- 《运算律》教案 推荐度:
- 相关推荐
《运算律》教案
作为一无名无私奉献的教育工作者,常常要根据教学需要编写教案,借助教案可以更好地组织教学活动。教案应该怎么写才好呢?下面是小编为大家收集的《运算律》教案,欢迎阅读与收藏。
《运算律》教案1
教学内容
义务教育课程标准实验教科书(西南师大版)四年级(下)第17~18页例1~2,练习四第1题。
教学目标
1.经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。
2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的`能力。
教学重点
在具体情景中探索发现乘法交换律、乘法结合律。
教学过程
一、 创设情景,探索新知
1.教学例1
出示例1图,学生独立列式解答,然后在小组中互相交流。
板书:9×4=36(个),4×9=36(个)。
学生观察板书,思考:这两个算式有什么特点?
板书:9×4=4×9。
教师:你还能写出几个有这样规律的算式吗?
板书学生举出的算式。
如:15×2=2×15
8×5=5×8 ……
教师:观察这些算式,你发现了什么?
学生1:两个因数交换位置,积不变。
学生2:这就叫乘法交换律。
教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)
教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)
2.教学例2
出示例2情景图,口述数学信息和解决的问题。
学生独立思考,列式解答。
然后在小组中交流解题思路和方法。
全班汇报,教师板书。
(8×24)×68×(24×6)=192×6=8×144=1152 (户)=1152 (户)
学生对这两种算法进行观察、比较,有什么相同点和不同点?
板书: (8×24)×6=8×(24×6)。
出示下面的算式,算一算,比一比。
16×5×2= 16×(5×2)= 35×25×4=
35×(25×4)= 12×125×8= 12×(125×8)=
观察算式,有同样的特点吗?每排的两个算式的结果相等吗?学生独立计算,验证自己的猜想,全班交流。
板书:16×5×2=16×(5×2) 35×25×4=35×(25×4)43×125×8=43×(125×8)谁能说出这几组算式的规律?
学生1:每个算式只是改变了运算顺序。
学生2:每排左、右两个算式计算结果相等。
学生3:三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。
教师:谁知道这个规律叫什么?
教师板书:乘法结合律。
教师:如果用a、b、c表示3个数,可以怎样表示这个规律?
教师板书:(a×b)×c=a×(b×c)。
教师:这个规律就叫乘法结合律。
小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
二、课堂活动
1?练习四第1题:学生独立完成,全班交流,说出依据。
2?连线。
(学生独立完成)
23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)
三、课堂小结
今天这节课你都有哪些收获?还有什么问题?
《运算律》教案2
教学内容
义务教育课程标准实验教科书(西南师大版)四年级(下)第23页例5,练习五第2~8题和思考题。
教学目标
1?进一步理解并掌握乘法分配律,并能运用乘法运算律进行简便计算。
2?运用乘法运算律解决简单的实际问题。
3?培养学生灵活运用所学知识解决实际问题的能力。
教学重、难点
灵活运用乘法运算律进行简便计算。
教学过程
一、复习旧知,引入新课
1.上节课学习了乘法分配律,谁能分别用自己的话和字母表述乘法分配律?
2.填空。
25×6+75×6=
我们这节课一起来学习用乘法分配律进行简便计算。
二、学习新知
1.出示例5
用简便方法计算102×45,32×27+32×73。
教师:观察每个算式中的因数有什么特点?可以运用乘法运算律进行简便计算吗?(学生观察思考,独立尝试计算)
学生计算后汇报,教师板书如下:
(1)①102×4
②102×45
③……=(100+2)×45 =102×(40+5)
=100×45+2×45 =102×40+102×5
=4500+90 =4080+510
=4590 =4590
(2)①32×27+32×73
②32×27+32×73
③……=32×(27+73) =864+2336
=32×100=3200 =3200
小组讨论(小组讨论后,在全班交流)
(1)你认为每个题的哪种算法最简便?为什么?这种简便算法的依据是什么?
(2)运用乘法分配律进行简便计算时,要注意什么?
教师在学生讨论交流的基础上,小结运用乘法分配律进行简便计算的方法。
三、课堂练习
1.基本练习
(1)练习五第5题:学生独立完成口算题。
(2)填空。
巩固练习
(1)练习五第7题:学生独立完成,再集体订正。
(2)练习五第4题:学生根据题中所呈现的'信息独立解决问题,然后思考还能提出哪些数学问题?
(3)练习五第8题:学生根据情景图中所呈现的信息先独立思考解决,对有困难的可在小组中讨论解决。
全班交流,板演在黑板上,并说出自己解题的思路。
3.发展练习
练习五思考题,独立思考,有困难的先在小组中商量解决,最后全班反馈,要求说出思考过程。
4.课堂作业
练习五第2,3,6题。
四、课堂小结
今天的学习你都有些什么收获?你还有什么问题?
《运算律》教案3
教学内容:
复习、梳理第二单元内容。
教学目标:
1、知识与能力:进一步梳理单元知识,从而提高学生应用知识的能力。
2、过程与方法:通过学生回忆、梳理的方法,小组交流展示。
3、情感、态度与价值观:培养学生热爱数学的情感,感受数学的魅力。
重点难点:
乘法分配律的灵活应用。
教学准备:
练习题、教学课件。
教学过程:
一、谈话导入
师:同学们,我们前面复习了加法的运算律,本节课我们一起复习一下乘法的运算律。
二、回顾乘法运算律
请同学们闭上眼睛想一想,乘法有哪些运算律?
小组交流,并写出乘法的运算律。(并说说其内涵)
小结(课件出示):乘法的.结合律:(a×b)×c=a×(b×c)
乘法的交换律:a×b=b×a 乘法的分配律:(a+b)×c=a×c+b×c a÷b÷c=a÷(b×c)
三、知识的应用。
课件出示:
火眼金睛辨对错。并指出错误之处,再改正。
1、13×(4+8)=13×4+13×8 ()
2、(a+b)·c=a+(b·c)()
3、12×4×4×13=4×(12+13)()
4、78×101=78×100+78 ()
5、120÷5÷4=120÷(5×4)()
6、59×80=59×8×10 ()
四、学生做强化练习。练习纸,实物投影展示。
125×7×823×25×432×25380÷5÷2 420÷(5×7)270÷45 12×105135×6+65×685×199+8599×15164×9-64×980-8×25 125×48+125×53-125201×46-46
五、课堂总结。
《运算律》教案4
教学目标:
1、探索和理解运算律和性质,能应用运算律进行一些简单运算。
2、能根据题目灵活运用四则运算定律和性质使计算简便。
3、能理解四则运算中的数学术语,进一步提高计算能力。
教学重点和难点:
1、重点:掌握和灵活运用四则运算定律和性质。
2、难点:选择合理、灵活的计算方法进行计算。
教具准备:
ppt课件
教学过程:
同学们:计算一直是我们学习数学的最大困扰,有没有什么方法能使计算简便一点呢?今天,让我们一起来学习《运算律》吧。
一、 我们学过了哪些有关整数的运算律? 你能用字母表示出来吗。下面让我们用多种方式来验证这些运算律的合理x##b。请同学们看课本76页第1题。小组讨论一下,你是怎样验证的?
活动一:用多种方式验证这些运算律的合理性。
你知道淘气是怎样验证“加法结合律”的吗?(举例子法)你呢?
笑笑又是怎样验证“乘法交换律”的?(实际问题法)你呢?
乐乐又是怎样验证“乘法分配律”的?(面积模型法)你呢?
还有“加法交换律”和 “乘法结合律”请同学们自己回去验证。验证的方法多样,有的利用举例法,有的利用情境法,有的利用图解等。
(教学反思:通过师生互动,学生互动,促使学生在探索中交流,在交流中反思。)
通过验证这些运算律,相信同学们心里踏实多了。下面我们来运用一下。
试一试:下面的计算分别应用了什么运算律? 86+35=35+86 ( ) 72+57+43=72+(57+43) ( ) 76×40×25=76×(40×25) ( ) 125×67×8=125×8×67 ( ) 46×37+37×54= 37×(46+54 ) ( ) 4×8×25×125=4×25×(125×8) ( ) 437-161-39 =437-(161+39) ( ) 127÷25÷4=127÷(25×4) ( ) 前面我们学的那些都是有关整数运算的运算律,其实生活中还会遇到其他数,像分数,小数……同学们请看两组算式。 二、出示课本第3题,然后让学生读,自己的发现和感受。 教师引导学生观察、思考,使学生感知;满足数的运算的需要也是数扩充的重要原因,也是产生负数和分数的重要原因,从而拓展学生对分数和负数的认识,加深对分数、负数意义的理解。教学时,教师可以将这部分内容与“数学万花筒”联系起来,先让学生查阅有关数系扩充的资料,互相交流学习,然后看教材提供的问题,真切感受数系扩充的必要。 (教学反思:从运算的角度引导学生对“数”进行再认识,这是对学生认识的提升。)
可见,满足数的运算的`需要是数扩充的重要原因。那么,有关整数运算的运算律对于小数、分数的运算还会适用吗?请看下面几组式子,你有什么发现?
活动二:在○里填上“>”“= ”“<”。
1.2+1.8 ○ 1.8 +1.2
38 + 58 ○ 58 + 38
0.8×1.3 ○ 1.3×0.8
35 × 53 ○ 53 × 3 5
(0.9×0.4)×0.5 ○0.9×(0.5×0.4)
(3.2+2.8)×0.6 ○3.2×0.6+2.8×0.6
( 23 -12 )×12 ○12 ×23 -12 ×12
归纳总结:整数运算律对于小数、分数运算也同样适用。 那就让我们带着它走进“数学城堡”吧!看谁的收获最大。 三、巩固与应用
1、课件展示,运用运算律进行简便运算。
鼓励学生在运算的过程中熟悉运算律的“结构”,同时培养简算的意识。
第一组计算:(小组评议)淘气是这样算的。
① 46+32+54
②546+785-146
③0.7+3.9+4.3+6.1
④ 25×49×4
第二组计算:(学生板演,集体评议)笑笑是这样算的。 ⑤ 8×(36×125)
⑥ 8×4×12.5×0.25
⑦ 2.7×4.8+2.7×5.2
⑧ 905×99+905
第三组计算:(学生点评)乐乐是这样算的。
⑨ 4.37 + 18 + 0.63 + 78
⑩ 10.47-5.68-1.32
(11) 4.8÷2.5÷0.4
(12) 36×( 3 4 + 49 - 56 )
2、课本77页“巩固应用”第2题,学生在解决实际问题的过程中,熟悉运算律。通过不同解题方法的比较,使学生再次体会乘法分配律。
(教学反思:结合具体情境体会运算律的正确性,有利于学生掌握算理。)
四、总结:
今天我们学会了什么?
板书设计:
五个定律:
加法交换律: a+b=b+a
加法结合律: (a+b)+c=a+(b+c)
乘法交换律: a×b=b×a
乘法结合律: (a×b)×c=a×(b×c)
乘法分配律: (a+b)×c=ac+bc (a-b)×c=ac-bc
两个性质:
减法的性质: a-b-c=a-(b+c)
除法的性质: a÷b÷c=a÷(b×c)
《运算律》教案5
完成本节课《有理数加法》的课堂教学后,回首反思,金沙并存,现将我对本节课的反思情况概述如下:
亮点有四:
1、课题的引入。这一环节,我采取提问的方式,由学生小学阶段所学过的自然数的加法开始,提问学生:当初中阶段引入负数以后,如果你是教材的编写者,你会安排哪几种形式的加法?这样学生很快会想到“正+正、正+负、负+正、负+负、0+正、0+负”几种形式,而后自然地提出:“同号相加、异号相加、0加任何数”这三种类型,进一步提升了学生的分类思想;
2、尝试探究的设置。这一环节,我才用借助数轴导学案自主尝试的形式,点在数轴上的移动学生已经学过,设计问题时涉及到向左、向右移动问题学生自然会联系到数轴,这样根据题意列出式子,借助数轴很快的就能得出运算结果。既充分发挥了学生的主动性、提高了学生的参与度,同时又让学生认识到数学知识的内在联系,知识迁移和划归借鉴也是学习数学的一种很好的方法。
3、有理数加法法则的得出。这一环节,我先将学生尝试探究中的几个式子以及结果全部罗列出来,让学生观察形式特征,猜想结果与形式之间的关系,大胆提出想法,然后举例用数轴加以验证,整个环节中,我只负责帮学生把想说的话板书出来,这极大地提升了学生数学学习兴趣,又让学生感受到了数学当中好多法则规律,都是经过观察、猜想、验证、归纳而得出的,同时又提升了学生数学学习的自信心,也得到了学习数学的一个一般方法。
四是,在对本节课的小结处理,小结由学生自己总结,在学生总结后加以强调,为确保运算结果的.正确性,运算中应先确定符号,再计算结果。这样就把围绕初中学生的一个大难题“符号问题”加以弱化,已给学生指出了一个简单检验的方法。
金无足赤,课亦不可能绝对完美,换句话说根本就没有完美的课。闪过亮点之后,需要改进的有四,如:
1、考虑上课时限问题,没有深入展开,致使有部分学生思维以及理解没有跟上,从课后的练习反映出有几个学生运算中还是存在问题。
2、口算展示的时候,没有进行象开火车的形式让更多的学生都出来展示,而是让几个人代劳了。
3、个人上课有些仪态上有些随性,这样会让学生觉得不严谨,可能会滋生学生不良的行为习惯。
4、板书上有些凌乱,缺乏合理规划。
记得有位导演在问到哪部作品拍得最好时,他说道:“下一部”。任何事物都是“玉”与“瑕”共存的,只有经过了,再回首,才会发现“瑕“于何处,我们要做的不是掩“瑕”,而是要借“瑕”去“瑕”,避免同样的“瑕”再次出现,只有这样,才能取得进步和提升。“艺海无涯,术无止境”只有不断的总结反思才能有更大的提升!
《运算律》教案6
内容分析
课本54-55页上的内容及数学配套上的相关练题。
课时目标
知识与能力
1、能初步理解乘法结合律。
2、初步感知应用乘法结合律可以使一些计算简便,发展应用意识。
过程与方法
经历乘法结合律的探究过程,会用字母表示乘法结合律,进一步培养发现问题和提出问题的能力,积累数学活动经验。
情感态度价值观
体会计算方法的多样性,进一步发展数感。
教学重难点
教学重点
能理解乘法结合律。
教学难点
能运用乘法结合律,解决一些实际问题。
教学准备
课件、图片
教学媒体选择
PPT
教学活动
自主合作探究
教学过程
一、创设情境,激趣导入。
师:(出示课件)请同学们迅速口算下面的算式。
23×3= 70×5= 13×100= 25×4= 125×8=
师:有谁愿意试一试,直接告诉我答案
生1:69;350;1300;100;1000。
师:好!请坐,太棒了!
二、探究体验,经历过程。
师:观察这两组算式,你发现了什么
生可能说:含有相同的乘数,积相等;都用乘法计算,但运算顺序不同。
师:任意三个数连乘,改变运算顺序,积都不会变吗我们来找出三个数,算算看。
先独立举例子,再在小组内交流,说说想法。为了节省时间,遇到较大的数可以借用计算器。
生汇报列举的等式。先展示,再板书。
师:刚才大家列举了那么多的算式,三个数相乘,虽然运算顺序变了,但结果怎样(不变)
师:同学们来观察这些算式(课件出示:教材第54页例2),你能用自己的语言,说说这些算式的意义吗
学生尝试回答。
师:其实把大家刚才说的共同点总结起来,就是数学中的乘法结合律。
师:如果用a、b、c三个字母分别表示这三个数,你能写出乘法结合律吗
学生口头用字母表示出乘法结合律。
(a×b)×c=a×(b×c)
师:同学们真聪明!老师把我们刚才发现的'过程用语言表示出来,就是“发现问题——举例验证——概括规律”。以后,我们可以用这样的方法,去发现更多的规律。
三、课末总结,梳理提升。
这节课,你有什么收获说给你的小伙伴听听吧。
板书设计
根据老师讲课适当板书
作业设计
完成本节课题。第四单元运算律
课题
《运算律》教案7
六年级下册《运算律》教案
教学内容
教材79页运算律
教学目标
知识技能
1.理解并掌握加法运算律和乘法运算律,并能够用字母来表示。
2.能运用运算定律进行一些简便运算。
数学思考与问题解决
能根据具体情况,选择算法,发展思维的灵活性。
情感态度
在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,进一步形成独立思考和探究问题的意识、习惯。
教学重点
1.理解并掌握加法运算律和乘法运算律,并能够用字母来表示。
2.能运用运算定律进行一些简便运算。
教学难点
能根据具体情况,选择合适的算法。
教法学法
自学与合作相结合、讲解与互帮相结合。
教学准备
收集一些学生平时做错的例子,多媒体
教学过程
(一)复习导入
1.我们学过了哪些有关整数的运算律?(用提问的方式复习)
2.它们有什么作用?
(二)系统复习
1.回顾和总结学过的整数运算律。(显示,分别复习运算律的文字叙述,和字母公式)
(1)加法交换律 a+b=b+a
(2) 加法结合律 (a+b)+c=a+(b+c)
(3) 乘法交换律 ab=ba
(4) 乘法结合律 (ab)c=a(bc)
(5)乘法对加法的分配律 (a+b)c=ac+bc
2.用多种方式验证这些运算律。(完成79页第1题的第2小题,由学生自告奋勇回答书上的题目,由其他全体学生判断正确与否),
3.认识到整数运算律在小数、分数运算中仍然成立。(完成79页第2题,四人小组合作,互相举例说明,然后推选代表到讲台上展示)
4.感受在数系的扩充过程中,人们总是希望在新的数系中运算律能尽量地成立。
(1)出示79页巩固应用的第1题
(2)引导学生观察、思考。(自己通过观察、分析找出结果)
(3)交流。(满足数的运算的需要也是数扩充的重要原因,也是产生分数和负数的重要原因,从而拓展学生对分数和负数的认识,加深对分数、负数意义的理解。)
(4)数学万花筒。(自主阅读)
三、习题设计(贯穿于教学过程)
1.选用合适的方法计算下面各题:
46+32+54 0.7+3.9+4.3+6.3 25╳49╳4
8╳(36╳125) 8╳4╳12.5╳0.25 546+785-146
【设计意图】这是六道运用运算律解决计算题的基本题目,主要考察学生掌握运算律的.情况。让学生自己在下面做,然后选六个学生上台演板,请学生自己上台讲评。
2.用乘法对加法的分配律计算下面各题
2.7╳4.8+2.7╳5.2 905╳99+905 13╳10.2
【设计意图】在下面就有学生反映乘法对加法的分配律掌握的不好,因此增加了乘法对加法的分配律的练习。在学生练习完以后,仍然发现个别学生掌握的不好。我增加讲述一个小故事帮助学生记忆。故事是:说一个父亲有一大一小两个儿子,过节了父亲去大儿子家走亲戚,当然不能偏向也要去小儿子家走亲戚呀。其中父亲是乘法分配律的一个数,而两个儿子就是那两个加数。要去两个儿子家也就是要和两个加数相乘。通过这个故事避免学生做乘法分配律时的丢项问题。让学生互相讲着听,再一次体会乘法对加法的分配律。
板书设计
运算律
(1)加法交换律 a+b=b+a
(2) 加法结合律 (a+b)+c=a+(b+c)
(3) 乘法交换律 ab=ba
(4) 乘法结合律 (ab)c=a(bc)
(5)乘法对加法的分配律 (a+b)c=ac+bc
教学反思:
在学生练习完以后,仍然发现个别学生对乘法分配律掌握得不好,我们还可以增加一个故事,来加深学生对乘法对加法的分配律的理解。有父子三人分别代表三个数,其中父亲是乘法分配律的一个数,而两个儿子就是那两个加数。要去两个儿子家也就是要和两个加数相乘。通过这个故事避免学生做乘法分配律时的丢项问题。让学生互相讲着听,再一次体会乘法对加法的分配律。
《运算律》教案8
教学目标
1、知识与技能:
(1)有理数加法的运算律。
(2)有理数加法在实际中的应用。
2、过程与方法:
(1)经历探索有理数加法运算律的过程,理解有理数的.加法运算律。
(2)利用运算律进行适当的推理训练,逐步培养学生的逻辑思维能力
3、情感态度与价值观:
(1)学生通过交流、归纳、总结有理数加法的运算律,体会新旧知识的联系。
(2)通过运用有理数加法法则解决实际问题,来增强学生的应用意识。
重点有理数加法的运算律。
难点运用加法运算律简化运算
教学过程
一、创设情景我们以前学过加法交换律、结合律,在有理数的加法中它们还适用吗?计算 30+(-20),(-20)+30。
两次所得的和相同吗?换几个加数再试试。
计算:-7+2 (-10)+(-5)
二、探究新知
1、填空
(1)4+(-8)=____, (-8)+4=_____所以4+(-8)____ (-8)+4
(2)(-9)+(-6)=____,(-6)+(-9)=___所以(-9)+(-6)____(-6)+(-9)于是可得a+b=_______
2、
(1)[2+(-3)]+(-8)=_______ 2+[(-3)+(-8)]=_______
(2) (-5)+[7+(-2)]=______ [(-5)+7]+(-2)=____________于是可得(a+b)+c=________
《运算律》教案9
教学内容:苏教版四年级上册P:59—60页
教学目标:
1、让学生经历运用加法运算律进行简便计算的探索过程,掌握其计算方法,会正确地进行简便计算。
2、在教学过程中,培养学生思维的灵活性,培养学生初步的逻辑思维能力。
3、让学生在学习过程中进一步体验数学与生活的联系,感受简便计算的乐趣,培养学习数学的积极情感。
教学重点:运用加法运算律进行简便计算
教具准备:课件
教学过程:
一、复习铺垫
1、从课题出发:“加法运算律”是哪些运算律?说出相应的字母表达式及其意思
板书:a+b=b+a (a+b)+c=a+(b+c)
2、抢答小比赛:比比谁最快说出三角形角上三个数的和。
并说说先算什么,体会“凑”的思想。(板书:凑)
3、举例:46
师:你能说出哪些数和46凑成整十,整百……?
师:看来连加中也藏着不少学问,可不是那么简单,今天我们就来研究一下如何使运用加法运算律使计算更加简便。
[复习分为两部分,一是运算律,二是渗透简便运算中“凑”的思想。抢答比赛可以激活学生的已有经验,从而带动新知学习,又可以调动学生的积极性,使课堂一开始能有一个比较活跃的氛围。]
二、学习例题
1、出示例题图
师:谁能用自己的话将题意说一遍?
师:你会列式解答吗?写在练习本上。
交流各自算法并相应板书:
29+46+54 29+46+54
=75+54 =29+(46+54)
=129(人) =29+100
=129(人)
师:比较这两种方法,你更喜欢哪一种,为什么?(再次强调“凑”)
运用了什么运算律?
优化算法,体验简便运算的优点
2、试一试
出示题目:69+75+25 78+(47+22)
师:先观察,怎样才能简便运算?
师:你想将谁和谁凑在一起?怎样才能凑在一起?运用了什么运算律?
谁能具体地说一说?谁再来说一说?
着重讲第二题的运算律的应用:先运用加法交换律,将78和22靠近,再运用加法结合律,使78和22先算。
师:请在练习本上写出过程。
展示交流
[试一试,先让学生说,再完成在练习本上。主要是想通过说,调动学生的思考积极性。而不总是停留在“完成作业”的层次上。在明确了每一步的意义及所用的运算律的基础之上,再进行练习。]
三、练习巩固
1、“想想做做”第1题
师:比一比,看谁能很快说出每组气球上三个数的和?
调换书上气球的顺序:64 19 36 38 18 32 79 59 21
师:你是先算谁和谁?为什么?
38 18 32 师:你有不一样的想法吗?
79 59 21师:你有不一样的想法吗?哪一种更好呢?(当方法多种时,选择最简便的方法)
拓展:361+72+439+128
师:这一题,你想如何解决呢?
2、“想想做做”第4题
师:打开书,完成第4题。只观察,用小弧线将先算的.两个数连起来,比比哪组完成得又好又快。
独立完成后交流
3、“想想做做”第3题
A:出示:175+201
师:这一题你能简便运算吗?
只有两个数,如何凑呢?
换个思路,可不可以先“拆”?
拆谁?
出示:175+199
师:你想对哪个数动个小手术?
出示:238+402 354+102 105+216
354+298 204+499 216+99 (对书上第3题稍加改动)
师:同桌先互相说一说,你打算对每题中哪个数动手术,怎么动?哪一种方式更好?(体会对接近整百的数动手术的优点)
分组完成在练习本上
B:拓展:361+72+439+128
师:这一题,共四个数,你又想如何解决呢?
C:拓展:1+2+3+4+……+100
师:一百个数呢?
讲数学王子高斯7岁时运用简便运算计算1加到100的故事
D:(100+a)+(100+a)+(200+b)+(200-b)
师:你能迅速说出这一题的结果吗?
4、“想想做做”第6题
师:独立完成第6题,并思考:你有什么发现?
交流各自的发现:
1、加数都是200,另一个加数越大,和越大
被减数都是200,减数越大,差越小
2、把两个得数加起来,结果都是400
把两个结果相减,结果分别是20、40、60……
[在练习的过程中,着重于让学生通过“先观察不动笔”“同桌相互说”等方式,使学生的思维动起来。而不总是“笔动”。用“思维的动”代替“笔动”,并用语言将思维的过程表述出来,从多方面促进学生的思考。]
四、总结
师:这节课你有哪些收获?
布置课堂练习:“想想做做”第2题,第5题
20xx-11-13
教学反思:这一节是一人一课。课前作了比较充分的准备,本课结束之后,感受比较深的有这样几点:
1课堂语言要多“磨”
数学课堂的语言以科学,简洁,严谨为第一要义。另外还要富有一定的感情色彩和启发性。哪怕只是一句小小的表扬,一个过渡,一个追问,都要做到言而不废。
《张兴华和他的弟子们的座谈会——我们的成长经历》中就提到了对于课堂语言的磨练。徐斌老师为了将自己的课堂语言更能为低年级学生所接受,坚持每天听鞠萍,孙敬修的童话朗读磁带,我们又为何不可在课前将课堂上所讲的每句话磨上几遍呢?
2教案设计要多“思”
在教案设计过程中,要学会多向自己提问:这个环节的目的是什么?一定要有吗?有没有更好的?明确每个环节的作用,杜绝课堂时间浪费在无用的环节的现象,使每个环节都能充分发挥作用。可是启发,可是新授,可是练习……
在教案设计的过程中,另外还要多从学生的角度来思考。要让每一个设计能调动学生的积极性,启发学生的思考。而不仅仅让教案成为一纸空文。
3学生思维要多“动”
数学是思维的运动。而在教学过程中,往往会发现许多学生仅仅停留于完成作业的层次上,因为思维过程不是一个可以量化衡量的物体。所以只有通过学生的说,通过学生的看来体现。语言是思维的外壳,语言表述得清晰,完整,同样能反映一个学生的思维过程。
另外在设计练习过程中,我强调学生不动笔,让学生先观察思考,再讨论。观察也是一种帮助学生思考的方式。而许多学生并未意识到观察的重要性,也未曾认真观察过,以致在作业中常有题目未读,或读不懂就下笔的情形,因此在平时的教学过程中,要学会让学生多观察,以察促思。
《运算律》教案10
一、素材的选取。
本单元我们选取的素材是高速运转的济南长途汽车总站和高速运转的济青高速,选取这个素材原因主要有以下三点:
(1)济南长途汽车总站,连续多年创下旅客发送量、发送班次和售票收入三项全国第一,被称为“中华第一站”。 据说济南长途汽车站占地110亩,日客流量4万多,客票年收入达到4—5亿元。1999年被中国企业联合会、中国企业家协会授予“中华第一站”称号,这个荣誉一直保持到今天。
(2)山东的高速公路全国闻名。 说起山东的高速公路来,在全国是的,俗话说得好“要想富,先修路”。据有关经济专家研究,一个国家的.富裕程度与其公路的优劣,成正相关。可见,我省经济之所以能够高度发展,寻其原因,不言而喻。
(3)以比较真实的数据为素材,体现了数学的价值。 本单元提供的数据与第一单元一样,都是一些真实的数据。旨在说明交通生活中也实实在在存在着数学,数学无处不在。
二、本单元的情景串。
本单元有2个信息窗。
依次是: 单元知识分析 单元教材解读 信息窗1的解读 已学的知识 乘法的认识 整数的四则混合运算 (三下52×47-50×47 用字母表示数(四上1) 加法运算律 (四上1) 一般行程问题 (二下p105,三上p76,p78,三下5)路程、时间、速度三者 数量关系。 本单元新学知识 乘法结合律 乘法交换律(乘除法各部分之间的关系) 乘法分配律(相遇问题) 运用乘法运算律进行简便运算。 后续学习的知识 乘法运算律在小数和分数计算中的推广 用方程解行程问题 (山东版有关行程问题的学习都安排在简易方程单元。) 高速运转的长途汽车站 高速运转的济青高速
1、情景图的解读。
此信息窗的题目为“高速运转的长途汽车站”。情景图上呈现的是一幅济南长途汽车总站的真实照片。照片的下面附有一张20xx年济南长途汽车总站大巴车中巴日发送旅客情况统计表。
2、情景图中的信息。
是2组数据:
(1)平均每天发车的数量
(2)平均每车次的乘客人数。
3、例题的设置与功能。
本信息窗一共有3个例题,包含的知识点分别是:
(1)乘法结合律。
(2)乘法交换律。
(3)运用乘法交换律和结合律进行简便运算。 乘除法各部分的关系。(第六题)
《运算律》教案11
【教学内容】
教材第63页
【教学要求】
使学生进一步理解和学会应用乘法交换律和结合律进行简便计算,培养学生分析推理的能力。
【教学重点】
应用定律简便计算
【教学过程】
一、复习
⒈什么叫乘法交换律?用字母如何表示
⒉什么叫乘法结合律?用字母如何表示?
3、揭示课题
二、教学新课
⒈提问:我们学习的乘法交换律在我们学习中有什么应用?
完成想想做做第6题,指名板演。
⒉提问:我们学习的乘法交换律和乘法结合律,还可以为我们的学习带来哪些方便呢?
a) 请同学们用简便方法计算下面各题
b) 指名说说每题用了什么运算律?为什么要先将这两个数相乘
c) 小结:几个数相乘,可以应用定律,将得数为整十整百的两个数先乘。
3、完成想想做做第题
a) 出示:25*24 45* 1236*15
b) 比较两组中的两题,你发现了什么?
小结当两数相乘时,不能很快口算出结果进,我们可以将一个因数看成是另外两个因数相乘的形式,注意:把一个数分成两个数后,一定要有两个数的.积是整十或整百的数才简便
c) 练习:
在框里填上适当的数
35*18=35*() 16*15=16*( )
45*12=45*( )18*25=18*()
125*32=125*( ) 25*24= 24 * ()
用简便方法计算
45*18 28*15 25*12
三、巩固练习
完成想想做做学生独立完成,集体评讲
《运算律》教案12
教学内容
课本56-57页上的内容及数学配套上的相关练习知识与能力
1、能进一步理解并掌握乘法分配律。
2、能应用乘法分配律使一些计算简便,发展应用意识。
过程与方法
经历乘法分配律的探究过程,会用字母表示乘法分配律,进一步培养发现问题和提出问题的`能力,积累合情推理的数学活动经验。
情感态度价值观
体会计算方法的多样性,发展学生的数感。
教学重难点
教学重点
能理解并掌握乘法分配律。
教学难点
培养发现问题的能力。
教学准备
课件、图片
教学媒体选择
PPT
教学活动
自主合作探究
教学过程
【探究学习 自主观察,发现问题。
1)、3×10+5×10=(3+5)×10=
2)、4×8+6×8=(4+6)×8=
我发现:
2、什么是乘法分配律?用字母如何表示?
3、用简便方法计算。
(60+25)×4 78×69+22×69 28×99+28 69×102 85×98
【导学解惑】:
1、请提出你的问题,大家一起来解答。
2、请记录下你认为特别有意义的题。
【当堂检测】:
下面的算式分别运用了什么运算定律
25×34 = 34×25 ( )
7×2×5 = 7×(2×5)( )
2×4+2×6=2×(4+6)()
用简便方法计算。
76×62+24×62 156×99+156 127×101
【课后反思】:
1.想一想,这节课有哪些收获?还存在哪些问题?
2.问一问自己:“今天,我主动学了吗?”
板书设计
根据老师讲课适当板书
作业设计
完成本节课题。第四单元运算律
课题
《运算律》教案13
教学目标:
1、使学生理解和掌握乘法交换律和结合律,并能用字母表示,培养学生分析、推理能力。
2、使学生在合作与交流中对运算定律的认同由感性逐步发展到理性,合理地建构知识。
3、使学生在学习过程中,感受到数的运算与日常生活的密切联系,能根据解决实际问题的需要合理灵活地使用乘法运算定律,体验运算定律的价值,增强学生应用数学的意识。
4、使学生在数学活动中获得成功的体验,增强学习的兴趣和信心,逐步形成独立思考和探究问题的意识和习惯。
教学重点:
懂得乘法交律换律和结合律的算理,会用字母表示。
教学难点:
灵活应用乘法运算定律进行简便计算。
教学准备:
课件。
教学过程:
一、复习铺垫,设境导入
1、同学们,大家好,我们知道,现在全国都在开展中小学生阳光体育运动,你们知道小学生每天在校要保证多少长的运动时间吗?(1小时)
2、据我所知,你们学校也开展了丰富多彩的体育活动,在开展活动的过程中,学校每天都要统计参加各种活动的人数,这就要用到加法和乘法等一些运算,为了使统计又快又正确,就要用到一些运算定律。在前两节课的学习中,你们认识了加法的哪些运算定律?
3、谁能说说什么是加法交换律?什么是加法结合律?如何用字母表示?
(生答后师板书:加法交换律:a+b = b+c
加法结合律:(a+b)+c = a+(b+c))
4、学生们都学得很好,今天吴老师要和大家一起来研究乘法的'运算定律(板书:乘法运算定律),大家有信心学好吗?
二、自主探索、建构新知。
1、教学乘法交换律
(1)出示P61主题图。
(2)这是实验小学四(7)班第一小组体育大课间活动的图片,从图片中,你知道了哪些信息?
(3)从图片中,你知道让我们求什么问题?
(4)如何求呢?还可以如何求?
(板书:5×3 =15(人)3×5=15(人))
(5)观察这两种解法,有什么相同和不同的地方?
(6)它们的积相同,说明这两个算式可以用什么号连接起来?
(7)你还能举出一些这样的等式吗?(生答师板书)
(8)计算验证。
(9)观察这些等式,有什么相同和不同点,你发现了什么?请大家在小组里说一说。
(10)组织汇报。
(11)根据这些特征,你还能说出含有这样规律的等式吗?好,下面我们做一个游戏,老师报算式,你们说出和它相等的另一个算式。(后师生交换角色)
(12)刚才大家说得又对有快,下面老师再出两个难一点的,你们会吗?
板书:1。5×2 = 1/2 ×1/3 =
(13)像这样的等式能说完吗?你们有什么好办法来表示这样规律的等式呢?(板书:a×b = b×a)
(14)谁能用自己的语言说说这个运算定律呢?
师:两个数相乘,交换因数的位置,积不变。这叫做乘法交换律。
(15)同学们,在我们前面的学习中,已经应用过乘法交换律,你知道在什么地方用过乘法交换律?
(16)练习:列竖式计算并运用乘法交换律进行验算。17×15
2、教学乘法结合律:
(1)出示题目,引导审题。
(2)你会用不同的方法解决这个问题吗?试一试。
(3)把你的想法和同桌说一说。
(4)组织汇报,并说说先算的什么,再算的什么?
(5)观察这两个算式,有什么相同的地方和不同的地方?能用等于号连接起来吗?
(6)你还能照样子写出几个这样的等式吗?试一试。
(7)观察这些等式,你发现了什么?在小组里说一说?
(8)组织汇报,师总结:三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,积不变。这叫做乘法结合律。
(1)谁能用字母表示乘法运算定律?
(2)这里的a、b、c可以代表那些数?
3、练习
(1)出示P62想想做做1;引导审题。
(2)指名回答
4、练习
(1)出示P62想想做做;
(2)分组进行练习;
(3)组织汇报
(4)比一比,哪种算法简便一些?为什么?
5、教学试一试
(1)出示P62试一试引导审题;
(2)你会用简便方法计算吗?试一试(1、2两组做第1题,3、4两组做第2题;
(3)组织汇报;
(4)为什么说这样计算简便一些?
(5)应用了什么定律?
三、练习巩固形成技能
1、P62 3
①多媒体出示,引导审题②指名回答,并说说你是怎么算的?
2、P62 4
①独立练习;②评析;
3、请你做回小裁判
(1)14×8×5在简便计算时,应先计算14×8…………()
(2)25×17×4=(25×4)×17,这里应用了加法交换律和加法结合律。………………()
(3)35×5×2=(35+5)×2 …………()
(4)在计算15×8×6时,下面的算法都属于简便方法…()
15×8×6 15×8×6
=(15×8)×6=(15×6)×8
=120×6=90×8
=720=720
四、全课总结
1、本节课主要学习了什么?
2、你有哪些收获?
3、你对自己本节课的表现有什么评价?
《运算律》教案14
【教学内容】教材第59~60页
【教学目标】
使学生初步理解和学会应用加法交换律和结合律进行简便计算
【教学重点】
理解加法的运算率
【教学难点】
运用加法运算律进行简便计算
【教学准备】
光盘
【教学过程】
一、复习:
上节课我们学习了加法中的两个运算律,谁能来说一说?
(可以先随学生回答写出字母表示的等式,再说说其意思。)
用加法交换律,我们可以进行验算。用好这两个运算律,我们可以使计算简便。这节课我们就来学习这部分知识。
二、学习例题:
1、出示例题图,看后指名说一说表格中的信息
要求三个年级一共有多少人参加跳绳比赛,你是怎么算的?写在自备本上。
交流各自的算法。可能的情况:
(1)29+46+54
=75+54
=129(人)
(2)29+46+54
=29+(46+54)
=29+100
=129(人)
比较这两种做法,说说你更喜欢哪一种?为什么?
2、试一试:
你能用简便方法计算吗?学生独立写在书上,再指名板演在讲评的时候,注意书写的规范,要把简便的过程写清楚还要让学生说清楚是应用了什么运算律
三、完成想想做做
1、你能很快说出每组气球上三个数的和吗?
先可以请同桌两个互相说一说,再交流。
比如第一组和第三组可以做一个对比。第一组32可以分别和18或是38凑成整十数,所以两种方法都是可以的。而第三组21虽然都可以和59、79凑成整十数,但相比,和79能凑成的正好是100,计算就更简便了。所以当方法多种的时候,最好能选择最简便的方法。
2、这样简便就怎样算
举例:175+201
指名说清楚过程。其他学生再和同桌一起边说,边完成书上剩下的练习。
3、分别算出下面三户人家今年四、五、六月用电的'合计数,填在表里。
填写的时候,要提醒学生观察一下,能否有简便的算法,再计算。
全班交流
4、填写下表(p.60第6题)
填完后着重让学生说说自己的发现。可能有的情况:
(1)加数都是200,加的数越大,和越大;被减数都是200,减的数越大,差越小
(2)把两个得数加起来,结果都是400,把两个结果相减,结果分别是20、40、60……
对于后面这种想法,老师可结合字母算式来算一算:
(a+b)+(a-b)=a+b+a-b=2a,所以结果都是400
(a+b)-(a-b)=a+b-a+b=2b,所以结果都是2个b
四、布置作业:
第60页第2、5题
《运算律》教案15
教学目标
知识与技能:
掌握有理数加法法则,并能运用法则进行有理数加法的运算。
过程与方法:
1.经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的认知规律;
2.动手、发现、分类、比较等方法的学习,培养归纳能力。
情感态度与价值观:
1.通过师生合作交流,学生主动参与探索获得数学知识,从而提高学习数学的积极性;
2.体会数学来源于生活,服务于生活,培养热爱数学的情感,体会数学的应用价值;
3.培养善于观察、勤于思考的学习习惯,树立合作意识,体验成功,提高学习自信心。
教学重点
有理数加法法则及运用
教学难点
异号两数相加法则
教具准备
powerpoint课件
课时安排
1课时
教学过程环节教师活动学生活动设计意图创设情境引入新课XX年6月11日至7月11日,第19届世界杯足球赛在南非举行。来自世界各国的32支球队为全世界的球迷送上了一场完美的足球盛宴。
小组循环赛中,胜一场得3分,平一场得1分,负一场得0分,积分最多的两支队伍进入十六强。积分相同时,净胜球多者为胜。
以B组为例,进入十六强的是阿根廷和韩国。
国家赛胜平负得分阿根廷韩国希腊尼日利亚再以A组为例,A组积分榜,国家赛胜平负得分进球失球净胜球乌拉圭+40墨西哥+3-2南非+3-5法国+1-4师:从A组积分榜可以看出墨西哥和南非的积分相同,那么究竟应该确定哪个队进入十六强呢?此时则需要计算各队的净胜球数。你能列出计算各队净胜球数的算式吗?
学生看图表,思考问题。
学生列出计算净胜球数的'算式。利用世界杯的例子,体现数学来源于生活,让学生体会学习有理数加法的必要性,更能激发学生的兴趣,体会学习有理数运算的必要性。环节教师活动学生活动设计意图探索新知
师:净胜球数的计算实际上涉及到有理数的加法。今天我们就来研究有理数的加法运算。
【《运算律》教案】相关文章:
《运算律》教案03-05
运算律教学总结01-06
乘法运算律教学反思精编01-31
0的运算教案01-22
运算教案范文03-09
混合运算教案03-27
《0的运算》教案04-04
交换律教案03-25
运算定律教案01-23