《解决问题》教案
作为一名人民教师,总不可避免地需要编写教案,教案是备课向课堂教学转化的关节点。那么写教案需要注意哪些问题呢?下面是小编帮大家整理的《解决问题》教案,希望对大家有所帮助。
《解决问题》教案1
教学内容:教科书第90-92页练习十六3-10
教学目标:1、使学生进一步熟练运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。
2、进一步培养学生“逆推”的思维意识和推理能力。
教学流程:
一、复习导入上一节课你们学会了什么本领?“倒过来想”解决问题的关健在哪里?
二、练习
1、练习十六第3题:(1)读题理解题意:你从题中知道什么?
(2)整理信息:你能把这些信息整理出来吗?{大门--(向北走2格)熊猫馆--(向西北走1格)百鸟园--(向东走4格)猴山)--(向南走2格)蛇馆}
(3)寻找策略:你准备用什么方法解决这个问题?
(4)学生独立完成
2、练习十六第4题:小组交流:从你家到学校要经过哪些地方?那么从学校回到呢?
3、练习十六第5题:确定方法:你认为应该从左往右考虑呢?还是从右往左考虑?
4、练习十六第6题:(1)观察图片理清题意。(2)题目中告诉我们哪些信息?
5、练习十六第7题:从第3幅图开始倒过来说一说题意吗?编一道应用题。
6、练习十六第8题
7、练习十六第9题。交流,你是用什么方法解决这个问题的'。有没有别的方法?
8、练习十六第10题。
9、思考题:读一读,整理题意,再想一想。
三、总结:
“倒过来想”也是解决数学问题的一决策略,其实也是解决生活问题的一种策略,遇到问题时,如果你也能倒过来想想或站在他人立场上想想,也许就有了解决问题的方法了。
《解决问题》教案2
教材解读
本单元主要教学的是用“倒过来推想”的策略解决相关实际问题。“倒过来推想”是一种应用于特定问题情境下的解题策略。通常情况下,已知某种数量或事物按照明确的方法和步骤发展、变化后的结果,又要追溯它的起始状态,便适合用“倒过来推想”的策略加以解决。
教材首先通过两道例题让学生解决具体的问题,体会适合用“倒过来推想”的策略来解决的问题的特点,初步掌握运用这一策略解决问题的基本思考方法和过程;再在接下来的练习中安排了不同的实际问题,让学生灵活运用学过的数学知识去解决,进一步体会“倒过来推想”的策略意义及其适用性,提高解决实际问题的能力。
教学目标
1、使学生在解决实际问题的`过程中学会用“倒过来推想”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题步骤,从而有效地解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点
通过富有变化的问题素材和表述方式,引导学生感受“倒过来推想”的策略意义。
[要领指导]教材中所呈现的问题,虽然都可以运用“倒过来推想”的策略来解决,但所解决的问题却涉及不同的知识领域。不仅如此,问题的表述方式也同样富有变化。当学生面对这些问题时,首先感受到的是面临一个新的挑战,从而能产生理解问题、分析问题和解决问题的愿望,进而能在解决问题以及相应的反思过程中逐渐领悟“倒过来推想”的策略意义及其应用特点。
教学难点
适当控制难度,引导学生综合应用学过的各种策略整理实际问题中的信息,体会不同策略在解决问题过程中的不同价值。
[要领指导]要求学生解决的实际问题不能太复杂,一般以2至3步为宜,可少量安排需要4步推想的习题,数量关系一般较简单,便于学生在操作中进行直观思考。当学生掌握用“倒过来推想”的策略解决实际问题时,可安排综合性应用训练。使学生体会灵活应用策略的必要性,感受“倒过来推想”策略的价值。
学生已有知识基础
本单元是在学生已经学习了用画图和列表的策略解决问题的基础上,教学用“倒过来推想”的策略解决相关实际问题。
对后继学习的作用
逆推的方法思考问题是一种常见的策略,有助于发展学生的逆向思维。教材在先后教学列表和画图的策略解决问题的基础上,教学逆推的解题策略。
课时设计:2课时
《解决问题》教案3
教材分析:
转化是解决问题时经常采用的一种策略,能把较复杂的问题变成较简单熟悉的问题。掌握转化策略不仅有利于问题的解决,更有益于思维的发展。教学不应仅仅停留在能够解决某一类问题、获得某一类问题的结论和答案,而应超越具体问题的解法和结论,指向策略的形成和应用意识。通过例1的教学让学生联系实际感悟转化的含义,体会无论在过去还是现在,转化都是解决问题的有效方法。
学情分析:
本课是在学生已经学习了用画图和列表,以及列举等策略解决问题的基础上,教学用转化的策略解决相关的实际问题。在此之前,学生已经初步积累了一定的用转化策略解决问题的经验,也掌握了一些技巧和方法,但当时这些技巧和方法更多是针对解决具体问题而言的,因而是零散的、无意识的。
教学目标:
知识与能力:使学生初步学会运用转化的策略分析问题、灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。
过程与方法:使学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。
情感、态度、价值观:使学生积极主动参与数学活动,乐于和同伴交流解决问题时所运用的策略,能主动克服在解决问题中遇到的困难,获得成功的体验。
教学重点:
会运用转化的策略分析问题、解决问题 。初步掌握转化的方法和技巧
教学难点:
能根据问题的特点确定具体的转化方法,初步形成策略意识。
教学准备:
课件、方格纸、彩笔、卡片(长方形、平行四边形、三角形、梯形、圆形)、题纸。
教学过程:
一、感知转化
师:同学们喜欢听故事吗?
(多媒体出示《曹冲称象》的画面)
提出问题:曹冲是用什么方法称出大象重量的呢?
(曹冲先把大象运上船,做上记号,然后把大象赶下船,装上石头,再做上相同的记号,称出石头的重量,就称出了大象的重量。)
也就是说,曹冲是用称石头的方法称出了大象的重量。小曹冲所用的这种方法,我们数学上称为转化。 转化是我们平时常用的一种解决问题的策略。(板书:转化)
二、自主探索,初步感受转化策略
1.任意出示两个图形,学生观察,哪个图形面积大?
学生会用数方格的方法比较两个图形面积的大小,教师肯定数方格是个好办法。
2.再出示例1图,仔细比比,哪个图形面积大?
由于图形比较复杂,学生通过数方格可能会出错,也可能会出现几种不同答案,建议学生拿出题纸,同位一起研究研究有没有其他好方法。
3.用课件演示用平移和旋转转化成长方形比较大小的过程。
教师指出:这其实是运用了一种解决问题的策略,叫做“转化”。(板书课题:解决问题的策略——转化)
4.提问:
(1)这是把什么转化成了什么?
学生体会到这是把不规则图形转化成长方形。(适时板书:不规则图形→长方形)实际上我们是把不规则图形面积这个新问题(板书:新问题),转化成了长方形面积这个我们熟悉的、已经解决的问题(板书:已经解决的问题)。这样一转化(板书: →),新问题也就迎刃而解了。
(2)转化过程中什么变了?什么没变?(形状变了,大小没变)
三、回顾旧知,体会转化策略的运用
1.回想一下:在以前的学习中,有没有运用转化策略解决过问题呢? 学生可能回忆并列举出:平行四边形面积、三角形面积、梯形面积公式的推导过程及除数是小数的除法计算。老师适时课件或学具演示,并在黑板上将转化关系用图示表示出来。
2.转化策略曾经帮助我们解决过这么多新问题,像这样的例子还有很多,你们每个人手里都有一组题,动动笔算算,体会体会哪儿运用了转化策略?有发现,可以和组内的同学交流一下。
四人小组内每个学生的题纸各不相同,学生独立计算、观察、体会到转化后,四人小组进行交流。
3.举个例子说说你的发现。
学生可能举例:①计算异分母分数加、减法是,把异分母分数转化成同分母分数
②计算小数乘法时把小数乘法转化成整数乘法
提问:这里都用了转化策略,有什么共同地方?
引导学生观察并思考,体会到转化的实质——转化前和转化后计算结果不变。
小结:这么多地方用到转化的策略,说说你有什么体会?
学生可能体会到:转化策略应用很广泛;转化策略能解决新问题;转化策略能把复杂的问题变简单。
四、解决问题,深化转化策略
1.明明和冬冬在同样大小的长方形纸上分别画了一个图案(图中直条的宽度都相等)。这两个图案的面积相等吗?为什么?
学生会想到把右边图形中的直条边通过平移,转化成和左边相同的图案,肯定学生不仅善于观察,还善于想象。
2.观察下面两个图形,要求右边图形的周长,怎样计算比较简便?如果每个小方格的边长是1厘米,右边图形的周长是多少厘米?
师:指名学生用手指出右边图形的周长是由哪些线段围成的
生:(边指边说)是这些线段围成的总长度
师:对,那如何来计算它的.周长呢?谁来说说你的想法?
生:我想把这条边移到这儿,这条边移到这儿?这样就成了一个长方形。
师:听明白了吗?谁再来说一说?
生:这两条横着的边移到这儿,这两条竖着的边移到这儿。
师:(演示)我们一起来看看这种方法:把这两条竖着的线段向右平移,这两条横着的线段向上平移。这样一来,原来的图形就转化成了一个长方形,而它的周长有没有改变?
生:没有。
师:现在你能快速计算它的周长了吗?
生:(3+5)×2=16(厘米)
师:完全正确!通过这个练习,我感觉同学们的转化水平又提高了
3.用分数表示各图中的涂色部分。
先让学生独立思考,并把自己的想法说给小组成员听,再全班交流。 ①通过割、补的方法,把涂色部分转化为扇形,从而一下子就可以看出占了整个圆面积的1/4。
②通过平移的方法,把涂色部分转化为正方形,从而一下子就可以看出占了长方形的1/2。
③把两个空白的三角形拼成一个长方形,空白部分一共占了6个方块,剩下的10个方块就是涂色部分,因此涂色部分占5/8 。
4.一块草坪被四条一米宽的小路平均分成了9小块,草坪的面积是多少平方米?
师:要求学生先独立思考,看如何计算比较简便?
生:可以把小路通过平移移到草坪的四周,这样很容易看出要求草坪的长为(45-2)米,宽为(27-2)米。
师:对于一些复杂的图形都能被大家轻松攻破了,真不错。
五、总结延伸,渗透思想
提问:通过今天的学习,你有什么收获?
师:有位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。”学完今天这节课后你如何理解这句话?学习数学的过程就是不断转化的过程。将复杂转化为简单,陌生转化为熟悉,抽象转化为具体,未知转化为已知。所以,掌握转化的策略,对学好数学至关重要。
今天我们学习了用“转化”的策略解决问题,在解决问题时我们要善于运用转化、用好转化的策略,才能有效解题。
六、作业布置,用转化策略解决实际问题
谈话:转化策略应用非常广泛,大家课后可查阅资料看多媒体中给出的问题是他通过什么策略解决的。
相信今后同学们能主动运用转化策略,让它帮助你解决更多学习中和生活中的问题。
板书设计:
解决问题的策略
《解决问题》教案4
教学内容:教科书第90页例2及练习二十一第1~4题。
教学目标:
1. 掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。
2. 提高学生迁移类推和分析、解决问题的能力。
教学过程:
一、复习准备
1. 把下面各数化成百分数。
0.63 1.08 7 0.044 1/4 3/5 7/20 5/8
2. 说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”。)
某种花生的出油率是36%。
实际用电量占计划用电量的80%。
李家今年荔枝产量是去年的120%。
二、学习新课
1. 根据数学信息提问题。
出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
学生可能提出以下问题:
①计划造林是实际造林百分之几?
②实际造林是计划造林百分之几?
③实际造林比计划造林增加百分之几?
④计划造林比实际造林少百分之几?
2. 让学生先解决前两个问题。
通过这两个问题的解决,提醒学生注意:解决这类问题一定先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。为学生学习新课解决数量关系稍复杂的求一个数比另一个数多(或少)百分之几的问题做好知识迁移的准备。
3. 让学生自主解决“实际造林比计划增加了百分之几”的问题。
(1)分析数量关系。
让学生自己尝试把数量关系用线段图表示出来。
让学生说说是怎样理解“实际造林比原计划增加百分之几”的`。
通过讨论,让学生明确求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。
(2)确定解决问题的方法。
①让学生根据分析确定解决问题的方法,并列式计算出结果。
②让学生交流自己的方法,教师作适当的板书。
方法一:(14-12)÷12 = 2÷12≈0.167 = 16.7%
方法二: 14÷12 ≈1.167=116.7%
116.7% - 100% = 16.7%
问:还有其他方法吗?
③让学生总结,像这样的百分数问题有什么特点?解决它时要注意什么?
使学生明确:这是求一个数比另一个数增加百分之几的问题,它的解题思路和刚才同学们提出的第①、②个问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但这里比较的两个量中有一个条件没有直接告诉,必须先求出。
4. 改变问题。
师:如果问题是:计划造林比实际造林少百分之几?又怎么解决呢?
让学生列出算式,教师板书:
(14-12)÷ 14
5. 观察比较。
将例2的第一种算式与改变后的问题的解答算式相比较:
(14-12)÷12(14-12)÷14
师:不同点是什么?为什么除数不一样?
通过学生的讨论,再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。
6. 概括应用。
让学生读一读课本例2后面一段话,结合生活实际举例说一说“增加百分之几”、“减少百分之几”“节约百分之几”……等话的含义。
三、巩固练习
1. 提问:解决求一个数比另一个数多(或少)百分之几的问题,应注意什么?
2. 独立完成课本90页“做一做”的题目。
四、布置作业
课堂作业:练习二十二第1、第2题。
课外作业:练习二十二的第3、4题。
五、课堂总结反思
1. 学了这节课你还有什么疑问吗?
2. 能谈谈你的收获吗?
《解决问题》教案5
课题十一:
解决问题(二)
教学内容:
P33解决问题
教学目标:
1、通过组织学生讨论,充分让学生感受到在解决实际问题时,要根据实际情况取商的近似值。
2、培养学生灵活应用的意识。
教学过程:
一、引入新课。
谈话引入:生活中处处蕴含着数学问题。你能帮助小强的.妈妈,王阿姨,解决她们遇到的问题吗?
(教师可根据实际情况,将例题创设为实际情景)。
二、组织学生辩论,以辩明理。
1、出示例12
①学生独立思考,解答,(展示可能出现的三种答案,6。25个、6个、7个)。
②组织学生进行辩论,鼓励学生说出自己的看法及理由,大胆地与同学进行交流。
同学们充分发表意见,明确瓶数取整数,6。25按四舍五入法应舍去25,但实际装油时,6个瓶子不够装,因此瓶数应比计算结果多1个。
2、再来看看王阿姨遇到的问题,如何解决?
①先独立思考。
②全班交流答案,组织学生讨论,强调以理服人,使学生明确,盒数取整数,16。66…计算结果按四舍五入法本应进1,但实际包装时,丝带不够包装第17个,因此个数应比计算结果少1。
3、生谈感受。
师小结:看来,四舍五入取近似值只适用于一般情况,在解决问题时,有时要根据实际情况取商的近似值,有时要多一点,有时要少一点。
4、生质疑。
三、运用新知,解决问题。
1、P33“做一做”
如何处理的结果?为什么这样处理?
2、P356、7生独立解答,全班交流。
《解决问题》教案6
一个好的数学教案,不仅可以提高学生学习数学的兴趣,还能提升学生的综合能力。以下是专门为你收集整理的一年级上册数学解决问题教案,供参考阅读!
教学内容:
人教版一年级数学上册教科书第46页的内容以及“做一做”和练习十的第1题。
学情分析:
学生是在学习了6-7的认识和加减法基础上进行本节课学习的,对于教材提供的情境学生理解起来不会感到困难,但对用数学符号表示条件和问题会有困惑。因为教材中出现的的大括号和问号,学生学还是第一次接触,将用语言描述的情境和数学符号结合起来理解,会造成学生的思维障碍,教师应把这里作为一个教学突破口。
教学目标:
1、使学生认识大括号和“?”号,会选择正确的计算方法解答。
2、学会用数学知识解决生活中简单的实际问题,感受数学存在于我们的生活中。
3、培养学生的观察能力和口头表达能力。
教学重点:
学会用数学知识解决生活中简单的实际问题,感受数学存在于我们的生活中。
教学难点:
通过图画情境和数学符号来理解题意。
教具准备:
挂图、课件
教学策略:
培养学生观察分析和解决问题的能力。在教学“6、7解决问题”时,让学生先观察图意,不要求他们编题,只要说出图里有什么,大括号和 “?”号分别表示什么,怎样计算,再让学生列出算式,最后让学生说出算式中的每一个数分别表示什么。让学生完全明白自己列算式的理由,可以检查自己列的算式符不符合题意,这样可以大大降低学习难度,从而让学生学得轻松、学的有效。
教学过程:
一、情境导入。
比比看,谁更棒。
1、课件出示(7以内数加法算式)
2、课件出示(主题图)
今天,小兔要请我们用数学知识来帮它们解决问题,大家乐意吗?那我们赶快行动吧(板书课题:解决问题)
二、探究新知
小朋友,我们来看看小图遇了什么数学问题?(课件出示图)
1、引导观察,提出问题
请同学们用数学的眼光来观察画面,你能找到哪些数学信息?(指名回答)(左边有4只小兔,右边有2只…)
小朋友接着看,这里还有两位新朋友,知道它们叫什么名字吗?
2、初步认识大括号和问号。
①出示“}”和“?”。(说明:“大括号”表示让我们把两边的.兔子合起来,下面加一个“?”表示让我们求出一共有多少只兔”。)
②同桌探讨新符号的名字、意义。
③学生汇报研究符号的情况。(指名回答)
④小结:大括号表示把左边4只和右边2只合起来(师边说边做手势),下面的“?只”就表示让我们求出一共有多少只兔,小朋友也来说说,边说边做动作。
⑤指名说图意
谁来说给大家听(指名回答)。
谁能完整地说说图上告诉了什么?要求什么?(指名边说边做动作)。
3、列式解决问题(板书:怎样解答)
①用什么方法算?为什么?(指名说说)
根据学生回答教师板书:4+2=6(只)
②因为是要把两边的小羊合起来(教师做手势),所以用加法来算。那算式中的4、2、6各指什么?(指名说说)
③谁来说一说,你是怎样进行检查的?(同桌讨论或小组讨论后,指名说说。)
④左边有4只就写4,右边有2只羊就写2,再来看得数是不是6只,同学们按照这样的顺序来检查,我们就不是小马虎了。好,让我们一起来口答(师板书:一共有6只)。
⑤小结:现在大家跟着老师来回忆刚才解决问题的时候,经过了哪几个步骤?(先看图里有什么,找出数学信息和要求的问题,然后再进行列式解答,并进行检查,最后别忘了口答。)(师逐一步板书:解决问题的主要步骤)
三、巩固练习。(课件出示)
1、独立完成例题。(师生集体订正)
2、第46页“做一做”
3、练习十的第1题。
4、我来当小老师,指名说一说,师生集体订正。
四、全课总结:小朋友们,通过今天的学习,你学会了什么?
板书设计: 解决问题
图里有什么?
怎样解答? 5+1=6(只)
解答正确吗?
一共有(6)只。
《解决问题》教案7
教学目标:
1、通过对具体问题的解决,使学生感悟运算顺序规定的必要性。
2、使学生掌握四则运算的运算顺序,能够正确地进行混合运算,为进一步学习代数运算做好准备。
3、使学生掌握解决实际问题的策略和方法,培养学生列综合算式解决实际问题的能力,为以后列方程解应用题打下基础。
教学重点:
引导学生发现并总结概括出混合运算的运算顺序。
教学难点:
帮助学生通过解决具体情景感悟运算顺序规定的必要性。
教学过程:
一、同级运算
1、这是新开业的星星游乐场,根据他们老总介绍前三天接待游玩的.人数是这样的:
第一天第二天第三天
300人350人310人
请问三天共接待多少人?
师:说说你是怎么思考的?
2、开业前三天共接待960人,照这样计算,6天预计接待多少人?
(1)独立思考解决。
(2)和同桌交流你的想法。
(3)集体交流。
板书:960÷3×6 6÷3×960 960×(6÷3)
=320×6 =2×960 =960×2
=1920(人) =1920(人) =1920(人)
(4)归纳整理:这些算式对吗?它们分别是先求什么?
3、为了更清楚地了解游客情况,他们老总特地对第六天的游客情况进行了统计:
第六天游客情况统计
上午 9:00来了 152人
中午12:00走了 30人
下午1:00来了 190人
下午5:00关门
师:下午3:00游乐场上有多少人?
师:你还能提出什么数学问题?
二、两级运算
1、这是游乐园的票价:成人票60元,儿童票半价。
金老师和沈老师一起去游乐园,付给售票员200元买两张票,应找回多少钱?
生:200-60×2=200-120=80(元)
板书:200-60×2
=200-120
=80(元)
师:你觉得应该先求什么?再求什么?
2、总结运算顺序:
师:计算这些算式时,你有什么要提醒大家的?
3、口算:
56-26-15= 3×7×10= (24-14)÷2= 45-(23+7)=
12×3÷9= 25+5-12= 5×(22-12)= 60÷2×50=
4、拓展延伸:
师:如果你和你的家人一起去,一共花多少钱呢?
(1)生列式计算。
(2)小组交流。
(3)集体交流。
三、全课总结
《解决问题》教案8
学习目标:
使学生掌握运用比例解决问题的方法,能正确运用正、反比例知识解决有关问题,发展学生的应用意识和实践能力。
学习重难点:
重点:运用正、反比例解决实际问题。
难点:正确判断两种量成什么比例。
学习方法:
尝试教学法、引导发现法等。
学习过程:
一、旧知铺垫
1、下面各题两种量成什么比例?
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从甲地到乙地,行驶的速度和时间。
(3)每块地砖的面积一定,所需地砖的块数和所铺面积。
(4)书的总本数一定,每包的本数和包装的包数。
过程要求:
①说一说两种量的`变化情况。
②判断成什么比例。
③写出关系式。
如:
2、根据题意用等式表示。
(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。
(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。
70×4=56×5
二、探索新知
1、教学例5
(1)出示课文情境图,描述例题内容。
板书:8吨水10吨水
水费12.8元水费?元
(2)你想用什么方法解决问题?
过程要求:
①学生独立思考,寻找解决问题的方式。
②教师巡视课堂,了解学生解答情况,并引导学生运用比例解决问题。
①汇报解决问题的结果。
引导提问:
A、题中哪两种量是变化的量?说说变化情况。
B、题中哪一种量一定?哪两种量成什么比例?
c、用关系式表示应该怎样写?
②板书:解:设李奶奶家上个月的水费是X元
8X=12.8×10
X=
X=16答:略
(3)与算术解比较。
①检验答案是否一样。
②比较算理。算述解答时,关键看什么不变?
板书:先算第吨水多少元?
12、8÷8=1.6(元)
每吨水价不变,再算10吨多少元。
1、6×10=16(元)
(4)即时练习。
王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?
过程要求:
①用比例来解决。
②学生独立尝试列式解答。
③汇报思维过程与结果。
想:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,水费和用水吨数的比值相等。
解:设王大爷家上个月用了X吨水。
12.8X=19.2×8
X=
X=12
或者:
16X=19.2×10
X=
X=12
1.教学例6。
(1)出示课文情境图,了解题目条件和问题。
(2)说一说题中哪一种量一定,哪两种量成什么比例。
(3)用等式表示两种量的关系。
每包本数×包数=每包本数×包数
(4)设末知数为X,并求解。
(5)如果要捆15包,每包多少本?
1、完成课文“做一做”。
2、课堂小结。
三、巩固练习
完成练习九第3~5题。
《解决问题》教案9
教学内容:
义务教育课程标准实验教科书(人教版三年级上册第55页例4及55页做一做。)
教学目标:
1、通过对熟悉的生活事例的探讨和研究,初步学会用有余数的除法解决生活中的简单实际问题。
2、学会正确解答简单的有余数问题,能正确地写出商和余数的单位名称。
3、在解决问题中,感知数学的应用价值,获得运用知识解决问题的成功体验。
教学重点、难点:
运用恰当的方法和策略解决实际问题
教学过程:
一、导入新课
师:认识他们吗?请你说出它们的名字。如果按这样的顺序继续排下去,紧挨着懒羊羊后面的会是谁?你是怎么想的?
师:你用找规律的方法知道了紧挨着懒羊羊后面的应是灰太狼,那第39个会是谁呢?
师:其实像这样的问题我们可以用有余数的.除法解决,今天这堂课我们就学习“用有余数的除法解决问题”(揭示课题)。
二、理解基本的数量关系
1、出示数学信息:
提问:根据图中这两条数学信息你能提出什么数学问题?
(1)根据学生回答,将问题补充完整。全班连起来读一遍,请你说出已知条件和问题。
三一班有45人跳绳,每6人分一组,可以分成几组,还多几人?
(2)学生独立解答。(用练习本完成)
(3)请一位学生上台板演。提问:竖式中“45”、“6”、“5”、“42”各表示什么?
(4)师:现在我们把数学信息“6人一组”改成“平均分成6组”,
你又能提出什么数学问题?连起来读一遍。
生:三一班有45人跳绳,平均分成6组,每组有几人,还多几人?
(5)对比:
三一班有45人跳绳,每6人分一组,可以分成几组,还多几人?
45÷6=7(组)3(人)
三一班有45人跳绳,平均分成6组,每组有几人,还多几人?
45÷6=7(人)3(人)
仔细看一下这两道题,有什么相同和不同的地方吗?
生:算式是一样的。单位名称不一样,第1题每6人分一组,可以分成5组,还多2人,单位名称是“组”和“人”;第2题平均分成6组,每组5人,还多2人,单位名称就是“人”和“人”。
师小结:看来单位名称是跟我们解决的问题有关,第1题的问题是可以分成几组,还多几人?单位名称是“组”和“人”;第2题的问题是每组有几人,还多几人?单位名称就是“人”和“人”。
2、提问:刚才我们解决了三一班45人跳绳的问题,现在如果全校小朋友都来跳绳,还是每6人一组,分到最后可能会剩下几个小朋友?如果每5人一组,分到最后可能会剩下几个小朋友?8人一组呢?15人呢?
三、巩固练习
数学书55页做一做
(1)、小兰有20元,都买矿泉水,最多可以买几瓶,还剩几元?全班学生在练习本上完成,集体订正。
(2)、四人小组合作学习。我们四人各有15元,可以买些什么呢?出示学习要求,指名读要求并在练习本上完成。集体订正。
(3)、对比四个算式,你有什么发现?
四、解决生活中的简单问题(拓展练习)
《解决问题》教案10
教学目标:
1 结合旅游团住宿问题,经历小组合作,一起设计、交流、讨论住宿方案的过程。
2 能灵活运用学过的知识解决生活中的现实问题,并能表达解决问题的方法和思考过程。
3 获得与同伴合作解决问题的成功体验,感受数学与生活的密切联系。
教学准备:
教学课件
教学过程:
教学环节 设计意图 教学预设
一情景导入
1、师:同学们,你们出去旅游过吗,都去过哪里呢?
(鼓励学生把自己与家长旅游时的经历说一说。)
师:同学们,在旅游过程中,你注意过你们是怎样住的房间吗?(学生讲述情况)
师:“同学们,河北国际旅行社今天带我们出去,让我们看一看去哪儿玩,好吗?”(出示图片、学生猜)。
(在交流谈论的基础上,引出书中的住宿问题。)
“河北国际旅行社的导游叔叔在去北京旅游过程中,也遇到了住宿问题,咱们一起看看吧。”
(出示情景图)
2. 观察情景图,说一说从中了解了哪些信息。
师:谁来说说你从这幅图中看到了些什么?了解到了那些数学信息?
3.提出问题,提出小组制定一个住宿方案的要求。
师:你们能帮导游设计几个住宿方案吗?小组合作完成。
二 交流与内化
1 小组合作设计住宿方案
鼓励学生在小组中勇于表现自己的想法,并认真倾听他人的意见。
2 全班交流
鼓励大家积极发言,大胆发表自己的意见。
交流住宿的方案,给各组充分表达方案的时间,并注意把不同的方案记录下来。
住宿的方案多种多样,只要孩子能说出理由,合理就可以了
3在充分交流住宿方案的.基础上讨论评价哪种方案最好。
4 拓展思考:“实际生活中有家庭一起出门旅游时,是可以一起住在一起的。”(男、女可以同住)。
利用课下时间,考虑以上问题,看还有哪几种分配方案。
三、课堂练习
第一题,师生共同观察情景图,了解图中小朋友所遇到的问题,结合自己的生活提出解决方案。(出示情景图)
第二题,首先要帮助学生理解题意,再让学生独立完成,交流各自的方案。第(2)小题思路比较开放,要给学生充分的自主探索和交流个性化算法的空间。(出示情景图)
四、课外作业
1、某校三、一班举办联欢会准备买30千克苹果,请大家设计一个购买方案。
购买方案
每千克 5元
3千克 7元
5千克 10元
2、一个80人的旅游团去保定白洋淀游玩,请你设计一个租船方案。
租船方案
8人快艇 240元
4人渔船 100元
30人观赏船 450元
学生很喜欢旅游,而且父母经常带孩子出去玩,有过亲身经历,以其作为教材素材有利于学生感受数学和生活的联系,激发学生的学习兴趣。
让学生观察情境图,交流发现的信息,有利于培养学生用数学的眼光观察身边事物的意识和能力。
给学生创造学习的机会,使学生在已有知识水平上,经历自主解决问题的过程,在小组学习中学会合作与交流。
通过交流回顾,展示自己的自主学习成果,分享学习他人的学习成果,体验想法的多样化,获取个性化的想法。
住宿的方案很多,但在现实生活中一般都会选取最合理的方案实施,让学生在理解这些方案的基础上经历、选取最好方案的过程,从而把数学知识与现实生活真的联系在一起。培养学生科学、合理的消费意识。
拓展学生思维,进一步思考现实生活中的情况,用数学思维解决问题。
进一步体验数学在生活中的广泛应用,丰富学生用数学思维解决生活中的问题。
让学生利用所学知识解决实际生活的问题。
(我们去过北京、天津、青岛……)
1、和家长一起出去,全家住在一起。
2、全家随团一起旅游,但分开住。
3、参加学校组织的夏令营,男、女同学分开住。
在学生只涉及到个人家庭旅游的情况下,引导学生想想随旅游团时的住宿情况。
孩子们不知道从何入手适当的进行讲解。提示学生,在男女住宿方面应注意的问题。(男女分住)
方案1:男:
160×2+150+120
=590(元)
女:
160×3+120+150
=750(元)
方案2:男:
160×3+120=600
(元)
女:
160×4+120=760
(元)
方案3:男:
150×4+120=720
(元)
女:
150×5+120=870
(元)
方案4:男:
120×7=840(元)
女:
120×9=1080(元)
一题:方案1:调换一篇短一点的文章。
方案2:删掉一些字
620÷4=105(个)
二题:第(2)小题:
方案1:
90×8=720(元)
方案2:
90×7=630(元)
(两种方案都符合题意,选择自己所喜欢的方案)
《解决问题》教案11
教学内容:教材第101~103页,练习二十三第2、5~9题。
教学目标:
1.学会用两步计算的乘法和加法(减法)解决问题;培养学生学会收集数学信息的能力。
2.通过学生自主探究与合作交流等学习活动,经历解决问题的过程,感受解决问题的方法。
3.在学习过程中,培养学生学会欣赏自己、欣赏同学,与同学友好合作的良好学习品质。
教学重点:学会用两步计算的乘法和加法(减法)解决问题。
教学难点:能对实际问题具体分析,确定解决问题的.步骤及方法。
教学设计:
一.预习作业:
1.看一看:P101
2.想一想:
(1)画面上他们在干什么?从图中你还获取了哪些信息?
(2)怎样解决?做一做说一说:第1步求什么?第2步求什么?
每步表示什么意思?你还有别的解决方法吗?
二.预习反馈:
1.想一想,算一算:
盒子里有若干捆铅笔,每捆5枝。小明先拿出2捆,接着又拿出4捆,他一共拿出多少枝铅笔?(讨论算法)
2.练习二十三第2题。
3.今天我们继续学习用乘法计算解决问题,可能也会用到加、减法。(板书课题)
三、关键点拨、合作交流,解读探究
1.练习二十三第2题。
(1)看题,从图上你获得了哪些信息?
(2)你能解决这个问题吗?
(3)组织交流。
(4)你做对了吗?
(5):解决问题的方法是根据对实际问题的分析而决定的。
2.练习二十三第9题。
(1)自己看题,收集信息,确定解决问题的步骤与方法,列式计算。
(2)组织讨论。你收集到了哪些信息,解决问题的步骤是怎样的?
(3)比较哪一种算法好?哪一种简便?
①15×4+7 ②15×5-8
3.练习二十三第7题。
(1)从题中你获得了哪些信息?(强调对“一年”的理解)
(2)独立解决问题。
(3)组织讨论,订正。
(4)环保教育:不乱扔垃圾、保持环境卫生。垃圾分类存放处理。
4.练习二十三第8题。
(1)独立解决问题。
(2)组织讨论、订正。
四、应用迁移,巩固提高
1.练习二十三第5题。(巩固用乘法两步计算解决问题,要求比较熟练。)
2.1箱百事可乐6小瓶或4大瓶,老奶奶进了15箱小瓶可乐,12箱大瓶可乐。她进了多少瓶可乐?
(考察学生从生活场景中获取信息的能力。要求独立解决问题。)
五、反思,拓展升华
1.:你认为在解决问题时要注意什么?
(1)观察要仔细。(2)收集信息要全面。(3)有些信息需要加工或处理。
(如练习二十三第7题,一年=12个月)
2.作业:练习二十三第6题。
六、布置作业
《作业本》第50页。
《解决问题》教案12
教学内容:教科书第71—72页的例1、“试一试”和“练一练”、练习十四的第1-3题。
教学目标:
1.教材让学生在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形。
2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。
3.进一步积累解决问题的经验,增强解决问题的"转化"意识,提高学好数学的信心。
教学重点:感受“转化”策略的价值,会用“转化”的策略解决问题。
教学难点:会用“转化”的策略解决问题。
教学准备:;学生每人一张例1的格子图。
教学过程:
一、创设情境,感知策略
1.谈话导入。
师:过年的时候,一些地方有个风俗,就是把窗花贴在窗上,非常漂亮。今天老师也带来了一些非常美丽的窗花,请你在欣赏的时候,仔细观察,它们分别是通过怎样的变化得到的?
(分别演示蝴蝶平移的过程,第二幅图顺时针和逆时针分别旋转一次,第三幅图从左往右顺时针平移一周的过程)
提问:(1)蝴蝶是按怎样的顺序变化而来的?
(2)花环两次变化又是怎样形成的?
(3)最后一幅又是怎样变化的呢?
学生回答,师依次板书:平移,旋转,顺时针,逆时针。
师:同学们回答得都非常好。平移,旋转就在我们身边。今天我们再来利用身边的知识来解决问题。板书课题:解决问题
二、合作交流,探究策略
1.出示例1。
提问:这两种平面图形,我们以前学过吗?(没有)你觉得它们象什么呢?(生发挥想象力回答,但要说明的是平面图形。)
2.引导交流。
提问:你能从图上准确地数出它们的面积分别是多少吗?(不能)面积会相等吗?请同学们4人一小组讨论,并可以在刚发下的作业纸上涂涂画画,验证你的结论。
小组交流,教师巡视,并指导。
3.指导验证。
师:你们组是怎么想的?指名回答。你在观察这两幅图的时候有什么发现吗?
学生说想的过程,并投影出示学生的作业纸。
(生可能回答上半圆平移下来就是下半圆,他们的面积吻合;“花瓶”突出来的半圆就是瓶口凹下去的半圆,只要分别把他们旋转180度就可以了)
教师及时评价并用演示刚才学生说的过程。
提问:这两幅图经过旋转和平移后都变成了什么图形?(生:长方形。)
提问:变成长方形后它们的面积相等吗?为什么?(生:相等,长和宽一样,所以面积一样。)
教师再次演示变化过程,提问:在两幅图变化的过程中,什么不变?(面积)都把它变成了谁的面积?(生:长方形。)
小结:因为我们无法一下子看出这两个平面图形的大小,但分别把它们转化成一个长方形后,我们就能比较这两个图形的大小了。在解决问题的过程中,我们经常会用到这样的策略——转化。(板书:解决问题的策略——“转化”)
三、应用策略,归纳方法
1.谈话:刚才,我们运用转化的策略把不规则的图形变成规则图形来比较大小。在有关平面图形的计算中经常会用到“转化”的策略。请同学们试着来解决以下问题。
(1)练习十四第2题的左边两幅图。
学生独立思考后口答,教师相机演示。
(2)“练一练”右边的图形和练习十四第3题的第一幅图。
提问:你能用比较简便的方法快速地求出图形的周长吗?
学生先独立思考,然后和同桌交流。
个别学生介绍自己的方法,教师相机演示。
小结:在解决这些问题的`过程中,我们都用到了怎样的策略?(转化)我们要把复杂的图形转化未为简单的图形,具体地说又是用到了以前学习的哪些知识呢?(平移和旋转)
四、回顾知识,体验转化
1.谈话:其实我们以前学过的知识中,很多都运用了转化的策略,哪位同学来说说看。
指名回答,生可能会说:1.推导三角形公式时,把三角形转化成平行四边形。2.推导梯形时把梯形转化成平行四边形。3.推导圆面积时,把圆面积转化成长方形。4.计算小数乘法时把小数乘法转化成整数乘法。5.计算分数除法时把分数除法转化成分数乘法等等。
在学生说的过程中请学生说说推导的过程,并相应演示推导过程。
小结:看来,“转化”的确是一种非常重要的解题策略,在刚才的交流和演示的过程中,你觉得这种策略有什么优点?(学生交流后教师相机板书:化复杂为简单,化未知为已知,化不规则为规则------)
五、拓展运用,提升策略
1.出示试一试:计算1/2+1/4+1/8+1/16
提问:(1)这些分数分别表示什么意思?生根据分数的意义回答,并强调单位“1”相同。(2)相邻的分数是什么关系?(后一个是前一个的1/2)
师:我们一起来画图表示看看。师根据题目依次画图。
师:这题我们又可以怎样转化呢?学生看图解答。
指名回答。1-1/16=15/16
(如果学生回答不出,师提示:求阴影部分,空白部分又是多少呢?)
提问:如果给这道题目再添上一个加数1/32,和是多少?再加上1/64呢?如果一直这样加下去,加到1/1024呢?
小结:在解决这个分数加法的计算题时,我们借助图形来分析问题,把复杂的算式变成了简单的算式。这也是运用了“转化”的策略——数形结合。(板书)
3、出示:比较大小:16/17和35/36
你准备怎样比?先和同桌说一说,再组织交流。体会:异分母分数大小比较,一般要通分后比较大小,通分很麻烦,现在只要转化成比较1/17和1/36的大小就可以了。
2.谈话:在解决一些稍复杂的实际问题时,有时我们也可以用“转化”的策略思考问题将复杂问题变得简单些。请同学们看这一题:
出示练习十四第1题。
(1)学生读题理解单场淘汰制的比赛规则并看懂图的意思。
(2)提问:什么是单场淘汰制?你能结合示意图来说说淘汰赛的过程吗?你会列式计算吗?(学生列式计算后进行解释。)
(3)提问:如果不画图,有更简便的计算方法吗?(提示:不管第几轮,每场比赛都要淘汰几支球队?到决出冠军为止,一共要淘汰多少支球队?那么一共要比赛多少场?这样看来求比赛了多少场就转化成了什么问题?)
(4)如果有64支球队,产生冠军一共要比赛多少场?
3.出示练习十四第2题的第3幅图。
学生先独立思考,然后指名学生交流自己的想法,教师及时评价并演示。
4.出示练习十四第3题的第2幅图。
要求图形中红色部分的周长是多少,你有什么好方法?
学生独立思考后解答(思路:转化成2个圆的周长),集体校对。
小结:谁来说说我们是怎样运用“转化”的策略来解决这两个问题的?
六、课堂小结
今天我们学习的解决问题的策略是什么?“转化”随时随地都在我们身边,你认为在什么时候采用“转化”的策略能较好地解决问题?生回答。
七、课堂作业:完成补充习题相关内容
板书设计:
解决问题的策略——转化
平移 转化成体积相等的长方形
旋转(顺时针,逆时针) 不规则——规则
S三角形——S平行四边形 复杂——简单
S梯形——S平行四边形 未知——已知
S圆 —— S长方形 不熟悉——熟悉
------
小数乘法——整数乘法
分数除法——分数乘法
《解决问题》教案13
本节课主要教学混合运算在实际生活中的应用,教材已经提供好了大体的框架和思路线索,教学时可以按照教科书提出的问题组织学生逐一解决,大体分为三大步骤,先引导学生从情境中发现问题,收集信息,能够从具体的情境中抽象出数学信息和数学问题;再尝试探索、寻找综合运用所学知识解决问题的方法,在学习与他人合作、交流的过程中,形成解决问题的基本策略;最后通过反思解决方法的正确与否,让学生在交流、评价中进一步明确解决问题的思路和策略。
学情分析
这节课是学习了两步混合运算的计算顺序后教学的,是引导学生利用所学知识解决实际问题的一节应用课,前面学生已经积累了一定的解决问题的思路和方法,教学时通过多种方式进行,进一步培养学生分析问题、解决问题的能力,加强学生对混合运算知识的掌握。
教学目标
1.让学生在解决实际问题的过程中,学会用色条图(线段图的'邹形)分析数量关系,感受其使问题简明、直观、便于分析的作用,渗透数形结合思想,丰富解决问题的策略。
2.使学生解决问题的完整过程,学会用找出中间问题的方法解决需要两步解决的问题,丰富学生解决问题的策略。
3.在分步列式解决问题的基础上,逐步学会列综合算式解决问题,会合理运用小括号改变运算顺序。
4.在解决问题的过程中,培养学生认真观察、独立思考、合作交流等良好的学习习惯和热爱数学的情感。
重点难点
1.利用线段图分析数量关系,掌握解决需要两步解决的问题的步骤和方法。
2.会找出隐藏的中间问题,并合理利用小括号列综合算式解决问题。
方法指导
引导法,提示法,学会观察,讨论法,探究法
预设流程
具 体 内 容
激趣导入
(约3分钟)
一顿营养的早餐是一天生活的开始。对将近10个小时不停消耗能量却没有补充的身体来说,早餐格外重要。早餐唤醒了身体,开启了身体高效的新陈代谢;早餐能把能量最先供给到大脑,以便让我们有清晰的思路和判断力进行一天的工作、学习。不吃早餐,不仅会营养失衡、引起胃肠疾病,还会出现身体不适、容易衰老、精神无法集中等各种问题,所以,要想学习好,早餐要吃好哦!
自主学习
(约7分钟)
剩下的还要烤几次?
1. 仔细观察,你知道了什么?
2. 谁能完整地说说这道题的意思?
3.要求“剩下的还要烤几次”你们会解决吗?
合作交流
(约10分钟)
1.深入理解,体会方法
(1)一共要考(90 )个,已经烤了(36)个,剩下(54)个没有烤,每次烤9个,剩下的要烤(6)次。
(2)在图示中,把要考的90个看做一个整体,分成( 已烤的 )和(剩下的 )两部分,要求剩下的还要烤几次,必须先求出(剩下的量 ),再用剩下的数量除以每次烤的数量9个,就是要烤的( 次数 )。
(3)尝试解决,小组交流。
(4)全班交流,教师板书。
(90-36)÷9
= 54÷9
= 6(次)
分步列式: 综合算式:
90-36=54(个)
54÷9=6(次)
追问:说说你是怎么想的。
(5)说出自己的想法。
(6)教师精讲,再次理清题意。
2.检查反思,归纳总结
问题:
(1)解答正确吗?说说你的想法。
(2)今天研究的问题为什么必须两步解答?
精讲点拨
(约5分钟)
小结:解决一个问题需要两个和它有关的信息,如果其中的一个
信息直接给了,另一个信息没有直接告诉我们,我们要先
求出它来,再解决最后的问题。
测评总结(约15分钟)
1.达标测试。
(1)
问题:
① 你知道了什么?
②想求“平均每个笼子放几只” 你会解答吗?请写一写。
(25+15)÷8
=40÷8
=5(只)
③说一说你是怎么做的,也可以用画图的方法来帮助说明。
④为什么要先求“一共有多少只兔子”?
⑤ 解答正确吗?你是怎么知道的?
(2)剩下的要用5天挖完,平均每天挖多少米?问题:
①你知道了什么?
②要求“平均每天挖多少米” 你会解答吗?
画一画,算一算,把你的想法表示出来。
(60-15)÷5
= 45÷5
= 9(米)
③解答正确吗?你是怎么知道的?
④为什么这道题要用两步来解决?
⑤剩下的要用5天挖完,平均每天挖多少米?
(3) 同学们在做操,如果9个人一排,可以站几排?
问题:
①你知道了什么?
②你会解答吗?把你的想法写出来。
6×3÷9
=18÷9
=2(排)
③为什么这道题要用两步来解决?
④这道题的综合算式不需要加小括号吗?
⑤解答正确吗?
2.课堂总结
解决一个问题需要两个和它有关的信息,如果其中的一个信息直接给了,另一个信息没有直接告诉我们,我们要先求出它来,再解决最后的问题。
3.布置作业
作业:第55页练习十二,第2题、第3题。第56页练习十二,第5题。
板书设计
解决问题
例4:
(90-36)÷9
= 54÷9
= 6(次)
分步列式: 综合算式:
90-36=54(个)
54÷9=6(次)
追问:说说你是怎么想的。
《解决问题》教案14
教学目标:
1、让学生自主经历探索解决问题的策略和方法。
2、培养学生的思维能力,训练学生有合理地分析问题,提高学生解决问题的.能力。
3、明确小括号的作用。
教学过程:
活动一:出示情景图,提出问题
师:你可以提出什么数学问题?
生互相交流。
师抽生交流并板演:犁糕一共可以装多少包?
活动二:解决问题
师:你会解决这个问题吗?
[生尝试解决,并交流]
师:谁愿意起来交流一下你的做法?
全班交流,展示不同的写法。
生1:520÷4=130(包)
320÷4=80(包)
138+80=210(包)
生2:(520+320)÷4=
师:你能说一说每一步计算的含义吗?
师:你能出有括号的先加再除的混合的运算顺序吗?
生答。
师:请同学们解决下面的问题。
360÷(2X3)380÷(132-127)
活动三:练一练
第4、5、10题:要放手让学生独立地完成。交流时注重让学生说清分析思路和策略,以此提高学生解决问题的能力。
《解决问题》教案15
教学目标:
1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值,解决问题的策略教案。
2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重点:让学生体会替换策略的优越性。
教学难点:对替换前后数量关系的把握。
教学过程:
一、创设情景导入:
有谁带了钢笔吗?
老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?
要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)
(严肃,让学生觉得真换)
怎么啦?(学生说说)
是啊!
那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?
为什么?(老师:成交!)
用铅笔换钢笔依据
板书:十枝铅笔---------换(黄色粉笔写)---------一支钢笔 ( 价格相当)
那你说说看为什么非要老师用十支铅笔才肯换呢?
(引导学生说出价钱差不多)
紧接板书:价格相当
十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。
板书:依据
师:闹了半天,你当老师来做生意了吧.不,可别小看这个"换"字,交换的'换,替换的换,就是这个换字,它确是蕴涵着一种的数学方法。而且这个方法已经有悠久的历史了。早在1800年前的三国时代就有位7岁的孩子使用了这种换的方法,被传为一段千古佳话。你们知道他是谁吗?
二、温故知新:
课件打开到曹冲称象图片。
对,课前大家已经熟悉了这个故事。那谁能告诉我,曹冲是怎么解决称大象体重这个难题的呢?
(他用什么替换了什么?)
你能联系上面情节讲一讲它替换的依据是什么呢?
(鼓励性评价:真聪明)
石头和大象的重量相同作为替换的依据。
那曹冲是怎样来保证石头和大象的重量相同呢?
板书:一堆石头---------替换----------一头大象 ( 重量相同)
曹冲称象的故事给了我们这样一个启示:替换确实是一种解决问题的行之有效的方法。今天我们就来继续学习解决问题的策略之。。。对,替换。
板书:添上----替换两字
三、协作创新
曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。
三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等,教案《解决问题的策略教案》。
(简略介绍其中的走舸和楼船。)
赤壁大战,东吴向前方军营增派105名援军。如果用10艘走舸和1艘楼船来运,一次就可以运完。每条走舸乘坐的士兵人数是楼船上士兵人数的1/5。 那每艘走舸装了多少士兵,楼船上又装了多少士兵呢?
题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。
生一起读题
你知道了哪些信息?
这道题目能用“替换”的策略解决吗?
接下来请同学们按照题目下面的要求,来亲身体验一下替换。
同桌合作:
1 用什么替换什么? (把题目中替换的双方圈一圈)
2 替换的依据是什么?(在题目关键句的下面画一画)
3 替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)
小组交流:
知道怎么替换了的同学请举手
你们在替换的时候,有没有想到替换有什么好处啊?
请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?
1 替换有什么好处?
2 你替换的方法和其他同学完全一样吗?
结合课件画面讲解,板书
一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)
课件展示:
替换前
(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)
替换后
(15走舸,出示数量关系:15艘走舸一共装了105名士兵) 让学生计算。并讲一讲过程(数量关系)。
(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)
两种方法都讲解完后,让学生说说替换的好处。
四、巩固立新:
俗话说得好:兵马未动,粮草先行。
东吴又准备用船和马车同时向军营输送粮草,已知每条运粮船比每辆马车能多运15袋粮食,2条运粮船和5辆马车水陆并进,刚好能把100袋粮食一次运到军营,每条运粮船和每辆马车各运了多少袋粮食?
这个问题还能用替换的策略解决吗?
请学生说说如何替换?
板书:一条运粮船----------替换----------(一辆马车+15袋)
让学生在自备本上用自己喜欢的方式画一画。
实物投影展示替换方法。(最好选文字和图画各一份)
数学是需要简洁和凝练的,看赵老师怎么来做。。。
强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?
课件演示思考过程。
同桌之间互相说说:替换前后的数量关系分别是什么?
学生自己列算式解答。
请学生说说替换的好处。
五、博古通今:
学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。
学生独立完成
让一学生上黑板进行板演(力求作出示意图)。
全班交流
引导学生把四大名著换成三国演义
并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。
六、自编自演:
大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。
请大家开动脑筋,根据 5角硬币 1元硬币 储蓄罐 三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)
七、课堂小结:
今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。
【《解决问题》教案】相关文章:
《解决问题》教案03-03
解决问题的策略教案03-02
除法解决问题教案02-26
解决问题二教案04-13
解决问题数学教案04-12
小学数学解决问题的教案05-15
解决问题说课稿07-30
《解决问题》教学反思11-25
解决问题教学反思03-10