少米?

  (2)第二天比第一天多修多少米?

  (3)还剩多少米没修?

  四、作业

  课前思考:

  潘老师确实是多年教学毕业班老师,教学经验比较丰富。在她补充的练习中,3题对比练习是每届六年级学生易混淆之处,在此比较,加深对三种类型实际问题的印象,理清思维。增加的综合练习,是本课内容的拓展延伸。我要借用一下了。

  第二,在明天的教学中,我还要增加分数乘法计算练习,提高计算的正确率。

  课前思考:

  上完分数乘法的第三课时——简单的分数乘法实际问题(二)(例3)后,我们三位数学老师都感到这一课时的内容学生学得不够扎实,所以需要增加一课时,设计一些对比题,进一步提高学生分析数量关系的能力,尤其是加强对学习困难生的辅导。潘老师在根据学生学习情况后及时增加了这一节练习课,设计了“看关键句说数量关系”、“对比题”、“综合题”这几个层次的练习,练习题较典型,在课上,我们还是要组织学生认真读题,理解题目意思后再思考题中各数量间的关系。课上还要多给学生互相交流的机会,多说说数量关系,让更多的学生真正掌握分析数量关系的方法,学会思考。另外,练习八中的第12、13题要放进本课时,分数乘整数的计算练习也可增加些,计算正确率要提高,学生良好的计算习惯亟需培养。

  课后反思:

  由于自己在前两节课新授学习时轻视了这单元的难度,高估学生,所以在新学习分数乘法时,就说明:熟练以后可以省略中间的计算过程直接写出得数,且补充习题册上也有这样的要求,造成很多学生在计算还不熟练的情况下就不愿意写出计算过程,结果计算正确率不高,还有部分学生计算方法没有得到完全巩固。所以在今天的练习课上,再次复习巩固计算方法,并且要求学生以后一定要写出计算过程,特别是有约分的类型,直到以后熟练后我再通知什么时候可以省略中间的计算过程。从今天的课堂作业看,这样操作确实收到了一定效果。

  第二,继续加强对数量关系的训练,关键是对其中分数含义的理解。只要学生能理解分数的意义,说明是将什么看作单位1,平均分成几份,表示这样的几份,那么写数量关系基本上没有困难了。同时,继续教学生学习借助线段图分析部分题目,这样更直观形象。

  课后反思:

  通过这节课的练习,大部分学生都能正确说出题中分数的具体含义和正确找出单位“1”的量,对课堂上预设的题完成的不错。从作业的反馈情况来看(要求写出数量关系),有部分学习困难的学生还是没能准确的找对单位“1”的几分之几表示哪个数量。对于这些学生课后还得加强这方面的辅导。

  课后反思:

  今天这节课的教学重点、难点是帮助学生学会分析简单分数乘法实际问题的数量关系,潘老师设计的教案,我再结合两个班级学生学习实际情况,补充了几道对比题,加强对不同类型实际问题数量关系的辨析。反思自己的教学,可能在组织学生分析数量关系时有点过于急噪,要加以改进。我想在根据关键句分析时,一是思考其中分数的意义,即找出单位“1”的量,然后分析谁是谁的几分之几,要把谁比谁多几分之几转化为谁是谁的几分之几,这是学生分析数量关系时感到困难的地方。二是可以借助画线段图理解数量关系,在画图分析的过程中能更清晰地看出两个数量间的关系,也为以后学习较复杂的分数乘、除法实际问题打好基础。

  从学生作业情况看,遇到题中要求写出数量关系仍有困难,特别是一些学习困难生。要抽时间进行个别辅导。

分数乘法教案12

  教学内容:教学第83页的例2,完成随后的“练一练”和练习十六第1—4题。

  教学目标:

  1、使学生理解并掌握用分数乘法和减法解决一些稍复杂的实际问题。

  2、使学生进一步积累解决问题的策略,增强数学应用意识。

  教学过程:

  一、复习导入。

  岭南小学六年级有45个同学参加学校运动会,其中男运动员占。男运动员有多少人?

  独立解答,说说“其中男运动员占”的含义及解题思路。

  如果把问题改成:“女运动员有多少人?”就成了今天我们要研究的.新内容了。

  二、教学例2。

  1、出示例2岭南小学六年级有45个同学参加学校运动会,其中男运动员占。女运动员有多少人?

  (1)比较复习题与例2的不同。

  问题不同:复习题要求“男运动员有多少人?”而例2要求“女运动员有多少人?”

  (2)说说“其中男运动员占”的含义

  是哪两个量比较的结果?比较时把哪个量看作单位“1”?单位“1”的是哪个量?

  (3)让学生在线段图上分别表示出男女运动员所占的部分。

  独立完成在书上,评讲。

  (4)要求“女运动员有多少人?”可以先求什么?并列出综合算式。

  板书:45-45

  说说45的含义,独立解答。

  (5)想一想,还可以怎样计算?

  板书:45(1-)

  说说(1-)的含义,独立解答。

  (6):怎样解答这类应用题?

  三、巩固练习。

  1、做练一练第1题。

  先说一说可以怎样想,再独立解答。

  2、做练一练第2题。

  独立完成,可以先画图思考,再列式解答。

  3、做练习十六的第1题。

  让学生先画线段图表示题中的已知条件和所求问题,再列式解答。

  独立解答,说说解题思路。

  4、做练习十六的第3题。

  先说说题中两个分数的含义,再列式解答。

  四、全课,揭示课题。

  通过这节课的学习,你有什么收获?在解题时要注意什么?

  结合学生的回答,揭题板题。

  五、课堂作业

  6、做练习十六的第2、4题。

分数乘法教案13

  教学目标:

  1、能根据一个数乘分数的意义,理解“求一个数的几分之几是多少”的问题的数量关系。

  2、会用线段图分析分数乘法一步应用题的数量关系。

  3、经历分析数量关系的过程,提高学生分析能力与解决问题的能力。

  教学重点:

  经历“求一个数的几分之几是多少”的问题的数量关系分析过程。

  教学难点

  掌握“求一个数的几分之几是多少“的解答方法。

  教学方法与手段:

  小黑板、多媒体

  教具准备

  主题图、小组练习纸

  教学过程:

  <一>、创设情境,生成问题

  师:同学们,我国人多地少的矛盾日益突出,所以应控制人口增长并需要保护好耕地。据统计,20xx年世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界人均耕地面积的2/5.我国人均耕地面积是多少?谁愿意帮老师解决这个问题吗?(学生积极举手发言)

  师:这是用分数乘法的知识来解决生活中的实际问题,这节课我们一起来进行有关的知识的学习,揭示并板书课题:

  <二>、探索交流,解决问题

  ①、从题目里你知道了哪些信息?需要解决的问题又是什么?

  ②、要解决我国人均耕地面积是多少平方米,就要分析其中的条件和问题,怎样分析呢?(用线段图分析数量关系)。

  师出示课本的线段图。

  ③、你会表示我国人均耕地面积吗?(生动手画图指名板演)

  ④、给大家说说你是怎样表示的?

  ⑤、从线段图中你还知道什么?(师出示)“要求我国人均耕地面积,就是求……”(指多名说)

  (师出示)“求2500的2/5是多少?“

  ⑥、你们会算吗?动手试试。(指名板演): 2500x2/5=1000(平方米)

  为什么要这样算?还有其它方法吗?(预设:2500÷5×2)

  ⑦、通过计算知道了20xx年我国人均耕地面积是1000平方米,你知道我国人均耕地面积减少的原因→←是什么?

  结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。

  <三>、巩固应用,内化提高。

  1、一头鲸长28米,一个人的身高是鲸体长的2/35 。这个人的身高多少米?

  ①、找出单位“1”,谁能解决,动手试试

  ②、列式解决,讲评。

  2、练习四第2题:让学生先找出题目中隐藏的单位“1”——全世界的丹顶鹤数20xx只。

  3、练习四第3题:让学生先找到单位“1”,再独立列式解答。

  <四>、回顾整理,反思提升

  师:这节课你们一定有不少的收获吧,谁能说说?

  板书设计:

  求2500的2/5是多少?2500x2/5=1000(平方米)

  教学反思:

  本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我能紧扣分数乘分数的'意义进行复习,并事先复习如“20的是多少?”的文字题,为解决与此相似的应用题做好准备。由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。

分数乘法教案14

  教学内容

  教科书第9~11页的例5、例6,练习三的第9题。

  教学目的

  1、使学生知道整数乘法的运算定律对分数乘法同样适用。

  2、使学生能够运用所学的运算定律进行一些简便运算。

  3、使学生知道在运算时应用了哪些运算定律,以培养学生的思维能力。

  教学过程

  一、复习

  指名说一说在整数乘法中学过哪些运算定律(乘法交换律、乘法结合律、乘法分配律)。学生说出字母表达式或用语言叙述都可以。对说出字母表达式的学生,最好让他们再说一说每个运算定律是什么意思。然后用课件结合具体例子进行说明。

  二、新课

  1、整数乘法运算定律推广到分数乘法。

  出示下面三组算式,让学生说一说每组算式的左右两边有什么样的关系。

  × ○ ×

  ( × )× ○14×( × )

  ( + )× ○ × + ×

  先让学生观察每组中的两个算式有什么特点。然后算出左右两边的'得数,看看每组的两个算式有什么样的关系,并分别做出结论。如,根据 × = × ,可以做出“整数乘法的交换律对于分数乘法也适用”的结论。

  最后做出“整数乘法的交换律、结合律和分配律,对于分数乘法同样适用”的结论。

  让学生用字母表示每一个运算定律,教师板书:

  a×b=b×a

  (a×b)×c=a×(b×c)

  (a+b)×c=a×c+b×c

  教师:“这三个等式中的字母可以表示什么数?”(整数、小数、分数。)

  2、教学例5、例6(运用乘法运算定律使分数乘法计算简便)。

  教师:“我们已经知道应用乘法运算定律可以使一些整数、小数的乘法计算简便,在分数乘法中应用运算定律也可以使一些计算简便。”

  (1)课件展示教学

  例5。 × ×5

  =×5×(应用了什么运算定律?)

  =

  出示例5,让学生仔细观察,题里的已知数有什么特点。( 和5可以约分,所以可以先乘。)

  然后,教师问:“这种简便方法是应用了乘法的什么运算定律?”(乘法交换律和乘法结合律。)

分数乘法教案15

  本单元的教育目标是:

  1.会进行分数乘法计算,会进行分数乘加、乘减混合运算和简便运算,能解决有关分数乘法的简单实际问题。

  2.了解倒数的含义,能够写出一个数的倒数。

  3.能借助线段图分析数量关系,在解决分数乘法问题和应用运算律进行简便运算的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明。

  4.能够表达解决分数乘法问题的过程,并尝试解释所得的结果。

  5.在解决打折等实际问题的过程中,感受分数乘法在日常生活中的广泛应用,认识到许多生活中的问题都可以用数学的方法来解决。

  (一)分数乘整数

  教学目标:

  1.知识与技能:结合具体事例,经历自主解决问题、学习分数乘整数的计算方法的过程。

  2.过程与方法:理解分数乘整数的计算方法,会计算分数乘整数的乘法。

  3.情感与态度:体验用乘法解决连加问题的价值,激发学习新知识的愿望。

  教学重点:分数乘以整数的`计算方法。

  教学难点:正确运用先约分,再相乘的方法进行计算。

  教学过程:

  一、复习铺垫

  1.让我们先来做几道口算题,你能直接口算出结果吗?

  出示:

  38 + 18 = 13 + 15 = 7+9=

  14 + 14 + 14 = 29 + 29 = 3+3+3+3+3+3=

  2.学生口答。

  3.最后一题你是怎么口算的?还可以怎样口算?——引导学生说出用乘法3×5或5×3来计算。

  4.师小结:是啊,求几个相同加数的和的简便运算可以用乘法。

  二、质量问题

  1.教师口述问题,让学生用自己喜欢的方法解决。

  2.交流学生计算的方法和结果。

  25 + 25 + 25 25 ×3

  = 2+2+25 = 2×35

  = 65(千克)= 65(千克)

  3.比较这两种方法,有什么联系和区别?

  联系:两种方法的结果是一样的。

  区别:一种方法是加法,另一种方法是乘法。

  教师板书:25 + 25 + 25 = 25 ×3

  4.为什么可以用乘法计算?

  加法表示3个25相加,因为加数相同,写成乘法更简便.

  5. 25 ×3表示什么?怎样计算?

  表示3个25的和是多少?

  25 + 25 + 25 = 2+2+25 = 2×35 = 65用分子2乘3的积做分子,分母不变.

  6.提示:为计算方便,能约分的要先约分,然后再乘.

  三、归纳、概括:

  分数乘整数,用分子和分母相乘的积做分子,分母不变

  试一试

  让学生独立观察图并列式计算。交流时,说一说是怎样列式的,怎样算的。

  四、练一练

  板书设计:

  分数乘整数

  25 + 25 + 25 25 ×3

  = 2+2+25 = 2×35

  = 65(千克)= 65(千克)

  分数乘整数,用分子和分母相乘的积做分子,分母不变

  教学后记:

  这节课的教学任务主要有两点,就是掌握分数乘整数的意义,以及掌握分数乘整数的计算法则,在整数乘法上,分数乘整数的意义学生比较易于掌握,我利用它的意义改写成,进而从,这一环节,我特别注重引导学生,观察板书,并及时给予提示,所以学生的分数乘整数的计算方法掌握得不错。但是不足的是,学生在约分时,有部分学生没有约分完,以后要不断训练学生约分的方法。

【分数乘法教案】相关文章:

分数乘法教案02-02

分数乘法教案优秀10-29

分数乘法教案15篇02-10

分数乘法数学教案02-13

分数乘法教案[实用15篇]08-08

分数乘法说课稿01-15

精选分数乘法教案汇总七篇07-09

《分数乘法》教学反思10-10

分数乘法教学反思10-25