《三角形的面积》教案

时间:2024-06-07 15:42:23 教案 我要投稿

《三角形的面积》教案

  作为一位无私奉献的人民教师,通常会被要求编写教案,教案是教学活动的依据,有着重要的地位。那么写教案需要注意哪些问题呢?下面是小编为大家收集的《三角形的面积》教案,希望能够帮助到大家。

《三角形的面积》教案

《三角形的面积》教案1

  一、教学目标

  (一)知识与技能

  让学生经历探索三角形面积计算公式的过程,掌握三角形的面积计算方法,能解决相应的实际问题。

  (二)过程与方法

  通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

  (三)情感态度和价值观

  让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  二、教学重难点

  教学重点:探索并掌握三角形面积计算公式。

  教学难点:理解三角形面积计算公式的推导过程,体会转化的思想。

  三、教学准备

  多媒体课件,学具袋(每小组各有两个完全一样的直角三角形、锐角三角形、钝角三角形),一条红领巾。

  四、教学过程

  (一)复习铺垫,激趣引新

  1.复习旧知。

  (1)计算下面各图形的面积。(PPT课件演示)

  (2)创设情境。(PPT课件演示)

  同学们,请大家看看自己胸前的红领巾,它是什么形状?如果要裁剪一条红领巾,你知道要用多大的红布吗?求所需红布的大小就是求这个三角形的什么?

  2.回顾引新。

  (1)回顾:还记得平行四边形的面积计算公式吗?它是怎样推导出来的?

  (2)引新:如果知道了三角形的面积计算公式,就能直接求出裁剪红领巾所需红布的大小了。今天这节课,我们就来研究三角形的面积。(板书课题:三角形的面积)

  【设计意图】

  首先复习旧知,体会用公式计算图形面积的便捷性,回顾平行四边形面积计算公式的推导过程,唤醒学生相关的活动经验,为后面推导三角形面积计算公式的教学做好准备。同时,用学生熟悉的红领巾引入新课,体会数学问题来源于生活,激发了他们的学习兴趣。

  (二)主动探索,推导公式

  1.操作转化。

  (1)提出问题:既然平行四边形能转化成长方形推导出面积计算公式,那三角形能不能也像这样,通过转化推导出计算面积的公式呢?

  (2)学生分组操作,教师巡视指导。

  学生操作预设:如果学生只用一个三角形时无法利用割补法将三角形转化成已学过的图形,教师可适时引导换一种思考方式,用两个相同的三角形试试。

  (3)学生展示汇报。

  预设拼法一:用两个完全一样的锐角三角形拼成一个平行四边形。

  预设拼法二:用两个完全一样的直角三角形拼成一个长方形或平行四边形(以长方形为例)。

  预设拼法三:用两个完全一样的钝角三角形拼成一个平行四边形(以其中一种情况为例)。

  (4)想一想:你们拼的都不一样,但是,我们可以发现,只要是两个完全一样的三角形,一定能拼成什么图形?

  学生观察,发现:有的用两个完全一样的锐角三角形拼成了一个平行四边形,有的用两个完全一样的直角三角形拼成了一个长方形或平行四边形,还有的用两个完全一样的钝角三角形也拼成了一个平行四边形。虽然选取的三角形不一样,拼出的结果也不一样,但是,只要用两个完全一样的三角形就能拼成一个平行四边形。

  2.观察思考。

  (1)观察拼成的平行四边形和原来的三角形,你发现了什么?(PPT课件演示)

  (2)学生独立思考后汇报:三角形的底和平行四边形的底相等,三角形的高和平行四边形的高相等,三角形的面积是平行四边形面积的一半。

  3.概括公式。

  (1)你能自己写出三角形的面积计算公式吗?(PPT课件演示)

  (2)总结公式。

  ①板书公式:三角形的面积=底高2。

  ②用字母表示三角形面积计算公式。(PPT课件演示)

  (3)回顾与小结。

  ①我们已经知道三角形的面积等于底乘高除以2,回顾一下,它是怎样推导出来的?

  ② 教师小结:当我们利用一个三角形无法将它转化成已学过图形的时候,我们选取了两个完全一样的三角形进行拼摆。不论是两个完全一样的锐角三角形、直角三角形还是钝角三角形,最后都能拼成一个平行四边形。通过观察思考发现,原三角形的底与拼成的平行四边形的底相等,原三角形的高与拼成的平行四边形的高相等,原三角形的面积是拼成的平行四边形的面积的一半。今天的学习过程中,同学们依然采取把未知的三角形的面积转化成已知的平行四边形的面积来研究的方法,非常好!在今后的学习中,如果再碰到类似问题,希望能继续用这种方法使问题迎刃而解。

  【设计意图】本环节设计了操作转化、观察思考和概括公式三个层次的教学,先提出问题,让学生利用转化的思想,带着问题进行操作;再从自己的展示和思考中发现用两个完全一样的三角形能拼成一个平行四边形,从而发现两者之间的等量关系;最后的小结环节,让学生回顾推导公式的过程,既培养他们回顾反思的能力,同时又进一步渗透转化思想。

  (三)巩固运用,解决问题

  1.教学教材第92页例2。

  (1)出示例题,呈现问题情境。(PPT课件演示)

  (2)理解题意,叙述题目内容。

  ①用自己的话说一说题目的意思是什么?

  ②学生根据图文叙述:知道红领巾的底是100 cm,高是33 cm,求它的面积是多少。

  (3)收集信息,明确问题。

  ①提问:从题目中你获得了哪些数学信息?要求什么?

  ②思考:要求红领巾的面积,其实就是求什么?

  ③归纳:要求红领巾的面积,其实就是求底是100 cm、高是33 cm的三角形的面积。

  (4)学生独立解答。

  (5)学生汇报,教师板书,规范书写。

  (6)对照实物与计算结果,帮助学生建立一定的空间观念。

  2.完成做一做练习。

  (1)完成教材第92页做一做第1题。(PPT课件演示)

  ①学生独立完成。

  ②同桌互相说说自己是怎样做的。

  (2)完成教材第92页做一做第2题。(PPT课件演示)

  ①学生独立完成。

  ②全班集体交流:这个三角形的底和高分别是多少?怎样计算它的面积?

  (3)完成教材第92页做一做第3题。(PPT课件演示)

  ①学生独立完成。

  ②同桌互相说说自己是怎样做的。

  ③全班集体交流:这个问题你是怎样算的?

  【设计意图】例2呼应了开课时提出的研究问题,既巩固三角形面积计算公式的.应用,又培养了学生解决实际问题的能力;紧接着,完成课后的做一做练习,可以帮助学生进一步深化理解面积公式。

  (四)变式练习,内化提高

  1.基本练习。

  完成教材第93页练习二十第1题。(PPT课件演示)

  (1)学生独立完成。

  (2)同桌互相说一说自己是怎样算的。

  (3)全班集体交流:你能说说这每个交通警示标识牌所表示的含义吗?怎样计算它的面积?用手势比划一下一个交通警示标识牌的大小。(同时进行安全教育,同时帮助学生建立空间观念。)

  2.提高练习。

  完成教材第93页练习二十第3题。(PPT课件演示)

  (1)理解题意:怎样计算出这三个三角形的面积?需要知道什么?(先测量出每个三角形的底和高,再利用公式计算。)

  (2)学生独立完成。

  (3)全班集体交流:每个三角形的底和高分别是多少?怎样计算三角形的面积?

  【设计意图】通过分层练习,巩固了学生对三角形面积计算公式的理解和应用,同时对学生进行交通安全教育。

  (五)全课总结,畅谈收获

  1.今天这节课学习了什么?怎样学的?

  2.今天我们推导出了三角形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导计算公式时,我们选择将两个完全一样的锐角三角形、直角三角形或钝角三角形拼摆在一起,转化成已知的平行四边形面积来研究,再通过观察对比发现转化前后三角形与平行四边形之间的等量关系,从而推导出三角形的面积计算公式等于底乘高除以2。同学们今天依然是利用转化的思想解决了遇到的问题,最后还利用公式顺利解决了生活中的实际问题。

  3.介绍数学小知识。

  (1)同学们,你们知道吗?今天我们一起动手推导出来的三角形的面积计算公式,很早以前,我们的祖先就已经发现了。(PPT课件演示)

  (2)同学们,我国古代数学家固然伟大,但是,老师觉得你们也很了不起!咱们不也找到三角形面积的计算方法了吗?其实,只用一个三角形也能转化成平行四边形,推导出三角形面积的计算公式,有兴趣的同学课下可以试一试!

  (六)作业练习

  1.课堂作业:练习二十第2题。

  2.课外作业:练习二十第4题。

《三角形的面积》教案2

  一、复习旧知

  1、说说长方形、正方形、平行四边形的面积计算公式?

  2、计算下面长方形和平行四边形面积。

  二、小组合作、探究三角形面积的计算

  1、用自制三角形拼成我们学过的图形。(小组代表在展台上展示)

  我们发现:两个完全一样的三角形可以拼成()、()、()图形。

  思考:每个三角形面积是拼成后的图形面积的()。

  三角形的底和高与拼成后图形有什么关系?

  结论:两个完全一样的.三角形可以拼成一个与它()的平形四边形。

  2、根据实验证明:

  两个完全一样的三角形可以拼成一个平行四边形。

  这个平行四边形的底等于三角形的()

  这个平行四边形的高等于三角形的()

  每个三角形的面积是拼成的和它()的平行四边形面积的()。

  因为平行四边形的面积=______________

  所以三角形的面积=_______________用字母表示____________

  从公式中发现要求三角形的面积必须需要知道哪些条件?

  三、量出红领巾的底和高算出它的面积。

《三角形的面积》教案3

  教学内容:

  人教版义务教育课程标准试验教科书数学五年级上册第84-86页。

  教学目标:

  1.知识与技能:

  (1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  (2)培养学生应用已有知识解决新问题的能力。

  2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:理解并掌握三角形面积的计算公式

  教学难点:理解三角形面积计算公式的推导过程

  教学准备:教具:多媒体课件、红领巾实物。学具:剪刀、各种不同类型的三角形等。

  教学过程:

  创设情境,引入课题

  一、创设情境,引入探索

  1、出示红领巾,问:会计算它的面积吗?

  2、学生交流 (课件演示)揭题

  二、自主合作,探究新知

  1、请看大屏幕说一说你看到了什么?课件出示不同的三角形 {学生口述)

  2、三角形面积公式的推导

  活动一:

  请同学们拿出准备的三角形, 用推导平行四边形面积的方法,试着拼一拼,摆一摆,看能不能推导出三角形的面积公式。动手前,注意老师提出的这几个问题:

  你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)

  (1)学生分小组进行操作实践活动

  (2)汇报交流操作结果(请学生将自己的拼图贴于黑板上,对照拼图进行汇报交流,不完整的地方,小组内其他同学补充。

  拼法一:用两个完全一样的直角三角形拼成一个长方形,三角形的一条直角边(底)相当于长方形的长,另一条直角边(高)相当于长方形的宽,长方形的面积相当于三角形面积的两倍,因为长方形的面积=长×宽,所以,三角形的面积=底×高÷2。

  拼法二:两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,平行四边形的.面积相当于三角形的2倍,平行四边形的面积=底×高,所以三角形的面积=底×高÷2。

  拼法三:两个完全一样的钝角三角形拼成一个平行四边形。

  拼法四:两个完全一样的直角三角形还可拼成一个平行四边形。

  拼法五:两个完全一样的等腰直角三角形可拼成一个正方形。

  教师概括:通过动手我们发现,两个完全一样的三角形都可以拼成一个平行四边形(或长方形或正方形)这个平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,因为每个三角形的面积等于拼成的平行四边形面积的一半,所以,推出:

  三角形的面积=底×高÷2

  [设计意图]学生在平行四边形面积推导的基础上,运用转化的数学思想,通过动手操作,推导出三角形的面积公式。在操作过程中,教师把自主学习的权利还给了学生,使学生学得积极主动。在操作、观察、分析、推理、概括的过程中,培养学生的合作能力、动手能力、解决问题的能力。

  活动二:除了刚才我们用的三角形面积公式推导方法外,请同学们再用剪拼的方法进行推导。

  (1)小组讨论:怎样剪拼可以推导出三角形的面积公式?

  (2)交流汇报(请学生展示剪拼过程)

  (三角形的面积)(三角形的底)(三角形高的一半)

  三角形的面积=底×高÷2

  活动三:老师还会一种推导方法,叫折叠法,看哪位同学最聪明,能用这种方法推导出三角形的面积公式来。教师介绍。

  教师讲解,并用三角形的纸给学生演示。

  长方形的面积=长×宽

  (三角形的面积)(三角形的底÷2)(三角形高的÷2)

  [设计意图]让学生体会到解决问题方法的多样性。这对有余力的学生是一种提高,进一步培养了学生的创新意识,开阔了学生的思维,使学生也体会到了学习数学的乐趣。

  3、教师小结:我们用拼图法、剪拼法、折叠法的方法把三角形转化成学过的图形,推导出了三角形的面积公式。那么,如果用字母a表示三角形的底,h表示三角形的高,S表示三角形的面积,你能用字母表示三角形的面积公式吗?

  三、巩固应用

  公式运用

  1、出示例题: 红领巾的底是100㎝,高是33㎝,红领巾的面积是多少?

  ( 学生尝试完成) 交流做法和结果 S=ah÷2

  =100×33÷2

  =3300÷2

  =1650㎝2

  2、你会计算这个三角形标志牌的面积

  3、对比练习,分别计算,同底等高的三角形面积相等 。

  4、这些道路交通警示标志你认识吗?算一算2块标志牌的面积大约是多少平方分米?

  做这样的两块标志牌 要用多少平方分米的铁皮?

  5、火眼金睛

  四、巩固拓展

  图中有哪两个三角形的面积相等?你能找出几组?

  五、小结。

  今天我们学习了三角形面积的计算方法,你都有哪些收获?

《三角形的面积》教案4

  第五册平行四边形、三角形面积公式

  教学过程

  师:小朋友们,今天刘老师带来一个信封,谁来猜猜里面藏着什么?

  生1:卡片。

  生2:奖品。

  ……

  师:同学们的想象力真丰富!我请小朋友上来把它揪出来,但你每拿出一件物品得向小朋友们介绍,你打算用它干什么?

  (学生逐个上台从信封中拿出物品)

  生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)

  生2:我拿出的是一格格的东西,打算用它来量。

  师: 我们给它一个名字,透明方格纸,用它量什么呢?

  生2:我想用它量书本。

  师: 书本的 ……(停顿)

  生2:书面有几格?

  师: 书的表面有几格其实就是它的面积,我们用1平方厘米的方格纸数它的面积 。(板书:数)

  生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。

  师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它

  这节课我们就用刚才这些学具来研究平行四边形的面积。

  教学反思

  这是一个展示学具的片段。它们都是为学生研究平形四边形、三角形的 面积公式服务的。分别有:剪刀一把、塑料透明方格一张、平行四边形、三角形模型各二张。何必如此耗费时间呢?直接出示学具,学生不也能知道呢?

  不!俗话说:磨刀不误砍柴功。我认为直接出示学具,不能引起学生对学具的重视,对其作用更是模棱两可,将为小组合作学习埋下“隐患”。学生面对一堆学具,面对要完成的任务手足无措,不知该从哪下手。这样岂不是更浪费时间,或者学具将失去它的作用,平形四边形、三角形的面积公式无法推导。

  ……

  教学过程

  师:我们已研究出平行四边形的面积公式,成为了发现者。这可是一项了不起的创举。让我们再接再厉,发现更多的数学奥秘。如果我只给你一把剪刀、一张平行四边形的学具,你还能发现其他图形的面积公式吗?

  (学生动手操作,不久就纷纷举手)

  生1:老师,我把对角一剪就变成了两个三角形。

  生2:老师,我剪出的三角形两个一样的。

  师: 你们真厉害!对角一剪就变成了两个完全一样的三角形,你能从平行四边形的.

  面积公式推导出三角形的面积公式吗?

  (学生小组讨论)

  生3:就是除以2。

  师: 你能完整的说一说什么除以2吗?

  生3:平行四边形的面积除以2。用字母表示:S=ab2。

  生4:我能把它剪成两个梯形教后反思

  教材编排中平形四边形、三角形的面积公式推导各安排了二个课时,三角形的面积公式又重新推导一次。而在本堂课上在平行四边形后学生仅用了5分钟就推导并掌握了三角形的面积公式。花最少的时间掌握一节课的内容,何乐而不为呢?

  现在使用的教材存在着许多的弊端,教师如果只是根据教材按部就班有时就出现事倍功半的现象,而且难以达到预定的效果。而如果教师能运用教材进行灵活的运用,或是根据学生的特点重新组织教材,创设更有效的更能引起学生注意的课题导入设计、问题设计,让学对本节课产生极高的兴趣,让学生自己去发现问题,去解决问题,使教师的教和学生的学达到理想的境界,正如肖川教授所说的“使我们的教学达到完美的教育。”

《三角形的面积》教案5

  教学内容

  p27~28

  教学目标

  1、使学生理解并掌握三角形面积的计算公式。能正确地计算三角形的面积。

  2、通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。

  3、引导学生运用转化的方法探索规律。

  教学重点:

  理解并掌握三角形面积的计算公式。

  教学难点:

  理解三角形面积计算公式的推导过程。

  教学准备:

  投影和自制三角形面积演示纸板等

  教学过程:

  一、创设情境,引入课题

  右图是一张三角形彩纸,它的面积是多少?

  提问:这块彩纸是什么形状?你会算出它的面积吗?

  引入:怎样把三角形转化成我们已学过的图形,然后算出它的面积呢?我们这节课就来探讨这个问题。

  二、探索新知

  1.推导三角形面积计算公式。

  (1)操作感知:让学生用学具并用自己喜欢的办法探索怎样把三角形转化成平行四边形。

  (2)汇报、交流,总结两种转化方法。

  重点讨论:

  ①拼成的平行四边形与原来的三角形有什么关系?

  ②怎样计算三角形的面积?

  形成共识:

  ①两个完全一样的三角形都可以拼成一个平行四边形,这个平行四边形的底等于三角形的底,这个平行四边形的`高等于三角形的高。②因为三角形的面积=拼成的平行四边形面积÷2

  强化理解推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?

  板书:三角形面积=底×高÷2

  (3)用字母公式表示。

  如果用s表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:s=ah÷2。(板书)

  2.即时练习:让学生完成课前引入中的求彩纸面积的问题,并组织交流。

  4×3÷2=12÷2=6(c㎡)

  通过交流引导学生进一步认识三角形面积和平行四边形面积计算方法的异同点。

  三、巩固练习

  指导学生完成p28“试一试”。

  四、总结全课

  让学生谈谈这节课的收获和体会:怎样求三角形的面积?三角形面积的计算公式是怎样推导的?

  五、作业

  1.课内作业:p28“练一练”第一题。

  2.课外作业:优化作业相关练习。

《三角形的面积》教案6

  教学目标

  知识与技能:

  探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题

  过程与方法:

  是学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  情感态度与价值观:

  让学生在探索活动中获得积极的情感体验,进一步培养学生学习的兴趣。

  教学重难点

  教学重点:

  理解并掌握三角形面积的计算公式

  教学难点:

  理解三角形面积计算公式的推导过程

  教学工具

  多媒体课件、三角形学具

  教学过程

  教学过程设计

  1 创设情境

  师:我们学校有一批小朋友要加入少先队了,学校为他们做了一批红领巾,要我们帮忙算算要用多少布。同学们有没有信心帮学校解决这个问题(屏幕出示红领巾图)

  师:同学们,红领巾是什么形状的

  生:三角形的

  师:你们会算三角形的面积吗这节课我们就一起来研究,探索这个问题。

  板书:三角形的面积

  2 新知探究

  (一)、课件出示一个平行四边形

  师:平行四边形的面积怎么计算

  生:平行四边形的面积=底×高(板书:平行四边形的面积=底×高)

  师:平行四边形的面积公式是怎样得到的

  生说推导过程

  师:在研究平行四边形的面积的时,我门是把平行四边形转化成学过的长方形来研究的,那三角形的面积你打算怎么研究呢

  生1:我想把它转化成已学过的图形。

  生2:我想看看三角形能不能转化成长方形或平行和四边形。

  (二)、动手实验

  师:请同学们拿出准备好的学具:两个完全一样的锐角三角形,直角三角形,钝角三角形;一个长方型,一个平行四边形,你们可以利用这些图形进行操作研究,看哪一组能用多种方法发现三角形面积的计算公式。

  生小组合作,教师巡视指导。

  (三)、展示成果,推导公式

  师:同学们经过猜想,验证,已经推导出了三角形面积的计算公式。请展示给大家看。

  生展示

  汇报一:两个完全一样的锐角三角形拼成的平行四边形

  汇报二:两个完全一样的钝角三角形拼成的平行四边形

  汇报三:两个完全一样的直角三角形拼成的平行四边形

  除此之外,两个完全一样的直角三角形还可以拼成三角形

  三角形的面积=长方形的面积(平行四边形)÷2

  =长×宽÷2

  =底×高÷2

  (四)、例题讲解

  红领巾底是2500px,高33 cm,它的.面积是多少平方厘米

  3 巩固提升

  (一)、 一种零件有一面是三角形,三角形的底是5.6厘米,高是4 厘米。这个三角形的面积是多少平方厘米(单位:厘米)

  (二)、指出下面三角形的底和高,并口算出它们的面积。 ( 单位:厘米)

  (三)、上图是一个平行四边形,看图填空:

  平行四边形的面积是12平方厘米,三角形ABC的面积是( )平方厘米。

  (四) 、选择:下面图中面积计算是4 × 3 ÷ 2 的有( )。

  (五)、用两种方法计算三角形的面积(单位:厘米)。

  (六)、思考题 你能在图中再画出与涂颜色的三角形的面积相等的三角形吗

  课后小结

  (一)学生总结

  这节课你学习了什么你有什么收获(小组说--组内总结--组间交流)

  (二)教师总结

  今天我们一起探索了三角形的面积计算公式,并能应用于实际问题的解决中。

  板书

  三角形的面积

  平行四边形的面积 = 底×高

  三角形的面积 = 长方形的面积÷2

  = 长×宽÷2

  =平行四边形的面积÷2

  = 底×高÷2

《三角形的面积》教案7

  一.说 教 材

  (一).教学内容

  本课题选自九年义务教育六年制小学教材(人教课标版)数学第九册三角形的面积计算(教材第84页——85页的内容)。本册教材中三角形的计算是在学生已经学习了平行四边形的计算基础上安排的。所以,要想使学生理解掌握好三角形面积计算公式,必须以平行四边形的面积计算以及三角形的底和高相等的知识为基础,运用迁移和同化理论,使三角形面积的计算公式这一新知识纳入到学生原有知识体系中,三角形面积计算同时也是梯形面积公式的推导的前提和基础。在实际生活中,三角形面积计算有着广泛的作用,因此,学生必须学会这一内容。

  (二).教学目标

  1.知识目标:

  (1)掌握三角形面积计算公式的推导。

  (2)能正确计算三角形的面积。

  2.能力目标:

  (1)通过操作,培养学生的分析理解能力。

  (2)培养学生应用知识解决实际问题的能力。

  3.情感目标:

  培养学生思维的.灵活性,发展学生的空间观念

  (三).教材重点、难点

  三角形面积计算公式的推导过程和实际应用是本课内容的重点,也是难点。在利用公式实际计算过程中,学生最易出错的地方就是忘记“除以2”,以及三角形底和高对应的问题。

  (四).教学准备

  课前要求准备3组三角形(每套三角形是完全一样的),教师准备多媒体课件一份,演示教具一套。

  二.说教法

  1、教学理念

  (1)把主动权交给学生。新课程强调形成学生积极主动的学习态度 ,不能单靠模仿、记忆。让学生经历观察、操作、推理、实践活动。

  (2)改变学生学习方式,倡导动手操作、独立探究、合作交流的学习方式。使学生在合作中研究,在探索中创新,逐步学会学习并从中获得良好的情感体验,激发学生的责任感。

  (3)加强知识与生活的联系。数学知识来源于生活,服务于生活。让学生感受数学在日常生活中的作用。

  2.学情分析

  针对学生的基础、能力、 学习态度、学习兴趣而提出不同的要求。

  3.教 法

  (1)实验法。根据学生心理发展的规律,学生通过自己动手操作学习新知识,比听教师讲解新知识记忆更加深刻,兴趣更加浓厚。因此,在教学三角形面积计算公式推导过程时,让学生动手操作,反复实验,讨论,再操作再实验,体现了以学生为主体,老师为主导的教学原则。

  (2)多媒体辅助教学。在教学三角形面积计算公式推导过程时,采用多媒体课件动画演示推导过程,指导学生操作,帮助学生理解转化的数学方法在图形中运用。运用计算机多媒体教学,可以激发学生的学习兴趣。

  (3) 教具演示配合讲解。学生经历了动手操作拼摆后,有些同学可能没有掌握操作过程,这时教师再用课件演示这一过程,配合讲解,使学生加强理解。

  三、说 学 法

  根据本课可操作性的特点,以及学生为主体,教师为主导的教学原则,在学法指导上应以学生动手操作为主,配以小组合作学习法,讨论法进行自主探究式学习。

  四、说 教 学 过 程

  (一)情景导入

  1.创设情景:同学们,最近学校为了美化校园环境,打算把一块长方形草坪平均分成两块,一块用来种菊花,另一块用来种杜鹃花。你们有没有兴趣,帮助学校设计一个方案呢。请看大屏幕。

  2.课件演示学生的设计:

  3.谈话:大家的想法真不错,最终学校采用了第三种方案,可是,买花种的数量要按面积的大小来计算。你知道这一块花坛的面积是多少吗?

  4.小结:每一块花坛的面积都是20平方米,仔细观察每一块花坛是什么形状呢?(直角三角形)刚才,我们借助了学过的长方形的面积算出了直角三角形的面积,如果花坛的形状是这样一个普通三角形,它的面积我们还能借助以前的知识计算吗?

  5.导入:这节课我们就来研究三角形的面积。(板书课题)

  (二)、探究新知

  1.课件出示各种形状的三角形。说一说你看到了什么?

  2.过渡:老师已经把这些三角形放到你学具袋里,现在请你们小组合作:把学具拼一拼,摆一摆,你会发现什么?然后想一想三角形面积计算方法是怎样的?

  3.学生小组操作活动。

  4.小组汇报,

  教师分三种情况板书:锐角三角形、钝角三角形、直角三角形

  5.课件演示拼摆的过程

  6、小结:总结三角形面积的计算公式。

  如果用S表示三角形的面积,a表示三角形的底,h表示三角形的高,你会用字母来表示三角形的计算方式吗?(师板书S=ah÷2)。

《三角形的面积》教案8

  教学目标:

  1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。

  2.培养学生观察能力、动手操作能力和类推迁移的能力。

  3.培养学生勤于思考,积极探索的学习精神。

  教学重点

  理解三角形面积计算公式,正确计算三角形的面积。

  教学难点

  理解三角形面积公式的推导过程。

  教学过程:

  一、复习铺垫。

  1.剪下第137页的三角形,标出它的底和高(量出底和高的长度)

  2.出示长方形、正方形、平行四边形、三角形的图片

  提问:我们学过了哪些平面图形的面积?计算这些图形面积的公式是什么?

  师:今天我们一起研究“三角形的面积”(板书课题)

  3.学习新知识之前共同回忆平行四边形面积的计算公式是怎样得出的?(电脑演示推导过程)

  二、指导探索

  第一部分:数方格面积。

  1.用数方格的方法求出第69页三个三角形的面积。(小组内分工合作)

  2.订正:看一看电脑博士数出的每个三角形的面积。

  (演示课件:拼摆图形下载)

  3.评价一下以上用“数方格”方法求出三角形面积。

  第二部分:推导三角形面积计算公式。

  拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小。

  启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  1.用两个完全一样的直角三角形拼。

  (1)教师参与学生拼摆,个别加以指导

  (2)电脑演示拼摆过程(演示课件:拼摆图形下载)

  (3)讨论:①两个完全一样的直角三角形拼成一个大三角形(第三种拼法)能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?

  2.用两个完全一样的锐角三角形拼。

  (1)组织学生利用手里的学具试拼。(指名演示)

  (2)电脑演示拼摆的过程(突出旋转、平移),(演示课件:拼摆图形下载)

  提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

  3.用两个完全一样的钙角三角形来拼。

  (1)由学生独立完成。

  (2)(演示课件:拼摆图形下载)

  4.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  第三部分:三角形面积的应用。

  1.例1、一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?

  2.由学生独立解答。

  3.订正答案(教师板书)

  5.6×4÷2=11.2(平方厘米)

  答:这个三角形的面积是11.2平方厘米。

  三、质疑调节

  1.总结这一节课的收获,并提出自己的问题。

  2.教师提问:

  (1)要求三角形面积需要知道哪两个已知条件?

  (2)求三角形面积为什么要除以2?

  (3)把三角形转化成已学过的图形,还有别的`方法吗?

  四、反馈练习

  1.下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积。

  2.计算下面每个三角形的面积。

  (1)底是4.2米,高是2米;

  (2)底是3分米,高是1.3分米;

  (3)底是1.8米,高是.1.2米;

  3.指出P69三个三角形的底和高,算出它们的面积各是多少?

  五、板书设计

  典型例题

  1、一个三角形的底是18厘米,面积是126平方厘米,高是多少厘米?

  分析:两个完全一样的三角形可以拼成一个平行四边形,三角形与拼成的平行四边形等底等高。

  先用三角形面积乘以2,求出平行四边形面积,再用平行四边形面积除以底(18厘米),就是平行四边形的高,也就是三角形的高。

  解:(厘米)

  答:三角形的高是14厘米。

  2、如图,正方形ABCD,三角形(1)的面积比三角形(2)的面积大8平方厘米,厘米,求DE的长。

  分析:正方形中包括梯形AOCD,三角形ADE中也包括梯形AOCD。三角形(1)的面积比三角形(2)大8平方厘米,说明三角形ADE的面积比正方形ABCD的面积大8平方厘米。正方形面积是(平方厘米),那么三角形ADE的面积就是(平方厘米),已知三角形ADE的面积和高,就可以求出三角形的底(DE)。

  解:(平方厘米)

  (厘米)

  答:DE的长为21.6厘米。

  3、一个等腰直角三角形的斜边长是6分米,这个等腰直角三角形的面积是多少?

  指导:按常规方法,只有找出三角形的底和高才能求出三角形的面积,显然此种途径用小学所学的数学知识是行不通的。我们可以把四个完全一样的等腰直角三角形拼成一个正方形(如图)

  边长是6分米的正方形是一个等腰直角三角形面积的4倍。

  (平方分米)

  答:这个等腰直角三角形的面积是9平方分米。

  例4下图中平方厘米,D、E、F分别是BC、AC、AD的中点,求

  分析:三角形ABD和三角形ADC是两个等底等高的三角形,所以它们的面积相等,三角形ADC的面积占三角形ABC的一半,面积是平方厘米。在三角形ADC中,三角形ADE和三角形CDE等底等高,所以三角形ADE的面积占三角形ACD面积的一半,是平方厘米。在三角形ADE中,AEF和DEF是两个等底等高的三角形,它们的面积相等,所以三角形DEF的面积相当于三角形ADE的一半,即平方厘米。

  (平方厘米)

  答:三角形DEF的面积是3平方厘米。

《三角形的面积》教案9

  教学内容:教科书第75页~77页的内容。

  教学要求:

  1、使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生知道转化的思考方法在研究三角形面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  教具准备:锐角三角形、直角三角形、钝角三角形完全一样的各两个。

  教学过程():

  一、复习。

  1. 说一说正方形、长方形、平行四边形的面积计算公式是怎样的?

  2.口答下面各图的面积。(单位:厘米)

  二、新授。

  1、引入新课:前面我们学习了平行四边形面积的计算,今天我们来学习三角形面积的计算。

  2、教学三角形面积公式。

  (1)用数方格的方法计算三角形的面积。

  出示课本P75上图中:

  A:让学生用数方格的方法求出这3个三角形的面积。

  B:引导学生观察:

  问:这三个三角形分别是什么三角形?每个三角形的底和高分别是多少?它们的面积相等吗?

  得出:这三个三角形的底相等,高也相等,它们的面积也相等。但是这种数方格的方法不够精确也很麻烦,那么我们可以仿照前一节求平行四边形面积的方法,把三角形转化为我们已学过的图形,然后再来计算它的面积。

  (2)通过操作总结三角形面积的计算公式。

  A.让学生用两个完全一样的直角三角形拼成一个已学过的图形,巡堂检查。

  投影出示可以拼出的三角形、长方形、平行四边形,问:

  这3种图形中哪些图形的面积我们会算?(长方形和平行四边形)

  每个直角三角形的面积和拼出的图形面积有什么关系?

  (每个直角三角形的面积是拼成的长方形或平行四边形面积的一半)

  B.让学生拿出两个完全一样的锐角三角形,问:用两个完全一样的锐角三角形能不能拼成一个平行四边形?

  要求:同桌两个学生一同拼摆。然后教师演示。

  问:每个锐角三角形的面积和拼出的'平行四边形的面积有什么关系?

  (每个锐角三角形的面积是拼出的平行四边形面积的一半)

  C.让学生拿出两个完全一样的钝角三角形,问:用两个完全一样的钝角三角形能拼成我们学过的图形吗?

  要求:学生自己拼一拼,教师巡视,对有困难的学生给予帮助。

  指一名学生在黑板用两个钝角三角形摆出一个平行四边形。

  问:每个钝角三角形的面积和拼出的平行四边形的面积有什么关系?(每个钝角三角形的面积是拼出的平行四边形面积的一半)

  D.小结:教师结合黑板上分别用两个完全相同的三角形拼成的平行四边形的图指出:通过上面的实验,两上完全一样的三角形,不论是直角三角形、锐角三角形、还是钝角三角形,都可以拼成一个平行四边形。提问:

  (1)这个平行四边形的底和三角形的底有什么关系?

  (2)这个平行四边形的高和三角形的高有什么关系?

  (3)这个平行四边形的面积和其中一个三角形的面积有什么关系?

  (4)平行四边形的面积怎样求?一个三角形的面积是这个平行四边形面积的一半,那么这个三角形的面积应该怎样求呢?

  学生回答后,教师板书:

  三角形的面积=底×高÷2

  再问:在这个算式里为什么要除以2呢?(因为平行四边形的面积是底×高,而三角形的面积是这个平行四边形面积的一半,所以三角形的面积要再除以2)

  E.教学用字母表示三角形的面积公式。

  师:前面平行四边形的面积公式我们用S=ah来表示,同样的我们用a表示三角形的底,用h表示三角形的高,用字母S表示三角形的面积。那三角形的面积公式又可怎样表示呢?

  学生试写,教师板书:S=a×h÷2或S=ah÷2

  三、巩固练习。

  (单位:厘米)

  底

  高

  面积

  四、小结。

  这节我们学习了什么知识?怎样求三角形的面积?三角形的面积计算公式是怎样推导出赤的。

《三角形的面积》教案10

  教学目标

  1.在实际情境中,认识计算三角形面积的必要性。

  2.在自主探索中,经历推导三角形面积计算公式的过程。

  3.能运用三角形的面积公式,计算相关图形的面积,解决实际问题。

  教学重点

  经历推导三角形面积计算公式的过程。

  教学难点

  理解并能运用三角形的面积公式进行计算。

  教具、学具

  教学挂图,三角形纸片,剪刀,三角尺等。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、引入

  复习平形四边形的面积

  我们还学习了三角形,那么三角形的面积该如何计算,一同来研究。

  二、新授

  师引导,学习平行四边形面积

  1、复习平形四边形的面积。

  2、我们还学习了三角形,那么三角形的面积该如何计算,一同来研究。

  1、学习平行四边形面积时可以去画,剪拼,三角形也可试一试这些方法。

  2、学生用数格子和图形转化两种方法试着研究三角形的面积。(或多种方法)

  让学生用自己的方法去探究,培养解决问题的能力

  教师指导与教学过程

  学生学习活动过程

  设计意图

  三、巩固练习

  求下面各三角形的面积

  3、学生交流计算三角形的面积的'方法

  4、总结:

  三角形的面积=(底×高)÷2

  S=(ah)÷2

  3×4÷2

  =12÷2

  =6(dm)

  6.4×1.9÷2

  =12.16÷2

  =6.08(m)

  让学生逐步形成这一解决问题的思维方法

  板书设计:三角形的面积

  三角形的面积=底×高÷2

  S=ah÷2

《三角形的面积》教案11

  教学内容:人教版义务教育课程标准实验教科书五年级上册第84-86页。

  教学目标:

  1.知识与技能:

  (1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  (2)培养学生应用已有知识解决新问题的能力。

  2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

  教学难点:三角形面积公式的探索过程。

  教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。

  教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。

  学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。

  教学过程:

  一、创设情境,揭示课题

  师:我们学校一年级有一批小朋友加入少先队组织,学校做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题?

  (屏幕出示红领巾图)

  师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)

  [设计意图:利用学生熟悉的红领巾实物,以及帮学校计算要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,从而将“教”的目标转化为学生“学”的目标。]

  二、探索交流、归纳新知

  1.寻找思路:(出示一个平行四边形)

  师:(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)

  (2)观察:沿平行四边形对角线剪开成两个三角形。

  师:两个三角形的形状,大小有什么关系?(完全一样)

  三角形面积与原平行四边形的面积有什么关系?

  [设计意图:这一剪多问,学生在观察的基础上通过与平行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,诱发了心理动机]

  师:你想用什么办法探索三角形面积的计算方法?

  (指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)

  师:上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?

  (屏幕出示课本84页主题图让学生观察、引发思考)

  接着出示思考题:

  (1)将三角形转化成学过的什么图形?

  (2)每个三角形与转化后的图形有什么关系?

  [设计意图:学生由于有平行四边形面积公式

  的推导经验,必然会产生:能不能把三角形也转化

  成已学过的图形来求它的面积呢?从而让学生自己

  找到新旧知识间的联系,使旧知识成为新知识的铺垫。]

  2.分组实验,合作学习。(音乐)

  (1)提出操作和探究要求。

  让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼、摆一摆或剪拼。

  屏幕出示讨论提纲:①用两个完全一样的三角形摆拼,能拼出什么图形?

  ②拼出的图形与原来三角形有什么联系?

  (2)学生以小组为单位进行操作和讨论。

  [设计意图:这里,根据学生“学”的需要设计了一个合作学习的程序,让学生分组实验,合作学习,为学生创设了一个自己解疑释惑的机会。]

  教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学困生:你是怎样拼的?能说一说你的拼法吗?(若学困生含糊的,动画显示一个作好高的三角形,移出一个与它同样大小的三角形,再把这个三角形旋转、移动,和下一个三角形拼成一个平行四边形。如图,让学困生模仿练习)

  [设计意图:不仅使学生找到了新旧知识的连接点与转化方式,而且使学生正确掌握操作方法,形成操作技能]

  (3)展示学生的剪拼过程,交流汇报。(音乐停)

  ①各小组汇报实验情况。(让学生将转化后的图形贴在黑板上,再选择有代表性的情况汇报)

  可能出现以下情况:(用两个完全一样的三角形摆拼)

  (两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)

  ②课件演示:用旋转平移的方法将三角形转化成各种已学过的图形。

  师:通过实验,你们发现了什么?

  引导学生得出:只要是两个完全一样的三角形都能拼成一个平行四边形)

  师:谁能说说,每个三角形的面积与拼成的平行四边形的面积有什么关系?

  生:拼成的平行四边形是三角形面积的二倍。

  生:每个三角形的`面积是拼成的平行四边形的面积的一半。(评价、肯定)

  [设计意图:在大量感知的基础上,通过自主学习,再通过课件的演示使同学们更具体、清晰地弄清了将两个完全一样的三角形转化成平行四边形后,它们间到底有什么关系。同时又渗透了转化的数学思想方法,突破了教学难点,提高了课堂教学效率。]

  3.归纳公式

  (1)讨论:(屏幕显示提纲)

  A、三角形的底和高与平行四边形的底和高有什么关系?

  B、怎样求三角形的面积?

  C、你能根据实验结果,写出三角形的面积计算公式吗?

  [由图形直观应用,进行观察,推理,加深对三角形的面积计算公式的理解。]

  (2)归纳交流推导过程,说出字母公式。

  根据学生讨论、汇报,教师进行如下板书:

  因为:三角形面积=拼成的平行四边形面积÷2

  所以:三角形面积=底×高÷2

  师:为什么要除以2?

  生:......

  师:如果用S表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?

  结合学生回答,教师板书S=ah÷2

  [设计意图:当将三角形转化成已学过的平行四边形,找出它们间的关系,使学生感知了三角形面积的计算后,讨论:“三角形面积的计算公式是怎样的?”从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,培养学生的抽象概括能力。]

  4.看书质疑。指名讲述课本中是怎样得出三角形面积公式的。

  (养成看书的良好习惯。)

  师:我们刚才是从两个完全一样的直角三角形、锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的。你们还能用别的方法去推导三角形的面积公式吗?

  如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定。

  老师课前做好下面课件帮助学生理解

  方法一:期量子论方法二:方法三:

  得出:三角形的面积=底×(高÷2)=底×高÷2(方法一)

  三角形的面积=底×(高÷2)=底×高÷2(方法二)

  三角形的面积=(底÷2)×高=底×高÷2(方法三)

  师:同学们真了不起,想到那么多的方法推导出三角形的面积公式。得到了这个公式,我们就可以求出任何三角形的面积。用这个公式计算三角形的面积(指板书),需要知道什么条件?(反扣公式,加深理解)

  4、进行爱国教育

  师:其实早在20xx年前,我国伟大的劳动人民就开始会用这个公式来计算三角形土地的面积了。请同学们课后把85页的“你知道吗”看一看。

  三、应用新知,解决问题

  师:有了公式,下面我们可以帮学校解决问题了。(回应引入问题)

  1、(屏幕显示)出示85页例1:

  学生独立完成(一生板演),集体订正。

  师:你认为计算三角形的面积,什么地方容易出错?(强调“÷2”这一关键环节)

  2、独立完成P85做一做。

  完成后交流、讲评。

  四、深化理解、应用拓展

  1.课本86页的练习第1题。课件出示下图:

  师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?

  (教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)

  2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。

  师:要计算出每个三角形的面积,需要什么数据?要怎么做?

  先让学生想,小组交流,再汇报,最后学生动手操作计算、评讲。

  3、课本86页第3题:已知一个三角形的面积和底

  (如右图),求高。

  师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗?

  (生讨论汇报,再计算、反馈。)

  4.想一想,下面说法对不对?为什么?

  (1)三角形面积是平行四边形面积的一半。()

  (2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平

  方米。()

  (3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。()

  (4)等底等高的两个三角形,面积一定相等。()?

  (5)两个三角形一定可以拼成一个平行四边形。()?

  5、求右图三角形面积的正确算式是()

  ①3×2÷2②6×2÷2

  ③6×3÷2④6×4÷2

  6.做课本86页第4题(然后汇报、评讲。)

  要在公路中间的一块三角形空地(见下图)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?

  [设计意图:练习分三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过变题练习,训练学生思维的灵活性与逆向思维能力,同时深化对三角形求积公式的认识。]

  五、回顾总结,深化提高:

  1、师:这节课探究了什么?是怎样探究的呢?(渗透数学方法)

  (屏幕显示)让学生说一说图意:

  师:对!今天我们分小组通过动手操作,相互讨论、交流,用摆拼(还可以用折叠、割补)等方法将三角形转化成学过的图形推导出了三角形面积的计算公式,这种“转化”的数学思想方法能帮助我们找到探究问题的方向,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。

  [设计意图:这两问引导学生从学习内容及学习方法对本课作出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于探究的精神。]

  六、课外作业:P87-5、6、7

  板书设计

  因为:平行四边形的面积=底×高,例1......

  三角形面积=拼成的平行四边形面积÷2S=ah÷2

  所以三角形面积=底×高÷2=100×33÷2

  S=ah÷2=1650(cm2)

《三角形的面积》教案12

  教学内容:

  三角形面积计算的练习

  教学目的:

  1.学生比较熟练地应用三角形面积计算公式计算三角形的面积。

  2.能运用公式解答有关的实际问题。

  3.养成良好的审题、检验的习惯,提供正确率。

  教学重点:

  运用所学知识,正确解答有关三角形面积的应用题。

  教学准备:

  实物投影仪等。

  教学过程:

  一、基本练习

  1.填空。

  ⑴三角形的面积=?,用字母表示是?。

  为什么公式中有一个“÷2”?

  ⑵一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是(?)平方米,平行四边形的面积是(?)平方米。

  二、指导练习

  1.练习:下图中哪个三角形的面积与涂颜色的三角形的面积相等?为什么?你能在途中再画出一个与涂颜色的三角形面积相等的三角形吗?试试看。

  ⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?

  ⑵看看图中哪个三角形的面积与涂了色的三角形面积相等?为什么?

  ⑶分组讨论如何在图中画出一个与涂了颜色的三角形面积相等的三角形,并试着画出来。

  2.练习:一张边长4厘米的正方形纸,?从一边的中点到邻边的中点连一条线段,沿这条线段剪去一个角,剩下的面积是多少?

  分析与解:先求出原正方形的面积,再求出剪去的小三角形的面积,然后求出剩下部分的面积。因为剪去的是正方形的一个角,所以是个直角三角形,它的两条直角边都是正方形边长的一半,所以剪去的面积是2×2÷2=2平方厘米。

  3.练习:一块三角形土地,底是421米,高是58米。估算一下它的面积是多少平方米,大约是多少公顷。

  分析与解:课先取三角形的底和高的近似数400米和60米,再算出这块三角形土地的面积约是:400×60÷2=12000(平方米)=1.2公顷。

  三、课堂练习

  练习。(分组完成)

  课题:探索活动(三)梯形的面积

  教学内容:

  书第27、28页的内容

  教学目的:

  1、使学生理解并掌握梯形面积的计算公式,能正确地应用公式进行计算。

  2、通过操作,培养学生的迁移类推能力和抽象概括能力。

  3、培养学生应用所学知识解决实际问题的能力,发展空间观念,引导学生运用转化的思想探索规律。

  教学重点:

  理解并掌握梯形的面积计算公式。

  教学难点:

  理解梯形面积计算公式的推导过程。

  教学准备:

  1.两个完全一样的梯形纸板和剪刀。

  2.20根同样的铅笔和渠道模型。

  教学过程:

  一、激发

  1、计算下面图形的面积。

  平行四边形:底1.8厘米?????高2.1厘米

  三角形:底2.5米?????高3.2米

  2、三角形面积的计算公式是怎样推导出来的?为什么要“除以2”?

  3、导入:我们已经掌握了平行四边形、三角形的面积计算公式,有了这两方面的基础,我相信大家一定也能把梯形转化成已经学过的图形,计算出梯形面积。大家有信心吗?

  二、尝试

  1、你能仿照求三角形面积的方法,用两个完全一样的梯形推导出梯形面积的计算公式吗?拼拼看。

  2、学生操作,互相讨论。

  3、根据讨论结果,完成书空,并计算出面积。

  4、汇报结果。提问:通过刚才的学习,你知道了什么?

  引导学生明确:

  ①操作过程。先按住梯形右下角的顶点,再使一个梯形向逆时针方向旋转180度,使梯形的上下底成一条直线,然后把第一个梯形的`左边沿着第二个梯形的右边平行移动,直到成一个平行四边形为止。

  ②两个完全一样的梯形能拼成一个平行四边形。

  ③这个平行四边形的底等于梯形的上、下底之和,高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半。

  因为:平行四边形的面积:底×高

  所以:梯形面积:(上底+下底)×高÷2?(板书)

  强化理解推导过程。

  ④计算过程中“3+5”表示上、下底之和,它等于拼成的平行四边形的底,所以计算时要加上小括号。

  每个梯形的面积等于拼成的平行四边形面积的一半,所以计算中要加上“除以2”?

  ⑤想一想:如果是两个完全一样的直角梯形,能拼成什么图形?

  学生口述,教师点拨:两个完全一样的直角梯形能拼成一个长方形,而长方形是平行四边形的特殊形式。

  4.字母公式。

  (1)学生看书

  (2)提问:通过看书,你知道了什么?

  引导学生知道:如果用s表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式可以表示为:

  s=(a+b)h÷2?(板书)

  (3)要求梯形的面积必须知道哪些条件?为什么要“除以2”?

  5.小结:梯形面积的计算公式是怎样推导的?用字母怎样表示梯形的面积公式?

  三、应用

  1.出示例题:一条新挖的渠道,横截面是梯形(如图),渠口宽2.8米,渠底宽?1.4米,渠深1.2米。它的横截面的面积是多少平方米?

  ①拿出渠道模型,认识横截面。使学生明白横截面是一个平面。②生试做。

  ③订正。提问:你是怎样想的?为什么要“除以2”。

  2.做一做。

  ①学生试做。

  ②订正。提问:计算时应注意哪些问题?

  3.判断。

  (1)平行四边形面积是梯形面积的2倍。(?)

  (2)两个面积相等的梯形能拼成一个平行四边形。

  4.练习

  (1)让学生用铅笔代替圆木或钢管摆成图中的形状。

  (2)根据公式求出总根数,说一说是什么道理。

  使学生体会到:把另外一堆同样形状的钢管倒过来,同原来的一堆摆在一起,每层的根数就变成同样多,即都等于上、下底根数之和,这个和乘以层数得到的根数正好是原来一堆根数的2倍。

  5.练习

  四、体验

  今天学会了什么?怎样计算梯形的面积?梯形面积的计算公式是怎样推导出来的?

《三角形的面积》教案13

  教学内容

  P84~85例子1~2

  教学目标

  1理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

  2培养学生观察能力、动手操作能力和类推迁移的能力.

  知识重点

  理解三角形面积计算公式,正确计算三角形的面积

  教学难点

  理解三角形面积公式的推导过程

  学生准备的学具

  每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。

  教学过程

  教学方法和手段

  引入

  1.出示平行四边形

  提问:

  (1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底×高)

  (2)底是2厘米,高是1.5厘米,求它的面积。

  (3)平行四边形面积的计算公式是怎样推导的?

  2.出示三角形。三角形按角可以分为哪几种?

  3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

  教师:今天我们一起研究“三角形的面积”(板书)

  教学过程

  开始探索

  (一)推导三角形面积计算公式.

  1.拿出手里的`平行四边形,想办法剪成两个三角形,并比较它们的大小.

  2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  3.用两个完全一样的直角三角形拼.

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?

  4.用两个完全一样的锐角三角形拼.

  (1)组织学生利用手里的学具试拼.(指名演示)

  (2)演示课件:拼摆图形(突出旋转、平移)

  教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

  5.用两个完全一样的钝角三角形来拼.

  (1)由学生独立完成.

  (2)演示课件:拼摆图形

  6.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  7、引导学生明确:

  ①两个完全一样的三角形都可以拼成一个平行四边形。

  ②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)

  ③这个平行四边形的底等于三角形的底。(同时板书)

  ④这个平行四边形的高等于三角形的高。(同时板书)

  (3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

  板书:三角形面积=底×高÷2

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  ―――――――――――――――――――――――

  教学例1

  红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

  1.由学生独立解答.

  2.订正答案(教师板书)

  课堂练习

  P85做一做

  P86~87练习16

  小结与作业

  课堂小结

  课后追记

  本课用了两个相同的三角形拼成一个平行四边形,化未知为已知,一定要让学生亲自来拼摆,把可以目前可以计算和暂时无法计算的摆放方法都摆出来,再进行区分,选择可以计算的方法,虽然会占用一点课堂时间,但是学生记忆深刻,对公式的理解也比较深刻。动手能力也得到一定的加强

  这个方法在以后的求面积上仍然会应用到,因此有必要让学生多动脑筋想想如果割补,化未知为已知。

《三角形的面积》教案14

  教学目的:通过练习使学生进一步熟悉三角形的面积的计算公式,能够比较熟练地计算三角形的面积。

  教具准备:

  教学过程:

  一、复习三角形的面积计算公式。

  出示小黑板:

  问:这是一个三角形,要求它的面积必须知道什么?(学生回答后指名到黑板前量出这个三角形的底和高。)

  问:知道了三角形的底和高,怎样求也它的面积?用哪个公式?(学生回答后教师板书:S=ah?2

  这个三角形的面积是多少?(学生独立计算)

  二、教学例题。

  出示例题:一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?

  问:这道题要根据哪个公式来求?(根据S=ah?2)学生独立计算。

  三、做练习十八。

  1、第1题,做题时先让学生读题,再让学生想一想,再回答。问:为什么?

  2、学生独立做6题。

  3、第7题。小黑板出示题目。

  教师结合图说明:图中的两条虚线是平行的,问:

  图中哪个三角形的面积与画斜线的三角形面积相等?(让一学生到黑板前指一指。)这三个三角形的高是多少?(学生自己在课本上量一量)这3个三角形的高是多少?不用量,你知道这3个三角形的高有什么关系吗?为什么?(教师指出:图中两条虚线是平行的,平行线间的垂直线段相等,所以这3个三角形的高是相等的。)

  这3个三角形的面积有什么关系?为什么?(指出:3个三角形的底相等,高也相等,那么它们的'面积就相等。)

  谁能根据这个道理,再画出一个与画斜线的三角形面积相等的三角形?(让一学生上黑板上画,其他学生在课本上画,画完后说一说所画的三角形为什么与画斜线的三角形的面积是相等的)

  与画斜线的三角形面积相等的三角形还能画多少个?

  4、第8题,学生独立完成。

  问:计算三角形的面积要底乘以高再除以2,为什么?

  计算平行四边形的面积为什么只要底乘以高,不要除以2?

  教师说明:想一想三角形的面积公式我们是怎样得到的,我们是把两个完全一样的三角形经过旋转、平移,得到一个平行四边形,一个三角形的面积正好是这个平行四边形面积的一半,所以三角形的面积是底乘以高再除以2。平行四边形面积的计算方法,我们是把一个平行四边形转化成一个长方形,平行四边形的面积和与它等底等高的长方形的面积相等,所以平行四边形的面积就等于底乘以高。掌握三角形和平行四边形的面积公式来源,计算面积时就不容易弄错了。

  5、第9题和第10题,学生独立计算。核对时问:

  第9题是怎样做的?第一步算的是什么?第二步呢?

  第一步先算三角形玻璃的面积是多少?

  第二步再算买这块玻璃的面积是多少钱?

  第10题是怎样算的?第一步算的是什么?得多少?第二步算的是什么?得什么?

  四、小结:

  刚才我们复习了三角形的面积计算公式。请一位同学说一说三角形的面积计算公式是什么?它是怎样得出的?(提问一学生)

  五、作业。

  练习十八第2、3、4题。

  课后小结:

《三角形的面积》教案15

  教学目标:

  1、通过拼一拼、比一比、算一算、推一推,使学生理解并掌握三角形面积计算公式,并能按要求求出三角形的面积。

  2、培养学生动手、推理的能力。

  教学重点:理解并掌握三角形的面积计算公式。

  教学过程:

  一、提出问题,引入课题。

  1、看书P81,观察方格纸上三角形的面积。

  2、想一想:三角形能不能转化成我们熟悉的平面图形?来计算它的面积。

  二、研究探讨

  1、让学生4人一小组讨论:分别拿出两个完全一样的钝角三角形、锐角三角形、直角三角形,自己拼一拼、议一议、推一推,看能不能得到三角形面积的计算方法。

  2、学生合作探讨学习,师巡视。

  3、检查反馈:(如果学生拼出,则让学生自己说一说,师作必要的补充纠正。)

  两个完全一样的三角形,可以拼成下面的图形:

  4、比一比:三角形和拼成的平行四边形,它们的底和高有怎样的关系?面积呢?

  5、推一推:

  怎样计算三角形的面积?

  平行四边形的面积=底×高

  三角形的面积=底×高÷2

  强调:为什么要“÷2”?(三角形的面积是拼成的平行四边形面积的'一半。)

  字母公式为:S=AH÷2

  6、判断:三角形的面积是平行四边形面积的一半。(错必须是等底等高的三角形和平行四边形它们的面积才有这样的关系。)

  7、迁移练习

  例:一块三角形钢板,底是84厘米,高是25厘米。它的面积是多少平方厘米?

  (1)让生独立做。

  (2)检查:84×25÷2=1050(平方厘米)

  三、练习

  1、下面平行四边形的面积是16平方分米,求阴影部分的面积。

  请学生说明理由

  2、口算出每个三角形的面积,填在空格里。

  底(米)

  8

  5

  4

  20

  高(米)

  7

  12

  10

  15

  面积(平方米)

  3、计算下面每个三角形的面积。

  42厘米

  18厘米2厘米

  6厘米3米

  2米

  4、一种零件,有一个面是三角形,它的底是12厘米,高是4厘米。这一面的面积是多少平方厘米?

  5、有一个底面是三角形的水池,底长8米,高是底的3倍,求这个水池底面的面积。

  四、总结。

  请你说一说三角形面积公式的推导过程。

【《三角形的面积》教案】相关文章:

《三角形的面积》教案02-02

三角形面积教案03-30

《三角形面积》说课稿12-22

三角形的面积教学反思03-08

《三角形的面积》教学反思04-05

《三角形面积计算》教学反思02-17

《三角形的面积》数学教学反思04-12

数学《三角形的面积》教学反思04-20

《三角形面积计算》的教学反思03-14