平行四边形教案优秀

时间:2024-05-23 07:11:59 教案 我要投稿

平行四边形教案优秀

  作为一名教师,有必要进行细致的教案准备工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么教案应该怎么写才合适呢?下面是小编整理的平行四边形教案优秀,仅供参考,欢迎大家阅读。

平行四边形教案优秀

平行四边形教案优秀1

  教材简析:

  1、紧密联系学生已有经验,通过丰富的学习活动,帮助学生直观认识常见的平面图形。教材通过折正方形纸,让学生直观认识三角形,把两个完全相同的三角形拼成一个平行四边形,直观地认识平行四边形。这样安排,既符合低年级学生的认知特点,也有利于他们主动地认识平面图形。

  2、把图形的变换,图形间的联系放在重要位置。教材只要求学生直观认识三角形、平行四边形,没有深入研究它们的特征。但是教材安排了许多折、剪、拼的活动,比较多地将一种图形变换成另一种图形。这些操作活动,能使学生感受图形之间的联系,有利于培养学生空间观念和解决问题的能力,有利于发展学生的。数学思维。

  3、教材设计了一些开放性问题,如在钉子板上围三角形、平行四边形,围成的这些图形可以有大有小,有不同的位置,用一个长方形剪成两个完全一样的三角形拼一拼,可以拼成多种图形。这些题能激起学生独立探索的.精神,相互合作的愿望,有利于改善教学方式,培养学生的创新意识。

  教学目标:

  1、通过把长方形成或正方形折、剪、拼等活动,直观认识三角形和平行四边形,知道三角形和平行四边形的名称,并能识别三角形、平行四边形,初步了解三角形、平行四边形在日常生活中的应用。

  2、在折图形、剪图形、摆图形、拼图形等活动中,使学生体会图形的变换,发展对图形的空间想像能力。

  3、使学生在学习活动中积累对数学的兴趣,增强与同学的交往、合作的意识。

  教学重点与难点:

从三角形、平行四边形实物中抽象出平面图形,并让学生正确认识它们。

  教具准备:

长方形、正方形纸各一张,不同形状的三角形、平行四边形若干个,剪刀一把,钉子板和20页上半页的图片。

  学具准备:

长方形纸、正分形纸、直角三角形纸若干张、剪刀、学具盒。

  教学过程:

一、游戏激趣,创设情境

  小朋友,你们喜欢折纸吗?你们想折吗?今天老师就和你们一起玩折纸游戏好吗?

  二、动手操作,探索新知

  1、折一折,认识三角形

  (1)教师手中拿的是什么图形的纸?(正方形纸)请小朋友们拿出和老师手中一样的正方形纸,你能把这张正方形的纸对折成完全一样的两部分吗?(教师巡视,如有学生对对折不理解要及时指导。)

  (2)展示成果。

  哪位小朋友愿意上来说一说你是怎样折的?

  ①对折成两个完全一样的长方形。(这是我们已经认识的)

  ②对折两个完全一样的三角形。(贴出图形)问:这是什么图形?(板书:三角形)

平行四边形教案优秀2

  教学目标:

  1、经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;

  2、索并掌握平行四边形的性质,并能简单应用;

  3、在探索活动过程中发展学生的探究意识。

  教学重点:

  平行四边形性质的探索。

  教学难点:

  平行四边形性质的理解。

  教学准备:

  多媒体课件

  教学过程

  第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)

  1、小组活动一

  内容:

  问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

  (1)你拼出了怎样的四边形?与同桌交流一下;

  (2)给出小明拼出的'四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

  2、小组活动二

  内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?

  第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)

  小组活动3:

  用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?

  (1)让学生动手操作、复制、旋转、观察、分析;

  (2)学生交流、议论;

  (3)教师利用多媒体展示实践的过程。

  第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)

  实践探索内容

  (1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

  (2)可以通过推理来证明这个结论,如图连结AC。

  ∵四边形ABCD是平行四边形

  ∴AD//BC,AB//CD

  ∴∠1=∠2,∠3=∠4

  ∴△ABC和△CDA中

  ∠2=∠1

  AC=CA

  ∠3=∠4

  ∴△ABC≌△CDA(ASA)

  ∴AB=DC,AD=CB,∠D=∠B

  又∵∠1=∠2

  ∠3=∠4

  ∴∠1+∠3=∠2+∠4

  即∠BAD=∠DCB

  第四环节应用巩固深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)

  1、活动内容:

  (1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?

  A(学生思考、议论)

  B总结归纳:可以确定其它三个内角的度数。

  由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。

  (2)练一练(P99随堂练习)

  练1如图:四边形ABCD是平行四边形。

  (1)求∠ADC、∠BCD度数

  (2)边AB、BC的度数、长度。

  练2四边形ABCD是平行四边形

  (1)它的四条边中哪些线段可以通过平移相到得到?

  (2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。

  归纳:平行四边形的性质:平行四边形的对角线互相平分。

  第五环节评价反思概括总结(8分钟,学生踊跃谈感受和收获)

  活动内容

  师生相互交流、反思、总结。

  (1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。

  (2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?

  (3)本节学习到了什么?(知识上、方法上)

  考一考:

  1、ABCD中,∠B=60°,则∠A=,∠C=,∠D=。

  2、ABCD中,∠A比∠B大20°,则∠C=。

  3、ABCD中,AB=3,BC=5,则AD=CD=。

  4、ABCD中,周长为40cm,△ABC周长为25,则对角线AC=()cm。

  布置作业

  课本习题4、1

  A组(学优生)1、2

  B组(中等生)1、2

  C组(后三分之一生)1、2

平行四边形教案优秀3

  教学目标:

  1、通过观察、讨论、测量、探索等数学活动,认识平行四边形的特征,了解其特性。

  2、在探索平行四边形的特征的过程中,发展学生初步的空间观念。

  3、在探索学习活动中,发展实践能力和创新意识,并学会与他人合作。

  4、让学生通过亲身参与探索实践活动,去获得积极的情感体验和成功体验。

  教学设想:

  “自主探索发展学习”,旨在改变教与学的方式。教师的教是为学生的自主学习,主动探究创造条件,是让学生真正在探索学习中发展,因此,我设计“平行四边形的认识”这节课,对现行教材进行创造性处理,努力为学生创设一个广阔的活动空间,探索空间,让学生最大限度的参与探索平行四边形的特征的全过程,具体设计以下几个探索活动。

  探索活动1:从各种各样的实物形体中找出平行四边形的实物,然后探索平行四边形的特征。

  探索活动2:探索发现“平行四边形”的共同特点。让学生利用自己所带的材料借助自己的思维去发现这一共同特点,学生通过自己动脑思考,探索出多种发现的方法,有困难的,小组共同研究,共同探索。

  探索活动3:探索发现平行四边形的特性活动,根据小学生好动、好玩、好奇的特点,设计了小组合作制作一个平行四边形的'框架和三角形的框子,通过让学生动手拉发现二者的不同特性。

  探索活动4:拼摆平行四边形,学生在拼平行四边形的小组活动中,合作竞赛,课堂气氛活跃,学生的创造性思维得到发展。

  教学过程:

  一、创设问题情境。

  1、同学们把你找的周围四边形的物体,想大家做个汇报。

  2、演示:出示以下图形

  3、这些四边形有什么共同特点?

  长方形

  4、在这些四边形中我们已经研究过那几种图形?他们各有那些特征?他们之间有什么关系?

  正方形

  板书:

  二、自主探索,合作交流。

  1、以四个同学为一组,观察平行四边形的图形,探索平行四边形的共同特点。

  (1)学生用自己喜欢的方法去探索平行四边形的特点。

  (学生拿出准备好的平行四边形图用直尺、三角板、量角器等工具来测定)

  (2)小组汇报,学生互相评价

  汇报1:通过用三角板和直尺测出两组对边分别平行

  汇报2:用直尺量两组对边分别相等

  汇报3:用量角器和对比的方法,测出对角也相等。教师用事物演证这一特点。

  2、认为什么样的图形叫平行四边形?

  3、看书、质疑。

  4、小组合作探索

  平行四边形

  平行四边形与长、正方形的关系

  长方形

  正方形

  小组讨论,自己画出关系图

  小组汇报、展示画的图形

  5、小组合作探索平行四边形的特征。

  (1)小组合作用自己制作的平行四边形和三角形,拉动后发现了什么?

  (2)小组汇报实验结果

  教师验证、板书:容易变形

三、实验应用,拓展创新。

  1、说出日常生活中,那些地方利用了平行四边形易变形的特征?自己根据今天学的知识进行小发明、小创造。

  2、用塑料拼板拼平行四边形

  (分组合作拼摆,展示拼摆的结果)

  四、评价体验。

  1、评价本节课自己及其同学的表现。

  2、学习“平行四边形的认识”这课后,可以帮助你解决那些平时遇到的问题。

  五、教学反思:

  本节课根据数学课程标准的基本理念,精心设计学生的数学活动,努力改善学生的学习方式,主要有以下特点:

  1、设计活动,激发兴趣。教学过程中,注重选择富有儿童情趣的学习材料和活动内容,激发学习兴趣,获得愉快的数学学习体验。如在导入新课时,教师创设问题情境,让学生找周围的四边形物体,巧妙引导学生回顾前面学习的长方形、正方形,自然过渡到平行四边形的认识。在探索阶段,让学生在实践活动中,经历、体验数学知识的形成过程。在巩固拓展时,创始了让学生“辨、拼、说”的活动,课堂上学生始终乐此不疲,兴趣盎然。

  2、独立思考,有效合作。本节课教学中,教师注重把思考贯穿教学的全过程,将实践与思考贯穿教学的全过程,让学生在观察实践交流中思考,尤其是特别注重为学生创设独立思考的时空。教学中,无论是学生“观察发现”,或是“探索创新”,或是“深化巩固”,或是“联系实际”,都先让学生独立思考,再进行小组合作或再组织讨论交流。这样学生有话可说,有话能说,充分发挥学生的积极性。

  3、改善策略,创新思维。教学时有意识地为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。第一,设计学生喜欢又富有挑战性的问题,激发学生主动思考和创造的欲望。教学时这样设问:“用自己喜欢的方法去探索平行四边形的特点。”学生经过积极、自主的思考、实践,创造了不少的方法。第二、提供材料,让学生在实践中进行“再创造”。课前教师为每组学生准备平行四边形和三角形,课中引导学生利用手中的材料“做数学”,在做中创新,在做中“再创造”。第三、为学生提供比较充足的探索与创造的空间,学生在数学活动中进行再创造,实现了真正的数学学习。

平行四边形教案优秀4

  一、内容和内容解析

  1、内容

  平行四边形对角线的性质。

  2、内容解析

  这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会。平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用。这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用。是中心对称图形的具体化,是以后学习平行四边形判定的重要依据。

  教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算。

  基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用。

  二、目标和目标解析

  1、目标

  (1)探究并掌握平行四边形对角线互相平分的性质。

  (2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题。

  2、目标解析

  达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想。

  达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证。

  三、教学问题诊断分析

  本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容。例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算。这些问题常常需要运用勾股定理求平行四边形的高或底。这些问题比较综合,需要灵活运用所学的有关知识加以解决。

  基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算。

  四、教学过程设计

  引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质。

  1、引入要素探究性质

  问题1我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?

  师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答。

  设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备。

  问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的.结论吗?

  师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分。

  你能证明上述猜想吗?

  教师操作投影仪,提出下面问题:

  图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证。

  学生合作学习,交流自己的思路,并讨论不同的验证思路。

  教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB,

  △ABD≌△BCD,△ADC≌△CBA、有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明。

  师生归纳整理:

  定理:平行四边形的对角线互相平分。

  我们证明了平行四边形具有以下性质:

  (1)平行四边形的对边相等;

  (2)平行四边形的对角相等;

  (3)平行四边形的对角线互相平分。

  设计意图:应用三角形全等的知识,猜想并验证所要学习的内容。

  2、例题解析应用所学

  问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积。

  师生活动:教师分析解题思路,可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程。

  变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F、求证:OE=OF、图中还在哪些相等的量?

  设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”。让学生理解平行四边形对角线互相平分的性质的应用价值。

  3、课堂练习,巩固深化

  (1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________、

  (2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?

  设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力。

  4、反思与小结

  (1)我们学习了平行四边形的哪些性质?

  (2)结合本节的学习,谈谈研究平行四边形性质的思想方法。

  (3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题?

  5、布置作业

  教科书P49页习题18、1第3题;

  教科书第51页第14题。

平行四边形教案优秀5

  一、教材分析

  1、说课内容:冀教版义务教育课程标准实验教科书五年级数学上册第96页和第97页《平行四边形面积》。

  2、教材编排特点:

  本节课是在学生已经初步认识了长方形、正方形和三角形以及平行四边形的基础上进行教学的,本节课是今后继续学习关于平行四边形和其他几何图形知识的基础,同时对发展学生的空间观念具有举足轻重的作用。这节课运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外平行四边形面积公式这一内容学习得如何,直接与学习三角形和梯形的面积公式有着直接的关系。

  学习目标:割补、拼摆等方法,探索并掌握平行四边形面积公式,会计算平行四边形面积。

  理解拼成的长方形和原来的平行四边形的关系。

  感受平行四边形面积在日常生活中的应用。

  重点:掌握并会用公式计算平行四边形的面积。

  难点:用转化的数学思想和方法来探索平行四边形的面积公式。

  二、说教法

  中年级学生的思维形式正处在形象思维过渡到抽象思维的阶段。因此本节课的教学,以学生自学为主,通过观察比较小组讨论和展示使学生从感性认识上升到理性认识。学生丰富的感性材料,调动了学生多种感官,获取应有的知识。所以教法的选择以自学、对话、评价的堂结构。

  三、说学法

  为了达到本节课的教学目标,我始终贯彻主体性和活动性的教学思想,利用转化的思维方式,当堂检测,使学生能更好掌握所学知识,收到良好效果。指导学生运用以下学习方法:

  (1)动手操作的方法;

  (2)小组合作的方法;

  (3)观察比较的方法。

  四、说教学过程

  (一)热身训练

  课的开始,我准备了三个练习题学生很快就做完了,通过学生的汇报可以知道学生对就知识掌握良好。又通过过的语言;长方形、正方形面积我们会求,那么平行四边形面积怎样求呢?这节课我们就一起来探究平行四边形面积。(板书课题)

  (二)探究新知

  我国著名的叶澜教授曾提出:要把课堂还给学生,让课堂焕发生命的活力。是的,学生是学习的主人,我们的教学最终要落实到个体的学习行为上,学生只有通过自己的实践体验,才能真正对所学内容有所感悟,进而化为己有。因此,在提出本节研究的问题后,我准备指导学生运用自学的学习方式,研究平行四边形的特点。

  (1)课本第96页、第97页内容。让学生开动脑筋想一想、剪一剪、拼一拼,并完成任务一。在探究活动中,尊重学生独立思考的成果,鼓励学生想出多种研究方法,尽量让学生获得成功的体验。

  接着以小组为单位展示研究结果,进行组际交流评价,逐步完善、归纳、平行四边形的形成。得出自己的拼法。

  (设计意图:这样的设计使学生真切体验了通过自己的努力,合作,探索获得新知识的成就感。课堂上让学生充分展示自己思维过程,使学生逐步从“学会”到“会学”,最后达到“好学”的美好境界。)

  (2)二通过学生认真观察比较利用转化思想,进行小组合作,小组合作之前,我先讲清合作的规则、要求。议一议:自己观察割补前后的图形有什么关系?你发现了什么?

  (1)交流得出()

  (2)平行四边形的`底与长方形的长()

  (3)平行四边形的高与长方形的宽()

  (4)它们的面积()

  那么长方形面积=()×()

  平行四边形面积=()×()

  用字母s表示面积,a表示底,h表示高,s=()

  自主反思:

  通过本节课的学习,我学会了“思维从动作开始,儿童可以理解的首先是自己的动作。”通过操作,可以使学生获得丰富的感性知识,可以为学生创设一个活动、探索、思考的环境,使他们主动参与知识的形成过程。所以在这一环节我设计了以下活动:

  想一想、剪一剪、拼一拼、说一说、做一做

  (设计意图:这些实践活动是学生乐于接受的,在活动中人人参与,学生亲身感知了不同方式下的平行四边形,对平行四边形的特征加深认识。)

  练习是掌握知识、形成技能、发展智力的重要环节。根据学生年龄特点和认知规律,本着趣味性、思考性、综合性相结合的原则,我设计以下几组练习题:

  达标检测

一、我会填:

  1、一个平行四边形的底为a,高为h,它的面积是()。

  2、一个平行四边形可以有()条高。

  3、平行四边形的面积是由它的()和()决定的。

  4、一个活动的平行四边形木条框拉一拉,()不变,()变了,()也随着变化了。

  二、对错我来判:

  1、一个平行四边形只有两条高。()。

  2、平行四边形的面积等于长方形的面积。()。

  3、面积相等的两个平行四边形,一定等底等高。()。

  三、我会算:

  1、如图一,书上第97页,练一练第一题。

  已知,a=4、8米,h=3.5米,求平行四边形面积?

  2、已知,s=3.2分米,h=1.6分米,求平行四边形的底?

  四、拓展:

  1、动手量一量自己的手中平行四边形的底和高,求出它的面积。

  2、完成书上第97页问题讨论。

平行四边形教案优秀6

  教学目标

  (一)使学生理解的概念及其特性,并会画的高。

  (二)使学生掌握长方形、正方形和的关系。

  (三)进一步提高学生观察、比较能力和作图能力。

  教学重点和难点

  理解和掌握的定义及其特性,画的高是教学重点;理解长方形、正方形与之间的关系是难点。

  教学过程设计

(一)复习准备

  我们已经学过一些几何图形,观察一下这些图形有什么共同的特点?(投影)

  在明确它们都是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形

  提问:我们学过哪些四边形呢?

  (学过的四边形有长方形、正方形)

  你能举例说说哪些物体表面是吗?

  教师出示挂图,让学生初步感知。

  我们已初步认识了,那么什么叫?它有什么特性?这就是我们今天要研究的课题。(板书课题:)

  (二)学习新课

  1、理解的定义。

  首先出示一组图形:

  这些图形是什么形?它们有什么特征?

  ①动手测量。

  指名一学生到黑板上用三角板检验一下,每个图形的对边怎样。

  其余同学用三角板检验课本151页3个图形的对边。

  然后再用尺子度量一下每组对边的长怎样。

  ②抽象概括。

  根据你测量的结果,能说说什么叫吗?

  小组先议论一下,(可能说出每组对边分别相等,也可能说出每组对边平行)再让到黑板上测量的同学说出检验与测量的结果,从而引出的确切含义。

  两组对边分别平行的四边形叫做。(板书)

  教师强调说明:只要四边形的每组对边分别平行就能确定它的两组对边相等,因此的定义是“两组对边分别平行的四边形”。

  反馈:判断下面图形哪些是?(投影)

  2、的特性。

  同学们已经学过三角形,三角形具有稳定的特性,那么有什么特性呢?

  (1)教师演示。

  教师拿一长方形木框,用两手捏住长方形的两个对角,向相反方向拉。观察两组对边有什么变化?拉成了什么图形?什么没有变?

  学生明确:两组对边边长没有变,变成了,四个直角变成了锐角和钝角。

  (2)动手操作。

  学生自己动手,把准备好的长方形框拉成,并测量一下两组对边是否还平行。

  (3)归纳特性。

  根据刚才的实验、测量,引导学生概括出:有不稳定性。(板书)

  (4)对比。

  三角形具有稳定性,不容易变形。与三角形不同,容易变形,也就是具有不稳定性。

  这种不稳定性在实践中有广泛的.应用。你能举出实际例子来吗?(如汽车间的保护网,推拉门、放缩尺等。)

  3、学习的底和高。

  (1)认识的底和高。

  出示:

  教师边演示边说明:

  从一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做的高。这条对边叫做的底。

  (2)找出相应的底和高。

  出示:(投影)

  观察上图中,有几条高?它们相对应的底各是哪条线段?

  从而让学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC、

  (3)画的高。

  同学们已经学过三角形画高的方法,高的画法与其相同,都用过线外一点画已知直线的垂线的方法。从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高。这里高要画在内,不要求把高画在底边的延长线上。

  同学动手画高:152页“做一做”。

  4、教学长方形、正方形和的关系。

  教师利用长方形框,拉动长方形的边,使其变成不同的。还可把变成长方形,比较一下长方形和的异同点。

  引导学生明确:相同点是两组对边都分别平行,所以长方形也具有的特征,也属于。不同点是长方形的四个角都是直角,所以把长方形看作是特殊的。

  比较正方形和的相同点和不同点。

  引导学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的。因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形还可看作是特殊的长方形。

  这三种图形之间的关系可以用集合图来表示。

(三)巩固反馈

  1、说说什么叫做?它有什么特性?

  2、在下面图形中画高,并指出它的底。

  3、在下面图形中,画出两条不同的高。

  4、说一说、长方形和正方形之间的关系。

  (四)作业(略)

  课堂教学设计说明

  本节课是在学生对有了初步感知的基础上,通过直观演示,操作实践等手段,给学生建立明确的概念。

  新课分为四个部分。

  首先让同学利用前面讲过的检验平行线的方法,检查三个不同形状的,然后再用尺子度量一下每组对边的长度,让学生从实践中发现的特征,从而抽象概括出的定义。

  其次通过教师的演示和学生实际操作,发现的特性,就是具有不稳定性。

  然后认识的底和高,并会画高。

  最后通过比较长方形、正方形和平行四边行的异同点,明确它们的关系:正方形是特殊的长方形,长方形、正方形都是特殊的。并用集合图表示。

  在教学或练习中,既要重视直观演示,运用比较的方法,又要加强动手操作,量一量、画一画等,让学生在实践中既获得知识,又提高能力。

  板书设计

  由四条线段围成的图形叫做四边形。

  两组对边分别平行的四边形叫做。

  特性:不稳定性。

  画出两条不同的高

【平行四边形教案优秀】相关文章:

平行四边形教案03-27

《认识平行四边形》教案03-30

《平行四边形的面积》教案03-02

平行四边形面积教案02-09

平行四边形的认识教案09-08

平行四边形教案3篇05-14

平行四边形教案四篇05-28

关于平行四边形教案四篇05-16

实用的平行四边形教案四篇05-17