分数和小数互化教案
作为一名默默奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案应该怎么写才好呢?下面是小编收集整理的分数和小数互化教案,希望对大家有所帮助。
分数和小数互化教案1
目标
使学生理解和掌握分数与小数的关系,掌握把有限小数化成分数和把分母是0、100、1000......的分数化成有限小数的方法。
教学及训练
重点
分数和小数互化的方法。
仪器
教具
教学内容和过程
教学札记
一、复习
1.教师:什么是小数?小数的计数单位是什么?
2.用小数和分数表示下面每个图中的阴影部分。
3.(1)0.9里面有9个()分之一,它表示()分之()。
(2)0.07里面有7个()分之一,它表示()分之()。
(3)0.013里面有13个()分之一,它表示()分之()。
(4)4.27表示()又()分之()。
教师向学生指出:小数实际上就是分母是10、100、1000......的分数的另一种表示形式,所以可以把小数直接写成分母是10、100、1000......的分数,然后引出新课。
二、新课
1.教学把小数化成分数。
教师出示例1,让学生先想一想怎样把这些小数化成分数。
教师板书:0.9=,并提问:0.9是几个十分之一?是十分之几?
教师接着板书:0.03=,让学生想0.03是几分之几。
再出示带小数1.21,提问:0.21是几分之几?(是百分之二十一)那么1.21化成分数是多少呢?
启发学生想出带小数化成的是带分数,带小数的整数部分就是带分数的整数部分,要把整数部分先写下来,不要遗漏,再把小数部分化成分数写在整数部分的后面。
教师接着给出0.425,让学生想化成的分数是多少。学生可能会说出是,这时教师提问:化成的分数是最简分数吗?应该怎么办?
使学生明确化成的分数不是最简分数,要约成最简分数。
然后,使学生在教师的启发下,找出规律:把一位小数化成分数时,分母是1后面写1个0;把两位小数化成分数时,分母是1后面写2个0;把三位小数化成分数时,分母是1后面写3个0......都是把原来的小数丢掉小数点作分子,化成分数后,能约分的要约分。
然后教师加以概括,成为书上第107页的法则,让学生把法则读一遍。
2、做教科书第107页下面”练一练“中的`题目。
教师要注意检验学生化成的分数是否是最简分数和带小数化成的分数是否正确,然后集体订正。
3、教学把分数化成小数。
(1)教师出示例2提问:请同学们观察这些分数的分母是什么特点?你能根据分数和小数的意义,把这些分数化成小数吗?
启发学生根据分数和小数的意义,可以把分母是10、100、1000的分数直接写成小数。
教师:把”2“化成小数时,整数部分”2“怎样处理?小数部分应该是几位?分子只有两位,怎么办?
使学生明确:
(1)带分数化成的小数是带小数,要把整数部分先写下来,不要遗漏;
(2)小数部分分子位数不够的,要在分子的左面添”0“补足位数。
然后教师加以归纳,成为书上第108页例2下面的法则,并让学生读一遍。
三、课堂练习和作业
做练习二十一的第1~4题。
1、第1、2题,让学生填在书上。
2、第3题,让学生独立做,指名到前面板演,订正时让学生说一说自己是怎样做的。
3、第4题,可以先把小数化成分数,然后按照题目的要求找一个,用线连一个。
分数和小数互化教案2
活动(一)创设情境,提出问题:补充(点评)
1、口算比赛:(时间:1分钟)
5/6―1/23/102/91―1/44/51/54/54/3
5/8+3/47/124/77/8+1/41/5+1/33/45
想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占
总题数的几分之几?)
2、学生根据自己的口算情况口答做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?
3、提出问题:能否将做对的题数占总题数的几分之几的分数应用题改成一道百分数应用题呢?补充(点评)
(将做对的题数占总题数的几分之几改成做对的题
教学设计
校对并让学生说说自己的口算情况,
补充(点评)、
数占总题数的百分之几)
活动(二)相互合作,探究问题:
(一)初步感知
1、学生尝试解答各自的做对的题数占总题数的百分之几和做错的题数占总题数的百分之几的问题。
2、小结:求一个数是另一个数的'百分之几的百分数应用题与求一个数是另一个数的几分之几的分数应用题解法相同,关键是找准单位1,所不同的是,求一个数是另一个数的百分之几的百分数应用题计算的结果要化成百分数。
(二)共同探讨
1、师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自做对的题数占总题数的百分之几这是你在这次口算比赛中的正确率,做错的题数占总题数的百分之几就是错误率。像这些正确率、错误率等我们通常称作百分率。你能举一些我们日常生活中的百分率的例子吗?
2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
合格的产品数发芽的个数
产品的合格率=────────100%发芽率=───────100%
产品总数种子的总数
3、尝试解答例题:
(1)出示课本例1和例2的条件:
例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人,?
例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。?
(2)完成第113页的做一做
活动(三)运用知识,解决问题:
1、口答:
(1)2是5的百分之几?5是2的百分之几?
(2)用1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。
2、判断:
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。
(3)25克盐放入100克水中,盐水的含盐率是25%。
3、课堂作业:
1、我国鸟类种数繁多,约有1166种。全世界鸟类约有8590种。?
2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。补充(点评)
活动(四)、全课总结
1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?
2、学生谈谈今天所学的知识在我们的日常生活中有什么用?
课堂总结
学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。
一、补充练习:
1、判断题
①五年级98个同学,全部达到体育锻炼标准,达标率为98%.
②今天一车间102个工人全部上班,今天的出勤率是102%
③甲工人加工103个零件,有100个合格,合格率是100%.
2、应用题
①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率.
②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率.
二、作业:结合练习二十九第6题进行课外调查。
分数和小数互化教案3
第一课时分母是10、100、1000......的分数化成小数
教学目标:掌握小数化成分数的方法并能正确在把小数化成分数;掌握分母是10、100、1000......的分数化成小数的方法并能正确地把它们化成小数。
教学过程:
一、创设情境营造氛围
复习第八册学习过的有关小数、分数的转化。
二、尝试探索建立模型
1.教学分数化成小数
A、直接出示例2,让学生说一说这些分数的'分母有什么特点?应怎样转化?
B、转化方法P105
C、练习P105、2
2.教学小数化成分数
A、自学例1,说一说你学会了什么?要注意什么?
B、反馈讲评
C、转化方法
D、P105、1
3.比较分数和小数的大小:试一试,想一想可以怎样比较?哪种方法更好?
4.P105、3
三、巩固深化拓展延伸
1.自己说几个分母是10,100,1000......的分数,并把它化成小数
2.自己说几个小数,请同桌同学转化成分数。
3.一人说一个小数,另一人说一个分数,比一比它们的大小
4.:这节课我们学习了什么?你是怎样学会的?你还有什么要说告诉其他同学的?
分数和小数互化教案4
教学目标:
1、使学生更深地掌握白分数和分数、小数变化的方法。
2、通过计算,比较和找规律,发展学生的抽象概括能力。
教学重点:通过整理交流总结、梳理综合练习,找准知识间的联系与区别,完成知识构建,形成知识网络。
教学过程:
一、导入。
师:同学们,这节课让我们一起来对分数、百分数、小数互化进行整理和复习(板书课题)
二、复习整理,沟通联系。
1、把0.25、1.4、0.123化成百分数。
提问:怎样能很快地把小数化成百分数(引导学生观察0.2525%、1.4140%、0.12312.3%)
小结:小数化百分数,只要把小数点向右移动两位,同时在后面添上百分号,就可以了。
2、把27%、124%、0.4%化成小数。
让学生自由做,交流自己的意见。
归纳:百分数化小数的'方法,去掉百分号,同时把小数点向右移动两位就行了。
3、比较百分数和小数的变化方法,说说它们有什么不同。
4、把3/4、1/6、13/5化成百分数。
学生练习后,归纳方法:分数化成百分数,通常把分数化成小数,(除不尽时,通常保留三位小数)再把小数化成百分数。
5、把17%、40%、12.5%化成分数
提问:①怎样把百分数化成分数?
②当百分数的分子部分是小数时,怎样将它化成分数?
回答问题后小结。
6、比较百分数和分数互化的方法。
三、巩固练习。
1、把下面各数化成百分数。
1/2、1/4、0.51、0.304、7/20、21/3、1
2、把下面各数化成分数或整数。
0.4、8%、12.5%、0.36、1.5、0.65、600%
3、从小到大的顺序排列。
8.5%0.855/69/110.805
四、总结并质疑问难。
五、作业。
1、教科书40页6、7、8题。
2、教科书51页题1。
分数和小数互化教案5
教学内容:分数和小数的互化。
教学目标:
1.通过教学,使学生理解和掌握小数化分数的方法,能熟练、正确地将小数化分数。
2.培养学生综合应用所学数学知识解决问题的能力。
3.培养学生应用数学知识解决实际问题的意识。
教学重难点:理解和掌握小数化分数的方法。
教学过程:
一、导入
1.填空。
(1)0.7表示()分之(),0.09表示()分之(),0.125表示()分之()。
(2)0.3表示()分之(),写作()/()。
老师小结:小数实际上是分母为10 、100 、1000?的分数的另一种形式。二、教学实施
出示例1把一条3m长的绳子平均分成10段,每段长多少米?
如果平均分成5段呢?
(1)学生先独立计算,然后请用小数和用分数表示计算结果的同学,分别板演到黑板上。
①3 ÷ 10=0.3(m)
②3 ÷ 10 = 3/10(m)3 ÷ 5 = 0.6(m)3 ÷ 5 = 3/5(m)
(2)提问:通过刚才同学们的计算,3/10m和0.3m有什么关系?
师:这里的0.3和3/10,0.6和3/5只是两种不同的表示方式,它们分别分别相等。也就是说0.3分成分数是3/10,0.6化成分数是3/5。
(3)提问:怎样才能把小数化成分数呢?
学生讨论,如果有困难可提示:我们可以先从小数的意义来考虑。一位小数、两位小数、三位小数?分别表示什么?
师:小数表示的就是十分之几、百分之几、千分之几?。所以可以直接写成分母是10、100、1000的分数,再化简。试着完成教材第97页的“试一试”。
0.07=7/() 0.04=24/()=()/()0.123=()/()
请学生汇报自己是怎样想的。24/100不是最简分数,要化成最简分数。所以,把小数化成分数,需要注意什么?
(4)小结方法:小数化成分数时,先把小数写成分数,原来有几位小,就在1后面写几个0作分母,原来的小数去掉小数点作分子。注意约分的要约分。
(5)学生独立完成教材第97页的“做一做”,集体交流。提醒学生注意约分,将转化结果写成最简分数。
三、巩固练习
1.完成教材第99页练习十九的第1题。
学生观察图,结合分数和小数的`意义思考并独立完成。
完成后,分别请学生说一说每个图中分数和小数的意义。 2.完成教材第99页练习十九的第2题。学生独立完成,集体订正。
3.完成教材第99页练习十九的第3题。
学生先独立连线,然后集体交流方法。可以将小数化成分数,然后与下面的分数比较;也可以将分数化成小数,再与上面的小数比较。
四、全课总结:
学完这节课你有什么收获?
五、作业:
完成指导丛书相关作业。
板书设计:小数化分数
例1把一条3米长的绳子平均分成10段,每段长多少米?如果平均分成5段呢?
①3 ÷ 10=0.3(m)
②3 ÷ 10 = 3/10(m)3 ÷ 5 = 0.6(m)3 ÷ 5 = 3/5(m)
0.3=3/10 0.6=3/5
小数化成分数时,先把小数写成分母是10、100、1000的分数,再化简。
分数和小数互化教案6
教学目标
1 .通过教学,使学生理解和掌握分数和小数互化的方法,能熟练、正确进行分数和小数的互化。
2 .培养学生综合应用所学数学知识解决问题的能力。 3 .培养学生应用数学知识解决实际问题的意识。
重点难点
理解和掌握分数和小数互化的'方法。
教具准备
投影。
教学过程
(一)新授
出示例2 。把0.7,,0.25,这6个数按从小到大的顺序排列起来。
( 1 )提问:这6个数中,有分数、有小数,要比较这些数的大小,该怎么办?
学生想到的方法可能有两种:一是把分数化成小数,二是把小数化成分数。
提问:哪种方法比较简便?为什么?(化成小数比较简便)
( 2 )让学生尝试把化成小数。
老师提问:分母不是10,100,1000的分数,该怎样化成小数呢?
学生在小组内讨论并试着解决,再请代表汇报交流。
可能出现两种方法:
①把的分子和分母同时乘上相同的数,转化为分母是10,100,1000的分数,再改写成小数。 = = =0.28
①利用分数与除法的关系,用分子除以分母得出小数。
=7÷25=0.28
(1)在让学生将化成小数。
学生自己尝试解决,看看出现了什么问题?(分母45不能转化成10,100,1000作分母。用分子除以分母时,出现了除不尽。)指出:像这样的分数化成小数时,只能用分子除以分母这种方法,一般情况下,分子除以分母除不尽时,要根据需要按“四舍五人”法保留几位小数。这道题要求保留两位小数。
=11÷45≈0.24
( 4 )现在,你能把这6个数按从小到大的顺序排列了吗?学生独立完成。
( 5 )小结:分数化成小数时有几种方法?
引导学生概括出,一般方法是:用分子÷分母(除不尽时按要求保留几位小数)。特殊方法:①分母是10,100,1000时,直接写成小数。②分母是10,100,1000的因数时,可化成分母是10,100,1000的分数,再写成小数。
( 6 )完成教材第98页的“做一做”。
先让学生判断哪几个分数可以写成小数?哪几个分数可以化成分母
分数和小数互化教案7
说教学目标:
1、知识目标:使学生理解并掌握百分数和小数、百分数和分数互化的方法,能正确地进行百分数与小数、百分数与分数之间的互化。
2、能力目标:培养学生的观察、归纳和概括能力。
3、情感目标:渗透"事物之间互相联系、互相转化"的辩证唯物主义思想。
教学重点、难点:
1、教学重点:掌握百分数与小数、百分数与分数互化的简便方法及运用方法解决实际问题。
2、教学难点:掌握百分数与分数、百分数与小数互化的简便方法。
教学方法:
1、讲授法;2、练习法。
教学过程:
(一)设疑激趣,引入课题。
同学们,从前有个美丽的公主,他在城堡外面玩耍的时候发现了一个山洞,山洞有一道门,但是必须回答几道题这个门才可以打开,我们一起来帮这个美丽的公主想想办法吧。比较2/5、42%、0.45三个数的大小,要想解题呢,我们就必须学习今天的知识。(引入课题)
(二)大胆探索,学习新知。
1、学习小数与百分数的互化。
A、准备题。
把下面的小数化成分数,分数化成小数,并说说你是怎样想的?
0.45 1.2 0.367 3/25 15/8 63/100
通过以上的练习,为学生学习小数与百分数的互化打下了基础。
B、学习百分数化成小数,教学例1
(1)出示例1:把46%、128%化成小数。
(2)引导学生思考:要把百分数化成小数,可以先把百分数改写分母是100的分数,然后再用分子除以分母,把分数转化成小数。
46%=46100=0.46 128%=128100=1.28
(3)请大家观察一个,如果不看先化成分数的这个过程,小数可以怎样直接化成百分数的?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)
(4)说明:当小数点向左移动两位时,原数就缩小100倍,再去掉百分号,又使它扩大100倍。所以原数大小是不变的。
C、学习小数化成百分数。
(1)出示例2:怎样把0.78、1.32化成百分数?
(2)引导学生思考:要把百分数化成小数,要先把百分数化成分母是100的分数,然后再把这个分数改写成小数。
(3)启发学生口述每题的转化过程,板书;
0.78=78100=78% 1.32=132100=132%
(4)引导学生观察、归纳,百分数怎样很快地直接化成小数?(引导学生归纳出百分数化成小数的方法:把百分数化成小数,只要把小数点向左移动两位,同时在后面去掉百分号。)
(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。
3、引导学生进一步综合归纳百分数和小数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
三、巩固练习
1、把下列小数化成百分数。
0.76 0.4 1.32 0.125
2、把下列百分数化成小数。
29% 60% 25% 37.5%
四、课堂小结
师:通过本节课的'学习,你学到了什么?进行百分数和小数互化时要注意什么?
五、作业布置
练习二第1、2、3题。
板书设计:
百分数和小数的互化
小数化成百分数:把小数点向右移动两位,同时在后面添上百分号;
百分数化成小数:只要把百分号去掉,同时把小数点向左移动两位。
教学反思
《百分数和分数、小数的互化》是教学完百分数的认识之后的知识点,我仔细阅读教材后觉得本课的知识不难但较为琐碎,适合放手让学生自主探索。放手让学生去探究小数与百分数的互化方法,通过学生自主探究、联想、讨论、交流,准确地得出百分数与小数的互化方法,完成知识的构建。对于这一知识的教学我做到了以下几点。
1、放手让学生根据要求自主探究、寻找新知与旧知间的联系,从而完成新知的构建。
学生作为课堂教学的主体,在教学中愈来愈受到老师的重视。《数学课程标准》指出“有效的数学活动不能单纯地依赖模仿与记忆,动手实践,自主探索与合作交流是学生学习数学的重要方式。”实践证明,学生自主探究、合作交流得来的知识理解才能会更加深刻,才会掌握得更加牢固。教学时,我让学生通新知识与旧知识的联系,来构建新知。如学生在学习小数转化百分数的过程中,有利用小数的意义联想到百分的分母固定为100,进而利用分数的基本性质,从而达到解决小数转化百分数的目的。也可根据利用任何一个整数都可以化成分母是1的分数,引用到小数中,再利用分数的基本性质转化成分母是100的分数,进而解决小数转化成百分数问题的关键。也可根据在一个数的后面添加百分号,从而引起数的变化,要使所化的百分数与原数相等,应先把原数扩大100倍(即把原数的小数点先向右移动两位),从而达到小数化成百分数的目的。最后再根据以上所说的方法,进行比较、分析,最终得出小数化百分数的最简方法,从而完成小数转化百分数的新知构建。
从举例、研究、汇报、提出问题、解决问题都是让学生自己或是合作完成,我主要是给学生创设一种使他们投入的氛围。
2、营造良好的课堂氛围,更好地让学生展示自己的才华。
课堂上,营造轻松、愉快的教学氛围,能更好地让学生展示自己的才华,尽情地发挥学生的思维。在教学时我提问同学们有没有信心探究它们之间的转化方法(规律)呢?使课堂气氛变得轻松活跃,当每一位发言的学生在说出小数与百分数的互化方法时,我又适时给予表扬,学生的表现欲将被充分地调动起来,争相发言,使课堂不致冷场,激发学生想说、敢说、愿说,敢于发表自己的不同看法,再通过各种方法的进行比较,从而达到统一百分数与小数的互化规律,最终达到本课时的教学目标。
分数和小数互化教案8
第一课时分母是10、100、1000。。。。。。的分数化成小数
教学目标:掌握小数化成分数的方法并能正确在把小数化成分数;掌握分母是10、100、1000。。。。。。的分数化成小数的方法并能正确地把它们化成小数。
教学过程:
一、创设情境营造氛围
复习第八册学习过的有关小数、分数的转化。
二、尝试探索建立模型
1.教学分数化成小数
A、直接出示例2,让学生说一说这些分数的.分母有什么特点?应怎样转化?
B、小结转化方法P105
C、练习P105、2
2.教学小数化成分数
A、自学例1,说一说你学会了什么?要注意什么?
B、反馈讲评
C、小结转化方法
D、P105、1
3.比较分数和小数的大小:试一试,想一想可以怎样比较?哪种方法更好?
4.P105、3
三、巩固深化拓展延伸
1.自己说几个分母是10,100,1000。。。。。。的分数,并把它化成小数
2.自己说几个小数,请同桌同学转化成分数。
3.一人说一个小数,另一人说一个分数,比一比它们的大小
4.小结:这节课我们学习了什么?你是怎样学会的?你还有什么要说告诉其他同学的?
分数和小数互化教案9
1.引导学生主动进行新旧知识的类比,利用知识间的迁移解决问题。
儿童心理学指出:类比、迁移能充分调动学生利用原有的知识经验解决新问题。因为百分数应用题的解题思路及方法与分数应用题大致相同,所以教学中要有效地利用两者之间的联系。上课伊始,通过对例题改编而成的分数应用题的分析、列式、解答,使学生进一步明确解答此类题的关键是弄清谁是单位“1”,谁和谁相比。
2.体会算法的多样化。
在解决问题的过程中,鼓励学生采用不同的计算方法,体会算法的多样化,充分培养学生用不同策略解决问题的'能力。所以在教学时,鼓励学生自主解决问题,组织交流解决问题的过程,使学生明确根据数据的特点可以灵活地进行转化,再解决问题。
课前准备
教师准备 PPT课件 学情检测卡
教学过程
⊙复习导入
1.复习。
(1)课件出示复习题。
春蕾小学的一项调查表明,有牙病的学生人数占全校人数的。春蕾小学共有750名学生,有牙病的学生有多少人?
(2)引导学生思考。
①解答此题的关键是什么?(解答此题的关键是弄清谁是单位“1”,谁和谁相比)
②用什么方法计算?怎样列式?(用乘法计算,列式为750×)
(3)尝试解答。(指名板演,其他学生自己做)
2.导入。
师:刚才我们复习了用分数解决问题,下面我们就来学习用百分数解决问题。(板书课题)
设计意图:通过复习“求一个数的几分之几是多少”的问题,引导学生复习解答此类问题的关键及解法,为实现知识间的迁移作铺垫。
⊙学习新课
旧知迁移,探究新知。
(1)课件出示教材85页例2。
(2)学生尝试解题,交流计算过程。
预设
生1:求有牙病的学生有多少人,就是求750的20%是多少。题中的数量关系符合“求一个数的几分之几是多少”,所以列式为750×20%,计算时可以把百分数直接化成小数进行计算。
分数和小数互化教案10
教学目标
(1)知识目标:
①使学生理解分数化成小数的方法,能根据分数与除法的关系把分数化成小数。
②使学生认识能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。
(2)能力目标:在学生对能化成有限小数的最简分数的过程的参与讨论中培养学生观察、归纳、解决问题的能力。 (3)情感目标:在找出能化成有限小数的最简分数的规律过程中培养学生对待知识的科学态度和探索精神。
教学重难点
教学重点:分数与小数互化的方法
教学难点:能化成有限小数的分数的特点。
教学过程
一、设置悬念 导入新课
1、师:在我们的日常生活中,经常会遇到这样的问题:“小红和小明进行登山比赛,从山下到山顶,小红用了0.8小时,小明用了3/4小时,哪位同学登得快?”
要解决这个问题,你有什么好办法?
生1:把小数化成分数,再比较。
生2:把分数化成小数,再比较。
师:大家的想法都很好,要想比较两个人的速度,需要把这两个数统一成一类数,要么都是小数,要么都是分数,这样才能便于比较,今天这节课我们就来学习分数、小数互化的一般方法。(板书课题)
二、自主探究 学习新知
1、自主探究小数化分数的方法:
(1)出示例1:把一条3米长的绳子,平均分成10段,每段长多少米?
师:谁来列出算式?
生:3÷10=0.3米
3÷10= 3/10米
师:还是这根绳子,如果平均分成5段,每段长多少米?
生:3÷5=0.6米
3÷5=3/5米
师:观察一下上面两组算式,你发现了什么?
生:0.3= 3/10
0.6=3/5
师:两种不同形式结果是相等的,说明小数和分数是可以相互转化的。同学们想一想,能不能把一个小数直接化成分数呢?
怎样能较快地把小数化成分数?
0.3 0.6
问题:请你自己试着把 0.3 和 0.6 转化成分数。
学生独立完成。课件演示。
问题:1.说说你的想法。 2.这样转化的依据是什么? 3.把小数化成分数要注意什么?
生:能,因为小数表示的就是十分之几,百分之几,千分之几...的数,所以可以直接化成分母是10、100、1000...的分数,再化简就行了。
(2)师:试一试,请大家在练习本上,尝试把下面的小数化成分数:
0.07= 0.24= 0.123=
(3)学生独立解答,教师巡视。请学生到黑板板演,并讲解自己把小数化成分数的方法,师生小结如下: 把小数化成分数,原来有几位小数,就在1的后面写几个0做分母,原来的小数去掉小数点做分子。
师:小数化成分数,需要注意什么呢?
生:需要化简的分数,要化简成最简分数,还要看清楚原来的小数是几位小数。
2、自主探究把分数化成小数的一般方法:
怎样能较快地把分数化成小数?
把化成小数(不能化成有限小数的保留两位有效小数)。
师:现在就请大家以小组为单位,讨论交流,用你们喜欢的'方法做。
问题:1.说说你的想法。 2.这样转化的依据是什么? 3.把分数化成小数要注意什么?
要求:各小组推荐一名代表来作汇报。
(2)交流反馈:
请小组派代表板书,并讲解本组比较的过程及方法。其他同学质疑。(课件出示)
师:你认为哪种方法比较简便?你是怎样把分数化成小数的?
生:我认为把分数化成小数比较更简便,因为不需要通分了。
生:分数化成小数的一般方法是:分子÷分母(除不尽时按要求保留几位小数)
用分子除以分母除不尽时,要根据需要按“四舍五入”法保留几位小数。
特殊方法:分母是10、100、1000...时,直接写成小数;分母是10、100、1000...的因数时,可以化成分母是10、100、1000...的分数,再写成小数。
试一试: 把下面的分数化成小数(不能化成有限小数的保留两位小数)。问题:说说你的想法。
三、巩固应用
1、师:刚才我们一起研究了分数和小数的互化,让我们再次回到开始时提到的问题,你能解决了吗?下面就用你喜欢的方法比较吧!
2、李阿姨和王叔叔谁打字快些?
问题:
1. 怎样比较它们的大小?
2. 你想把小数转化成分数还是把分数转化成小数?
强调学生说一说自己解决问题的过程,教师及时作出评价。
1.把0.7 、9/10 、0.25 、43/100 、7/25 、13/47 这6个数按从小到大的
顺序排列起来。
拓展提高:
你知道吗?
下面这些分数中哪些可以化成有限小数?
四、畅谈收获 知识小结
谁来说一说你今天这节课都学习了哪些知识?你最大的收获是什么?
五、布置作业 巩固知识
作业:第78页练习十九, 第3题、第8题、第10题。
分数和小数互化教案11
教学目标
使学生理解并掌握百分数和分数、小数之间互化的方法.
教学重点
使学生掌握百分数与分数、小数互化的方法,并能熟练运用.
教学难点
1.在学生掌握百分数与小数基本转化规律的基础上,如何引导学生通过观察分析、概括,掌握它们互化的简便方法.
2.把不能化成有限小数的分数化成百分数.
教学设计
一、复习准备
(一)复习
1.读出下列的百分数.
20% 120% 100.5% 12.3%
2.说出下列小数所表示的.意义.
0.8 1.2 0.125 1.75
3.把下面小数化成分数.
0.2 1.5 0.375 1.25
4.把下面分数化成小数.
5.把下面各数写成百分数.
(二)引入
在生产、工业和生活中进行统计和分析时,为了便于比较和计算,有时要把小数或分数化成百分数,有时要把百分数化成分数或小数.这节课,我们就来学习百分数和分数、小数的互化.
教师板书课题:百分数和分数、小数的互化
二、新授教学
(一)百分数和小数互化.
1.教学例1
把0.25、1.4.0.123化成百分数.
(1)小组讨论转化的方法
(2)教师提问:小数化成百分数分几步进行?0.25怎样化成百分数?
教师板书:
(3)学生独立将1.4、0.123化成百分数.
教师板书:
(4)做一做:把下面各小数化成百分数.
0.38、1.05、0.055、3
(5)总结把小数化成百分数的规律.
小结:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.
板书:
(6)口答:把下列各数化成百分数.
0.35 0.07 1.3 2.24 5
我们已经学会了小数化成百分数的方法,那么,百分数怎样化成小数呢?
2.教学例2
把2.7% 124% 0.4%化成小数.
(1)小组讨论转化的方法
(2)学生试做,老师巡视指导.
(3)集体订正.
教师板书:
(4)做一做:把15% 80% 3.5%化成小数
(5)总结把百分数化成小数的规律.
小结:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.
板书:小数 百分数
(6)口答:把下面百分数化成分数:60% 12.5% 120%
(7)小结百分数与小数互化的方法.
(二)百分数和分数的互化.
1.教学例3
把 、 、 化成百分数
(1)思考回答:
① 、 、 能直接化成百分数吗?
②把百分数变成什么样的数就可以化成百分数?
(2)学生试做并订正.
教师说明:分子除以分母,如遇到除不尽时,通常商算到小数第四位,再用四舍五入法
取三位小数.同时要注意等号和约等号的使用.
教师强调:因为0.167是近似值,所以 ,而16.7%是从0.167改写成的,没有再取近似值,所以 ,如果把 直接写成百分数,就要写成
(3)做一做:把下面分数化成百分数.
2.教学例4
把17%、40%、12.5%化成分数.
(1)学生试做
(2)集体订正
板书:
(3)做一做:把下面各百分数化成分数.
14% 2.5% 120%
(4)归纳总结百分数与分数互化的方法.
三、课堂练习
四、课堂小结
这节课我们学习了什么?你能说一说百分数与分数、小数互化的方法吗?
五、布置作业
(一)把下面各数化成百分数.
0.25 0.07 0.9 0.415 1.3 1.041 1
(二)把下面的百分数化成小数或整数.
72% 17.6% 106% 2% 0.8% 7.5% 100
(三)把下面的分数化成百分数.
(四)把下面的百分数化成分数.
20% 25% 33% 180% 0.6% 3%
分数和小数互化教案12
【设计说明】
1.关注学生已有的知识基础,理解并掌握互化的方法。
小数的意义是小数化成分数的基础,而分数化成小数的依据是分数与除法的关系和分数的基本性质。因此,教学时先回顾相关的知识,在学生已有知识的基础上,让学生自主探究、交流讨论分数和小数互化的依据,促进学生掌握分数和小数的互化方法。
2.在注重算法多样化的同时,更注重优化。
比较分数和小数的大小的策略是比较丰富的,教学时既注重启发运用多种策略解决问题,同时又适时地提出一般的方法,那就是把分数化成小数计算比较简便。这样不仅可以让学生体会算法的多样化,还可以提高学生解决问题的能力。
【课前准备】
教师准备PPT课件投影仪
【教学过程】
⊙知识回顾,沟通联系
1.分别用小数和分数表示下面各图中的阴影部分。
小数:( )小数:( )
分数:( )分数:( )
2.想一想,填一填。
(1)0.3里面有( )个十分之一,它表示( )分之( ),写成分数是( )。
(2)0.17里面有( )个百分之一,它表示( )分之( ),写成分数是( )。
(3)0.009里面有( )个千分之一,它表示( )分之( ),写成分数是( )。
师:通过上面的练习,你认为分数和小数存在着什么联系?(板书课题:分数和小数的互化)
设计意图:学生在学习小数的意义时,已经知道小数表示的是十分之几、百分之几、千分之几……的数,前面学生又了解了“分数与除法的关系”,因此,这里设计练习的目的就是唤起学生的回忆,建立分数和小数之间的联系,为学生进一步学习做好准备。
⊙自主探究,总结规律
(一)教学例1。
1.课件出示教材77页例1。
2.请学生在练习本上试做,教师巡视并进行个别指导。
3.交流:教师根据巡视的情况,选择两种不同形式的结果投影展示。
4.让展示的`同学介绍自己在做题时是怎么想的,其他同学可以补充。
5.思考:根据前面同学的汇报,你对这两种不同形式的结果有什么认识?
(引导学生总结并确定两种不同形式的结果是相等的,同时注意最后的结果要化成最简分数)
0.3=0.6=
6.比一比,看谁做得快。
(1)填一填。
0.07=0.24==
0.123=0.032==
(2)把下面的小数化成分数。
0.4 0.05 0.37 0.45 0.013
7.提问:从上面的几个题目中,你发现小数化成分数有什么简便方法了吗?小数化成分数后要注意什么?
(学生讨论后汇报)
师生共同总结:把小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来的小数去掉小数点作分子,化成分数后,能约分的要约分。
分数和小数互化教案13
教学目标
1、使学生理解并掌握百分数和小数互化的方法,能正确地把分数、小数化成百分数或把百分数化成分数、小数。
2、在计算、比较,分析、探索百分数和分数、小数互化的规律的过程中,发展学生的抽象概括能力。
3、通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。
教学重难点
教学重点:掌握百分数和分数、小数互化的方法。
教学难点:正确、熟练地进行百分数和分数、小数的互化。
教学过程
一、复习。
同学们什么叫百分数?指生回答。
1、填空
男生人数占全班人数的51%,表示把()看作100份,()占它的51%,女生人数占全班人数的()%。
2、把下面的小数化成分数,并说一说是怎样化的?
0.451、20.367
3、把下面的分数化成小数,说一说是怎样化的?
1/2 2/5 4/10 2/100
4、写出下面各百分数。
百分之十六百分之七十二点五百分之一百八十百分之五百
5、把下面各数扩大100倍是多少?小数点是怎样移动的?如果把它们缩小100倍是多少?小数点是怎样移动的?
2、55 0.48 1、25 10.3
二、新授。
1、教学例1、
(1)出示例1:把0.25、1、4、0.123化成百分数。
(2)引导学生思考:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。
独立完成,指生板演。
0.25=25/100 =25%
1、4=14/10=140/100=140%
0.123=123/1000=12、3/100=12、3%
(3)指黑板的算式:请大家观察一下,你有什么发现?声讨论。指生说发现。
小结:
如果不看先化成分数的这个过程,小数可以怎样直接化成百分数的?
(引导学生归纳出小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。)
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
(4)说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。
(5)练习:把下面的小数化成百分数。
0.07= 0.125=
2、1= 6.6=
4.076= 0.108=
2、教学例2
(1)出示例2:
把下列百分数化成小数。
27% 135%
(2)引导学生思考:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。
(3)启发学生口述每题的转化过程,
板书:
27%=27/100=27÷100=0.27
135%=135/100=135÷100=1、35
(4)引导学生观察、归纳,百分数怎样很快地直接化成小数?
(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)
(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。
(6)完成第80页“做一做”的第(2)题,(小黑板出示)
3、小结:引导学生进一步综合归纳百分数和小数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
4、教学例3
出示例3:
青阳小学六年级一班的体育委员
在调查了全班同学中会游泳和会
溜冰的人数后,得到如下结果。
你会用百分数表示出上面的分数吗?
(1)学生通过小组自学讨论,找出将分数化成百分数的方法。
(2)小组汇报,并板书。
(3)根据学生回答,
板书:3/5 =3 ÷ 5=0.6= 60% 3/5=60/100=60%
2/7=2÷7=0.2857=28.57%
把1/6化成百分数。
(分子除以分母,除不尽时,保留三位小数,也就是百分号前保留一位小数)
5。例4:把下列百分数化成分数。
50% 45% 67% 37.5%
(1)学生通过小组自学讨论,找出将百分数化成分数的方法。
(2)引导学生:百分数是分数的一部分,可以写成分数形式。请大家运用过去所学过的知识,试着把上面几个分数改写成百分数。
(3)根据学生回答,
板书:50% =50/100=1/2 45% 45/100=9/20
67%=67/100 37.5%=37.5/100=375/1000=3/8
(4)想一想:2、5%怎样化成分数?(如果百分数的分子是小数的,可以根据分数的基本性质,把分子、分母同时扩大相同的倍数,使分子变成整数后,再约分。)
(5)在○里填上合适的.符号。
三、巩固练习
1、排列下列各数(从大到小)。
2、填空。
3、判断:
(1)0.6%=0.6()
(2)30的后面添上“%”,得到的数比原数扩大100倍。()
(3)15.5%扩大10倍是155。()
(4)把小数化成百分数只要把小数点向右移动两位,同时在后面添上百分号。()
4、思考:拿出一张长方形或正方形的纸,把它对折三次,然后把其中一份用分数表示出来是(),用百分数表示出来是(),用小数表示出来是()。
()
牛的头数比羊的头数多25%,羊
的头数比牛少百分之几?
苹果重量的5/8是梨的重量的4/5
(1)苹果的重量是梨的()%
(2)梨的重量是苹果的()%
(3)梨比苹果轻()%
(4)苹果比梨重()%
100增加10%后又减
少10%是()。
一个书包的售价,今年比去年降低了25%,去年又比前年降低了20%,今年的售价比前年降低了百分之几?
四、布置作业
练习十九第5、6、8题。
分数和小数互化教案14
目标
使学生掌握最简分数能或者不能化成有限小数的规律,培养学生的判断和推理能力。
教学及训练
重点
掌握最简分数能或者不能化成有限小数的规律。
仪器
教具
教学内容和过程
教学札记
一、复习
1.让学生说一说怎样把下面的小数化成分数。
1.250.20413.480.109
2.把下面的分数化成小数
16
二、新课
1、教学例3
教师出示例3,提问:例3中各分数的分母与例2的有什么不同?怎样把这些分母不是10、100、1000......的分数化成小数?
教师把例题中的分数按照书上的顺序从上到下写出来。
教师:我们先看怎样把化成小数,根据分数与除法的关系,分数的分子相当于除法中的什么?分母相当于除法中的什么?那么以写成什么?
教师在3/4的右面板书:=3÷4,并提问:3除以4你们会做了吗?
然而让学生依次把这些题做完,当做到最后两题时,教师可提醒学生按照题目的要求,用约等号和近似数分别表示出它们的近似值,再引导学生出分数化成小数的一般方法,并让学生把教科书第109页上面的法则读一遍,同时指出例题中把分数改写成除法算式,目的是强调分数与除法的关系,计算熟练以后这一步可以省略不写。
2.教学最简分数能或者不能化成有限小数的规律。
我们把每个分数的分母分解质因数(如下)。
4=2×225=5×540=2×2×2×5
9=3×314=2×7
引导学生想出:能化成有限小数的分母中只含有质因数2和5,如果分母中含有2和5以外的质因数,就不能化成有限小数。
然后教师归纳成书上的结语,还要向学生指出:看一个分数能不能化成有限小数,首先要看这个分数是不是最简分数,不是最简分数的,要把它约成最简分数后再运用这一规律来判断。
2.做书上第109页下面”练一练“中的题目
让学生先直接运用规律判断,并说一说判断的依据,再把分数化成小数来验证。
三、课堂练习
做练习二十一的`第5-10题
1、第5题,让学生自己做,教师巡视,发现问题,及时辅导。
2、第6题,让学生独立做,订正时让学生说一说这些分数化成的小数之间有什么联系,使学生发现只要记住等于0.5就容易想出等于0.25(0.5的一半),也容易想出等于0.75(3个0.25),等于0.125(0.25的一半)等等。
3.第7、题,让学生先直接判断,再抽出两个分数化成小数来检验判断的是否正确。
4.第8、9、题,让学生独立做,教师巡视,检查学生化成的小数对不对,订正时指名说一说哪些分数能化成有限小数,哪些分数不能化成有限小数。
6.第10题,提示学生如果能直接看出谁大、谁小可以直接判断,如果看不出来,就要把分数化成小数或者把小数化成分数再进行判断,哪种简便就用哪种方法,订正时指名说一说自己是怎样判断的,对运用简便方法进行判断的同学,要给予鼓励。
四、
教师:能化成有限小数的最简分数有什么特点?怎样判断一个最简分数能不能化成有限小数?
分数和小数的互化(二)
分数转化成小数的一般方法:
用分数的分子除以分数的分母,除不尽的一般保留三位小数。
判断一个分数能否转化为有限小数的方法:
(1)不是最简分数的,要先把它约成最简分数。
(2)能化成有限小数的分母中只含有质因数2和5;
(3)如果分母中含有2和5以外的质因数,就不能化成有限小数。
分数和小数互化教案15
〔教学目标〕
1.使学生掌握小数化成分数、分数化成小数的方法,并能正确地进行分数和小数的互化。
2.培养学生的观察能力,迁移类推能力及分析综合和抽象概括的能力。
3.培养学生善于观察、善于思考、善于概括的思维品质,渗透转化的思想。
〔教学过程〕
本节课共分四个环节进行。
1.复习旧知。
(1)口算。
(2)用小数和分数表示下面各图中的涂色部分。
订正时,结合这道题说说小数的意义。
(3)0.9里面有9个( )分之一,它表示( )分之( )。
(4)0.07里面有7个( )分之一,它表示( )分之( )。
(5)0.013里面有13个( )分之一,它表示( )分之( )。
(6)4.27表示( )又( )分之( )。
[订正:(3)十、十分之九;(4)百、百分之七;(5)千、千分之十三;(6)四、百分之二十七]
(7)口答:分数与除法的关系。
教师小结:前面我们复习了有关小数和分数的一些知识,为了便于比较和计算,常常要把分数化成小数,或者把小数化成分数,今天就来学习这方面的知识。板书课题:分数和小数的互化。
2.学习小数化成分数的方法。
教师谈话:刚才我们复习了小数的意义,小数表示的是十分之几、百分之几、千分之几、……的数,实际上就是分母是10、100、1000、……的分数的另一种表示形式。因此,小数可以直接写成分母是10、100、1000、………的分数。
(1)出示例1:把0.9、0.03、1.21、0.425化成分数。
可指名回答:先说说每个小数表示的意义,再化成分数。
(2)归纳方法。
引导学生通过观察发现小数化分数的简便方法,可让学生讨论得出。
小数化分数,原来有几位小数,就在1后面写几个零作分母,把原来的小数去掉小数点作分子;化成分数后,能约分的要约分。
(3)反馈练习。
把下面的小数化成分数。(全班动笔完成,指定学生写在投影片上)
0.7 6.13 0.08 0.65 1.075
3.学习分数化成小数的方法。
教师提问:你们能根据小数的意义,把这些分数直接化成小数吗?可让学生互相说说,再指名回答。
教师提问:你能根据分数与除法的关系,把这些分数化成小数吗?学生讨论后,指名回答:
(2)归纳方法。
引导学生观察这些分数的分母的特点,说说它们化成小数的方法。得出:
分母是10、100、1000、……的分数化小数,可以直接去掉分母,看分母1后面有几个零,就在分子中从最后一位起向左数出几位,点上小数点。
(3)反馈练习。
把下面的分数化成小数。(全班动笔完成,指名让学生写在投影片上)
[订正:0.1 0.73 2.09 0.601 14.7 5.83]
订正时,可再让学生说说方法,并根据学生的问题进行指导。
位小数。)教师引导学生观察这些分数的分母的特点。(分母不是10、100、1000的数)提问:这些分数怎样化成小数呢?联系分数与除法的.关系,想一想。学生讨论后,试做。然后指名回答。
订正时,让学生说说方法,强调要求保留三位小数,就要除到小数点后面的第四位,再按四舍五入法保留小数,用“≈”表示。
(5)归纳方法。
引导学生观察这组分数分母的特点,说说它们化小数的方法。讨论后,得出:
分母不是10、100、1000、……的分数化小数,要用分母除分子;除不尽时,可以根据需要按四舍五入法保留几位小数。
(6)反馈练习。
把下面的分数化成小数。(除不尽的,保留三位小数。)
4.巩固练习。
(1)指导学生看书,质疑,解疑。
(2)巩固练习。
①把下面的小数化成分数。(全班动笔完成。)
0.5 0.8 1.07 0.85 7.25
②把下面每个小数和与其相等的分数用线连起来。
订正时,说说方法,可以把小数化成分数,也可以把分数化成小数,再进行比较。
③把下面的分数化成小数。
[订正:0.5、0.25、0.75、0.2、0.4、0.6、0.8、0.125、0.05、0.04。]
订正后,教师说明这是常用的“分小”互化的数据,要牢记。并给出时间,让学生记一记。
5.课堂小结。
师生共同总结本节课的学习内容。注意强调分数与小数互化时,除不尽的,一般要除到小数点后面的第四位,用四舍五入法保留三位小数,并用“≈”表示。同时指出进行带分数、带小数互化时,不要丢掉整数部分
【分数和小数互化教案】相关文章:
《分数和小数的互化》教案02-26
分数和小数互化教案(精选)05-22
分数与小数的互化教案02-14
《百分数和分数、小数的互化》教案01-07
百分数和小数的互化教学反思12-23
《百分数与小数互化》教学反思07-03
百分数与小数的互化教学反思02-08
百分数与小数的互化教学反思14篇02-09
真分数和假分数教案08-16