七年级数学教案
作为一位优秀的人民教师,就难以避免地要准备教案,借助教案可以有效提升自己的教学能力。教案应该怎么写呢?以下是小编为大家整理的七年级数学教案,仅供参考,欢迎大家阅读。
七年级数学教案1
教学目标
(一)教学知识点
1、了解近似数的概念,并按要求取近似数
2、体会近似数的意义及在生活中的作用
(二)能力训练要求
能根据实际问题的需要选取近似数,收集数据
(三)情感与价值观要求
进一步体会数学的应用价值,发展“用数学”的信心和能力
教学重点
1、体会和感受生活中的近似数和精确数,明白测量的结果都是近似数
2、能按要求对一个数四舍五入取近似数
教学难点
合理地对一个数四舍五入取近似值
教学方法
实验——讲——练相结合
通过测量实验体会生活中存在着近似数和精确数,经过讲解和练习能将一个数按要求取近似值
教具准备
1、收集不同形状的树叶制成标本
2、最小单位是厘米的刻度尺和最小单位是毫米的刻度尺
教学过程
Ⅰ、创设情景,引入新课
[师]在我们学习和生活中,经常会遇到一些数据。例如:
(1)小明班上有45人;
(2)吐鲁番盆地低于海平面155米;
(3)某次地震中,伤亡10万人;
(4)小红测得数学书的长度为21.0厘米
而这些数据在收集的过程中,有些是精确的,而有些由于客观条件无法或难以得到精确数据或无需要得到精确数据而取了近似数
凭你生活的经验,你能判断一下,哪些是精确数?哪些是近似数吗?
[生]我认为第(1)个中的数据是精确的,而第(2)、(3)、(4)中的数据都是近似的
[师]很好,下面我们接着来做一个实验,进一步体验近似数的意义和在生活中的作用、
Ⅱ、引入新课,获得直观的体验
1、实验——测得树叶的长度
[师]同学们在下面收集了不少的树叶,把这些树叶制成标本的时候,要求必须在标本中注明每片树叶的长度,下面我们就以同桌为一小组,用你准备好的最小刻度是厘米和最小刻度是毫米的刻度尺测量你收集到的树叶的长度,并读取数据
(教师可以让学生交流,讨论读取数据的方法,同时给予指导,让同学们体验到测量读取的数据是有误差的)
[师]在同学们测量的过程中,同桌的小明和小颖用最小单位不同的刻度尺测量了同一片树叶的长度,如图3-1所示:
图3-1
(1)根据小明的测量方法,你能知道他用的刻度尺最小刻度是什么吗?这片树叶的长度约为多少?根据小颖的测量呢?
(2)谁的测量结果更精确一些?说说你的理由
[生]小明用的刻度尺最小单位是厘米,这片树叶的长度约为6.8厘米,其中6是精确的,8是估计的,即是近似的;小颖用的刻度尺最小单位是毫米,她测量的结果可以读成6.78厘米,其6和7都是精确的,而8是估计的,即是近似的
[生]从刚才这位同学的分析,很容易看出小颖测量的结果要比小明的更精确一些
[师]同学们分析得很精细,同桌的小明和小颖共收集了12片树叶,测得刚才那片树叶的长度的值分别约为6.8厘米和6.78厘米、在这一收集数据的过程中,哪些数据是精确的,哪些数据是近似的呢?
[生]他们一共收集了12片树叶,这个数据是精确的,而测量的树叶的长度的值是近似的
[师]大家还可以用你的刻度尺测量一下桌子的长度、厚度,数学课本的长度、厚度,又可以读出一些数据,它们是精确的还是近似的?
[生]我测得我的课桌的长度是80.5厘米,它是近似的
[生]我测得课桌的长度是80.45厘米,它也是近似数
[师]由此,我们可知测量得出的结果都是近似的,例如珠峰的高度是8848米,是测量得出的,它是近似数
在生活中,除了测量的结果是近似数以外,还有没有其他数据也是近似的?
[生]有,例如方便面袋子上写着:总净含量110克,数据110克是近似的
[生]饮料桶标注的净含量是350 mL也是近似数
[生]天气预报中报到今天的最高气温是28℃,“28℃”这个数据也是近似数
[生]咱们这本教科书字数是202千字,“202千字”这个数据也是近似的
[师]真棒,同学们能列举生活中这么多的近似数据,说明同学们平时很留心观察一些事物,这一点很值得肯定
2、议一议
图3-2
(1)上面的数据,哪些是精确的?哪些是近似的?
(2)举例说明生活中哪些数据是精确的?哪些数据是近似的?
[生](1)2000年第五次人口普查表明,我国人口总数为12.9533亿,人口总数为12.9533亿这个数据是近似数
[师]为什么呢?(Why?)
[生]因为我国地域辽阔,客观条件就决定了在人口普查的过程中是无法或难以得到精确数据的`
[师]的确如此,在测量过程中,我们难以得到精确数据,尽管现在科技的发展,有了更为精密的仪器、在人口普查中,由于客观条件等的限制,也难以或无法取到精确值
[生]第二幅图是精确值
[生]第三幅图中,年级共有97人是精确值,而买门票大约需要800元是近似值、
[师]回答正确、这里的“800元”也是近似值,但这个近似值不是无法或难以得到精确数据,而是根据实际情况要估算一下大约需多少钱,无需得到精确值
你还能举出生活中一些例子说明哪些数据是精确的?哪些数据是近似的吗?
[生]小明的身高是1.58米,体重40公斤,年龄14岁,这些数据都是近似数
[生]小明今天上了6节课,是精确的
[生]一条草鱼重2.854千克,这个数据也是近似数
[生]我们班有25个女生,这个数据是精确数
[师]我们了解了生活中存在着这么多的近似数和精确数,下面我们来看一看如何根据具体情况和要求采用四舍五入法求一个数的近似数、
3、做一做
例1小明量得课桌长为1.025米,请按下列要求取这个数的近似数:
(1)四舍五入到百分位;
(2)四舍五入到十分位;
(3)四舍五入到个位、
[分析]用四舍五入法求一个数的近似数,关键是看四舍五入到哪一位,看这一位后面一位的数够五不够五,来决定取舍,特别注意近似数1.0,末尾的0不能随意去掉、
解:(1)四舍五入到百分位为1.03米;
(2)四舍五入到十分位为1.0米;
(3)四舍五入到个位为1米
例2小丽与小明在讨论问题
小丽:如果你把7498近似到千位数,你就会得到7000
小明:不,我有另外一种解答方法,可以得到不同的答案、首先,将7498近似到百位,得到7500,接着把7500近似到千位,就得到了8000
小丽:……
你怎样评价小丽和小明的说法呢?
[生]小丽的说法是正确的因为一个数近似到千位,要一次做完,看百位上的数决定四舍五入,而不能先近似到百位,再近似到千位
例3中国国土面积约为9596960千米2,美国和罗马尼亚的国土面积约为9364000千米2(四舍五入到千位)和240000千米2(四舍五入到万位)如果要将中国国土面积与它们相比较,那么中国国土面积分别四舍五入到哪一位时,比较起来的误差可能会小些?
[分析]对数据进行比较是培养数感的一个重要方面、在对数据进行比较时,有时可以根据需要选择各自的近似数进行比较、在选择近似数时,一般数据要四舍五入到同一数位,这样出现较大误差的可能性会小一些
解:当与美国的国土面积比较时,可将中国国土面积四舍五入到千位,得到9597000千米2,因为它们同时四舍五入到了千位,这样比较起来误差会小一些
类似地,当与罗马尼亚国土面积相比较时,可以将中国国土面积四舍五入到万位,得到9600000千米2、
Ⅲ、课时小结
[师]通过这节课的学习,你有何体会和收获呢?
[生]我们知道了测量所得的数据都是近似数
[生]生活中既有精确的数据,也有近似的数据,因此我们的生活丰富多彩、
[生]能根据具体情况和要求求一个数的近似数
[生]用四舍五入法取近似数时,不能随便将小数末尾的零去掉、例如2.03取近似数,四舍五入到十分位,得到近似数2.0,不能把零去掉、
板书设计
一、生活中的数据——近似数和精确数
1、实验测量所得的结果都是近似的(测量树叶的长度)
2、议一议
二、根据具体情况,采用四舍五入求一个数的近似数、(师生共析,由学生板演)
七年级数学教案2
一、教学目标
1、理解一个数平方根和算术平方根的意义;
2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3通、过本节的训练,提高学生的逻辑思维能力;
4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合。
四、教学手段
多媒体
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的下面作一个小练习,填空:
1、( )2=9;
2、( )2 =0.25;
3、( )2=0.0081。
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0.25的平方根;
0的平方根是0;
±0.09是0.0081的平方根。
由此我们看到3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=—4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1、一个正数有两个平方根,它们互为相反数。
2、0有一个平方根,它是0本身。
3、负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到3与—3的平方是9,9的平方根是3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的.运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:
1、用正确的符号表示下列各数的平方根:
①26
②247
③0.2
④3
⑤
解:①26的平方根是
②247的平方根是
③0.2的平方根是
④3的平方根是
⑤的平方根是
七年级数学教案3
一、教学目标
1.理解一个数平方根和算术平方根的意义;
2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3.通过本节的训练,提高学生的逻辑思维能力;
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合。
四、教学手段
多媒体
五、教学过程
(一)提问
1.已知一正方形面积为50平方米,那么它的边长应为多少?
2.已知一个数的平方等于1000,那么这个数是多少?
3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的下面作一个小练习:填空
1.( )2=9; 2.( )2 =0.25;
5.( )2=0.0081.
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.。
由练习引出平方根的概念.
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的.平方根。
由练习知:±3是9的平方根;
±0.5是0.25的平方根;
0的平方根是0;
±0.09是0.0081的平方根.
由此我们看到3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=-4
学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1.一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,它是0本身。
3.负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到3与-3的平方是9,9的平方根是3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1.用正确的符号表示下列各数的平方根:
①26②247③0.2④3⑤
解:①26的平方根是xx
②247的平方根是xx
③0.2的平方根是xx
④3的平方根是xx
⑤的平方根是xx
七年级数学教案4
教学目标
1.使学生理解的意义;
2.使学生掌握求一个已知数的;
3.培养学生的观察、归纳与概括的能力.
教学重点和难点
重点:理解的意义,理解的代数定义与几何定义的一致性.
难点:多重符号的化简.
课堂教学过程 设计
一、从学生原有的认知结构提出问题
二、师生共同研究的定义
特点?
引导学生回答:符号不同,一正一负;数字相同.
像这样,只有符号不同的两个数,我们说它们互为,如+5与
应点有什么特点?
引导学生回答:分别在原点的两侧;到原点的距离相等.
这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.
3.0的是0.
这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.
三、运用举例 变式练习
例1 (1)分别写出9与-7的;
例1由学生完成.
在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?
引导学生观察例1,自己得出结论:
数a的.是-a,即在一个数前面加上一个负号即是它的
1.当a=7时,-a=-7,7的是-7;
2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.
3.当a=0时,-a=-0,0的是0,因此,-0=0.
么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;
例2 简化-(+3),-(-4),+(-6),+(+5)的符号.
能自己总结出简化符号的规律吗?
括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.
课堂练习
1.填空:
(1)+1.3的是______; (2)-3的是______;
(5)-(+4)是______的; (6)-(-7)是______的
2.简化下列各数的符号:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列两对数中,哪些是相等的数?哪对互为?
-(-8)与+(-8);-(+8)与+(-8).
四、小结
指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.
五、作业
1.分别写出下列各数的:
2.在数轴上标出2,-4.5,0各数与它们的
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化简下列各数:
5.填空:
(1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;
(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.
课堂教学设计说明
教学过程 是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.
探究活动
有理数a、b在数轴上的位置如图:
将a,-a,b,-b,1,-1用“<”号排列出来.
分析:由图看出,a>1,-1
解:在数轴上画出表示-a、-b的点:
由图看出:-a<-1
点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.
七年级数学教案5
教学内容:
课本第160 163页。主要内容为通过一个直线相交的课件的分析得到相交直线垂直的概念,并进一步探索垂足的概念和垂直的性质,同时探索了两条直线之间被第三条直线所截形成的角。
第一课时
4.7.1 垂线
教学目标
▲ 知识与能力
1、分析和探索垂直的概念,体会垂直的性质。
2、理解过平面中一点有且只有一条垂线的性质。
▲ 过程与方法
1、复习相关内容并引入新课。
2、通过对相关课件的分析,引出两条直线垂直以及相关的概念。
3、通过对例题图形的操作得到垂直的性质。
▲ 情感、态度与价值观
通过对课件的分析,引导学生得出生垂直的定义,从而进一步培养学生探索精神和探索能力。
教学重、难点及突破
▲ 重点
两条直线的垂直概念以及垂直的性质。
▲ 难点
能充分理解垂直的定义,并能应用于解决实际问题。
▲ 教学突破
本节内容较为形象化,涉及到的图形较多,所以建议教师在教学的过程中能够充分的利用多媒体课件等教学的资源,能给喾学生较为形象的描述以帮助学生认识个中关系,从而使学生较深刻地理解本节内容。另外在本世中节建议教师对学生进行一些数学语言的训练,使学生能用数学语言描述图形的位置关系,从机时进一步培养学生用数学说话的习惯。
教学准备
▲教师准备
有关相交直线移动的课件
▲学生准备
预习相交线的`概念
教学流程设计
教师指导
学生活动
1.设问,引导学生回顾两直线相交的内容,并引入新课
2.通过对两相交直线的旋转的动画分析,从直观上得到两直线垂直的概念.
3.引导学生动手画得到垂 直的唯一性.
4.布置适当练习,巩固所学
1.认真地回顾两直线相交的知识,并随着教师的思路进入新课的学习.
2.通过对动画效果的分析,能总结出两直线垂直的概念.
3.通过亲手画图得到垂 直的唯一性.
4.完成练习,对所学内容有进一步的理解.
一、导入新课
教师活动
学生活动
1、导入:我们在以前学习了相交直线的知识,让我们一起回忆一下。
2、总结学生的回答,并做出适当补充,引入新课:今天我们进一步讨论相交线问题。
1、认真地回忆有关相交直线的内容,进一步提升认识,并在此基础上积极回答问题。
2、在教师作总结的过程中积极思考,并随着教师的思路进入新课。
二、对相交线的探索
教师活动
学生活动
1、 用电脑展示两直交线中的一条沿着交点旋转形成垂直的动画效果,引导学生观察并讨论得到垂直的概念,向学生渗透从几何直观到抽象概念的思维过程。
2、 引导学生完成课本第161页“试一试”的内容,鼓励讨论在直线外或直线上一点能引该直线的几条生垂线?在此过程中培养学生动手操作解决问题的能力。
3、 让学生观察课本第161页图4.7.6,提问:点A与直线BC上各点连线中哪条最短
4、 总结学生的回答,讲述点到直线距离概念,提醒学生注意垂线段与线的区别.
5、 组织学生观察讨论课本第162页”做一做”的内容,在此过程中通过小海龟的运动渗透旋转思想.
6、 练习:课本第162页练习1-3题.
7、 教师小结本内容
8、 布置作业:课本第166页习题4.7第1题
1)认真积极讨论,基础上发现图形中两条相交直线形成的四个角是直角,从而认识两条直线垂直的概念,能初步理解从几何直观到抽象概念的过程。
2)认真完成“试一试|”的内容并积极讨论,在此过程中发现在同一平面内,经过直线外或直线上一点有且只有一条垂线。
3)认真观察,动手测量,积极讨论可发现点A与直线BC各点连线中AB最短。
4)结合图形,认识点到直线距离的概念,掌握垂线与垂线段的区别。
5)通过做出图形和讨论能发现两条相交直线垂直可以看作一条直线是另一条直线绕点旋转90度得到的,从而理解旋转思想。
6)认真完成练习,巩固所学的知识。
7)学生完成作业
七年级数学教案6
一、素质教育目标
(一)知识教学点
1.掌握数轴的三要素,能正确画出数轴.
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
(二)能力训练点
1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.
2.对学生渗透数形结合的思想方法.
(三)德育渗透点
使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.
(四)美育渗透点
通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.
二、学法引导
1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣手脑并用启发诱导反馈矫正”的教学方法.
2.学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习.
三、重点、难点、疑点及解决办法
1.重点:正确掌握数轴画法和用数轴上的点表示有理数.
2.难点:有理数和数轴上的点的对应关系。
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片.
六、师生互动活动设计
师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习
七、教学步骤
(一)创设情境,引入新课
师:大家知识温度计的用途是什么?
生:温度计可以测量温度
(出示投影1)
三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.
师:三个温度计所表示的温度是多少?
生:2℃,-5℃,0℃.
我们能否用类似温度计的图形表示有理数呢?
这种表示数的图形就是今天我们要学的内容数轴(板书课题).
【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容数轴.再从温度计这个实物形象抽象出数轴来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.
(二)探索新知,讲授新课
1.数轴的画法
与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:
第一步:画直线定原点原点表示0(相当于温度计上的0℃).
第二步:规定从原点向右的`为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).
第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).
【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.
让学生观察画好的直线,思考以下问题:
(出示投影1)
(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示-1的点在什么位置?
(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?
根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.
学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.
【教法说明】通过“观察类比思考概括表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.
教师根据学生回答给予肯定或否定,纠正后板书.
2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.
向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.
学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.
3.尝试反馈,巩固练习
请大家回答下列问题:
(出示投影2)
(1)有人说一条直线是一条数轴,对不对?为什么?
(2)下列所画数轴对不对?如果不对,指出错在哪里?
学生活动:学生思考,不准讨论,想好后举手回答.
让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.
【教法说明】此组练习的目的是巩固数轴的概念.
答案:(2)①缺原点,②缺正方向,③数轴不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是数轴,同时⑦为学习平面直角坐标系打基础.
4.有理数与数轴上点的关系
通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示.
例1画一条数轴,并画出表示下列各数的点:
1,5,0,-2.5,.
学生练习:同学们在练习本
七年级数学教案7
教学目标
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.
2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.
重点:
邻补角、对顶角的概念,对顶角性质与应用.
难点:
理解对顶角相等的性质的探索.
教学过程
一、读一读,看一看
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.
学生欣赏图片,阅读其中的文字.
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线.本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行的判定以及图形的平移问题.
二、观察剪刀剪布的过程,引入两条相交直线所成的角
教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?
学生观察、思想、回答,得出:
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.
教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.
三、认识邻补角和对顶角,探索对顶角性质
1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流.
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确地表达,如:
∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.
∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.
2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.
3.学生根据观察和度量完成下表:
两直线相交所形成的角分类位置关系数量关系
教师再提问:如果改变∠AOC的大小,会改变它与其它角的位置关系和数量关系吗?
4.概括形成邻补角、对顶角概念.
(1)师生共同定义邻补角、对顶角.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点,而且一个角的.两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
(2)初步应用.
练习1:下列说法,你同意吗?如果错误,如何订正.
①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.
②邻补角可看成是平角被过它顶点的一条射线分成的两个角.
③邻补角是互补的两个角,互补的两个角也是邻补角?
5.对顶角性质.
(1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.
(2)教师把说理过程,规范地板书:
在图1中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.
教师板书对顶角性质:对顶角相等.
强调对顶角概念与对顶角性质不能混淆:对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.
(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.
四、巩固运用
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程.
2.练习:
(1)课本P5练习.
(2)补充:判断下列图中是否存在对顶角.
五、作业
1.课本P9.1,2,P10.7,8.
2.选用课时作业设计.
课时作业设计
一、判断题:
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角,那么它们互为邻补角.()
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补.()
二、填空题:
1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.
(1)(2)
2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°,则∠EOF=________.
三、解答题:
1.如图,直线AB、CD相交于点O.
(1)若∠AOC+∠BOD=100°,求各角的度数.
(2)若∠BOC比∠AOC的2倍多33°,求各角的度数.
2.两条直线相交,如果它们所成的一对对顶角互补,那么它的所成的各角的度数是多少?
课时作业设计答案:
一、1.×2.∨
二、1.∠AOF,∠EOC与∠DOF,1602.150
三、1.(1)分别是50°,150°,50°,130°(2)分别是49°,131°,49°,131°.
七年级数学教案8
教学目标
1、掌握绝对值的概念,有理数大小比较法则。
2、学会绝对值的计算,会比较两个或多个有理数的大小。
3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。
教学难点两个负数大小的比较
知识重点绝对值的概念
教学过程(师生活动)设计理念
设置情境
引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
学生思考后,教师作如下说明:
实际生活中有些问题只关注量的具体值,而与相反
意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。
学生回答后,教师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20|—10|=10显然|0|=0这个例子中,第一问是相反意义的量,用正负
数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。并使学生体
验数学知识与生活实际的联系。
因为绝对值概念的几何意义是数形转化的典型
模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。
合作交流
探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对
有什么规律?、
—3,5,0,+58,0.6
要求小组讨论,合作学习。
教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页)。
巩固练习:教科书第15页练习。
其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概
念的一个应用,所以安排此例。
学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。
结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:
把14个气温从低到高排列;
把这14个数用数轴上的点表示出来;
观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?
应怎样比较两个数的大小呢?
学生交流后,教师总结:
14个数从左到右的顺序就是温度从低到高的顺序:
在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。
在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则
想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。
要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性
数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的.数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。
课堂练习例2,比较下列各数的大小(教科书第17页例)
比较大小的过程要紧扣法则进行,注意书写格式
练习:第18页练习
小结与作业
课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?
本课作业1,必做题:教产书第19页习题1,2,第4,5,6,10
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在
这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学
习绝对值概念的必要性和激发学习的兴趣。②教材中数的绝对值概念是根据几何意
义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理
数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。
2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。
3,有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学
中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到
大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型。为此设置了想象练习。
4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教
学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。
七年级数学教案9
教学目标:
1、知识与技能
(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。
(2)理解有理数的意义,体会有理数应用的广泛性。
2、过程与方法
通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。
重点、难点:
1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
教学过程:
一、创设情景,导入新课
大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的
为了表示一个人、两只手、……,我们用到整数1,2,……
为了表示“没有人”、“没有羊”、……,我们要用到0。
但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。
二、合作交流,解读探究
1、某市某一天的温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。“运进”和“运出”,其意义是相反的。
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
待学生思考后,请学生回答、评议、补充。
教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”。如今这种方法在记账的时候还使用。所谓“赤字”,就是这样来的。
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作—5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“—”号,就把两个相反意义的量简明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作—155米;
教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的'数量。并指出,正数,负数的“+”“—”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
2、给出新的整数、分数概念
引进负数后,数的范围扩大了。过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。
3、给出有理数概念
整数和分数统称为有理数。
4、有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?
待学生思考后,请学生回答、评议、补充。
教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。
三、总结反思
引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“—”号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
四、课后作业:课本P5习题1。1A第1、2、4题。
七年级数学教案10
教学 建议
一、重点、难点分析
本节 教学 的重点是掌握三元一次方程组的解法, 教学 难点是解法的灵活运用.能够熟练的解三元一次方程组是进一步学习一次方程组的应用,以及一次不等式组的解法的基础.
1.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,这样的方程组就是三元一次方程组.
2.三元一次方程组的解法仍是用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程.
3.如何消元,首先要认真观察方程组中各方程系数的特点,然后选择最好的解法.
4.有些特殊方程组,可用特殊的消元方法,有时一下子可消去两个未知数,直接求出一个未知数值来.
5.解一次方程组的消元“转化”基本思想,可以推广到“四元”、“五元”等多元方程组,这是今后要学习的内容.
二、知识结构
三、教法建议
1. 解三元一次方程组时,由于方程较多,学生容易出错.因此,应提醒学生注意,在消去一个未知数得出比原方程组少一个未知数的二元一次方程组的过程中,原方程组的每一个方程一般都至少要用到一次.
2. 消元时,先要考虑好消去哪一个未知数.开始练习时,可以先把要消去的未知数写出来(如教科书在分析中所写的那样),然后再进行消元.
在例2中,如果先确定消去 ,那么这三个方程两两分组的方法有3种;①与②,①与③,②与③.我们可以从中任选2种消去 .这里特别要注意选定2种后,必须消去同一个未知数.如果违背了这一点,所得的两个新方程虽然各含两个未知数,但由它们组成的方程组仍然含有三个未知数,这在实际上没有消元.
教学 设计示例
一、素质 教育 目标
(一)知识 教学 点
1.知道什么是三元一次方程.
2.会解某个方程只有两元的简单的三元一次方程组.
3.掌握解三元一次方程组过程中化三元为二元或一元的思路.
(二)能力训练点
1.培养学生分析能力,能根据题目的特点,确定消元方法、消元对象.
2.培养学生的计算能力、训练解题技巧.
(三)德育渗透点
渗透“消元”的思想,设法把未知数转化为已知.
(四)美育渗透点
通过本节课的学习,渗透方程恒等变形的数学美,以及方程组解的'奇异美.
二、学法引导
1. 教学 方法:观察法、讨论法、练习法.
2.学生学法:三元一次方程组比二元一次方程组要复杂些,有些题的解法技巧性较强,因此在解题前必须认真观察方程组中各个方程的系数特点,选择好先消去的“元”,这是决定解题过程繁简的关键.一般来说应先消去系数最简单的未知数.
三、重点?难点?疑点及解决办法
(一)重点
使学生会解简单的三元一次方程组,经过本课 教学 进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法.
(二)难点
针对方程组的特点,选择最好的解法.
(三)疑点
如何进行消元.
(四)解决办法
加强理解二元及三元一次方程组的解题思想是“消元”,故在求解中为便于计算应选择系数较简单的未知数将它消去.
四、课时安排
一课时.
五、教具学具准备
投影仪、自制胶片.
六、师生互动活动设计
1. 教师 先复习解二元一次方程组的解题思想及办法,让学生充分理解方程组的消元思想及方法.
2. 教师 由引例引出三元一次方程组,由学生思考、讨论后解决如何消三元变二元, 教师 讲解、小结.
3.由学生尝试,解决例题.
4.学生练习,教师 小结、讲评.
七、 教学 步骤
(一)明确目标
本节课将学习如何求三元一次方程组的解.
(二)整体感知
通过复习二元一次方程组的解题思想,从而类推出三元一次方程组的解题思想及解题方法,让学生牢牢抓住利用消元的思想化三元为二元,再化二元为一元的办法来求解.
(三) 教学 过程
1.复习导入、探索新知
(1)解二元一次方程组的基本方法有哪几种?
(2)解二元一次方程组的基本思想是什么?
甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.
题目中有几个未知数?含有几个相等关系?你能根据题意列出几个方程?
学生活动:回答问题、设未知数、列方程.
这个问题必须三个条件都满足,因此,我们把三个方程合在一起,写成下面的形式:
这个方程组有三个未知数,每个方程的未知数的次数都是1,并且一共有三个方程,像这样的方程组,就是我们要学的三元一次方程组.
怎样解这个三元一次方程组呢?你能不能设法消云一个或两个未知数,把它化成二元一次方程组或一元一次方程?
学生活动:思考、讨论后说出消元方案.
教师 对学生的回答给予肯定或否定,纠正后说出消元方案:依照代入法,由较简单的方程②,可得 ④,进一步将④分别代入①和③中,就可消去 ,得到只含 、 的二元一次方程组.
解:由②,得 ④
把④代入①,得 ⑤
把④代入③,得 ⑥
⑤与⑥组成方程组
解这个方程组得
把 代入④,得
∴
∴
注意:a.得二元一次方程组后,解二元一次方程的过程在练习本上完成.
b.得 , 后,求 ,要代入前面最简单的方程④.
c.检验.
这道题也可以用加减法解,②中不含 ,那么可以考虑将①与③结合消去,与②组成二元一次方程组.
学生活动:在练习本上用加减法解方程组.
【教法说明】通过一题多解,不仅能开阔学生的思维,培养学生的兴趣,而且,可以巩固解方程组时通过“消元”把未知转化为已知的基本思想.
2.学生尝试解决例题
例1? 解方程组
学生活动:独立分析、思考,尝试解题,有的学生可能用代入法解,有的学生可能用加减法解,选一个用加减法解的学生板演,然后,让用代入法的学生比较哪种方法简单.
解:②×3+③,得? ④
①与④组成方程组
解这个方程组,得
把 , 代入②,得
∴
∴
归纳:这个方程组的特点是方程①不含 ,而②、③中 的系数绝对值成整数倍关系,显然用加减法从②、③中消去 后,再与①组成只含 、 的二元一次方程组的解法最为合理.而用代入法由①得到的式子含有分母,代入②、③较繁.
【教法说明】有了前例的基础,让学生独立尝试解题,可以培养他们分析问题、解决问题的能力;在解题后归纳题目的特点为,点明消元方法和消元对象,更有助于学生探索方法、掌握技巧.
3.尝试反馈,巩固知识
练习:P30 (1)
学生活动:独立完成练习后,同桌、前后桌之间按不同解法的同学交换,看哪种方法最简单.
4.变式训练要,培养能力
补例:解方程组
学生活动:独立完成.
【教法说明】此方程组中方程①、③中 、 的系数完全相同,用③-①可直接得到 ,再把 代入②可求 ,代入①可求 .这道题直接化三元为一元,能使学生体会到解法技巧的重要性,觉得数学问题真是奥妙无穷!
(四)总结、扩展
1.解三元一次方程组的基本思想是什么?方法有哪些?
2.解题前要认真观察各方程的系数特点,选择最好的解法,当方程组中某个方程只含二元时,一般的,这个方程中缺哪个元,就利用另两个方程用加减法消哪个元;如果这个二元方程系数较简单,也可以用代入法求解.
3.注意检验.
【教法说明】这样总结,既突出了本课重点,又突出了本节内容中例题、习题的特点?某个方程只含两元,使学生在以后解题时有很强的针对性.
八、布置作业
(一)必做题:P31 A组1.
(二)选做题:解方程组
(三)思考题:课本第32页“想一想”.
【教法说明】作业
(一)是为了巩固本节所学知识;作业
(二)有很强的技巧性,可培养学生兴趣;作业
(三)培养学生分析问题、解决问题的能力.
七年级数学教案11
1.1 生活中的立体图形
〖教学过程:〗
一、看一看:(情境创设)
教师(导语):在我们的生活中,充满着各种各样的图形,其优美的结构值得我们鉴赏,其奇妙的性质等着我们去探究。请听来自世界图形的对话吧。
设计:(1)卡通A(代表平面图形):“我是平面图形,是大家的老朋友,我家的家庭成员一定比你家多。”
(2)卡通B(代表立体图形):“我是立体图形,是大家的新朋友,大家知道的并不一定比你少。”
教师(问):卡通A、B身体各部分是什么图形?
通过卡通A、B 的对话,组织学生讨论,派代表指着屏幕上图形说明自己的观念,让学生主动参与,激起他们的兴趣。培养集体意识,增强团队精神。
教师(导语):看来同学们非常善于观察图形,不知你们能否用数学的眼光观察生活中的图形?请看来自生活中的立体图形。
(出示课题):生活中的立体图形
音乐响起,屏幕播放录象。
二、议一议(课堂讨论)
问题1:你发现录象中的这些物体与哪些立体图形相类似,你能找出与这些立体图形相类似的物体吗?
组织学生围绕以上问题四人一小组讨论,说明自己的观念,其他小组积极点评,补充,得出常见的立体图形:圆柱、圆锥、正方体、球、棱锥。
问题2:比较这些立体图形,看看相互之间有什么相同点和不同点?
电脑演示:(1)球体 (2)圆柱 (3)圆锥
并通过实物展示,引导学生观察、讨论、归纳,得出常见的立体图形的分类:球体、柱体、椎体。
电脑演示:由圆柱变成棱柱(三棱柱、四棱柱、五棱柱┉┉),
问题3 以三棱柱为例,说出一个棱柱的棱数与底面的边数,侧面的平面的个数之间的.关系?
诱导学生思考:当棱柱的棱柱的棱数越来越多时,棱柱就越来越趋向于什么立体图形?
(用类似的方法),电脑演示:将圆锥演变成棱椎(三棱锥、四棱锥、五棱椎┉),再由棱锥演变成圆锥。
通过一连串的活动,让学生掌握从特殊到一般,再有一般到特殊的的认知思想,了解图形之间的相互联系。通过对比,确立分类思想。并用类比的方法,自主的讨论、归纳,突出重点、化解难点,在轻松的氛围中学习。
三、练一练(评价)
遵循“由浅入深,循序渐进,由感性到理性”的认知规律,依据“主体参与,分层优化,及时反馈,激励评价”的原则,我设计了以下训练题:
1、发给学生一些图片或实物,说说手中的图形,是什么立体图形?没有发到的学生,举出立体图形的实例。
尽量让每个学生都发言,注意培养学生的语言表达能力。
七年级数学教案12
一、教学目标
1.了解推理、证明的格式,理解判定定理的证法.
2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.
3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.
4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.
二、学法引导
1.教师教法:启发式引导发现法.
2.学生学法:积极参与、主动发现、发展思维.
三、重点·难点及解决办法
(一)重点
判定定理的推导和例题的解答.
(二)难点
使用符号语言进行推理.
(三)解决办法
1.通过教师正确引导,学生积极思维,发现定理,解决重点.
2.通过教师指导,学生自行完成推理过程,解决难点及疑点.
四、课时安排
1课时
五、教具学具准备
三角板、投影仪、自制胶片.
六、师生互动活动设计
1.通过设计练习,复习基础,创造情境,引入新课.
2.通过教师指导,学生探索新知,练习巩固,完成新授.
3.通过学生自己总结完成小结.
七、教学步骤
(一)明确目标
掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.
(二)整体感知
以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.
(三)教学过程
创设情境,复习引入
师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).
学生活动:学生口答第1、2题.
师:你能说出有什么条件,就可以判定两条直线平行呢?
学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.
教师将第3题图形画在黑板上.
学生活动:学生口答理由,同角的`补角相等.
师:要求学生写出符号推理过程,并板书.
【教法说明】
本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.
师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?
学生活动:同分内角.
师:它们有什么关系.
学生活动:互补.
师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.
七年级数学教案13
[教学目标]
1.使学生了解多边形的内角、外角等概念.
2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.
[教学重点、难点]
1.重点:
(1)多边形的内角和公式.
(2)多 边形的外角和公式.
2.难点:多边形的内角和定理的推导.
[教学过程]
一、探究
1.我们知道三角形的内角和为180°.
2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.
3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?
画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.
从中你得到什么结论?
同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.
二、思考几个问题
1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?
2.从五边形一个顶点出发可以引几条对角线?它们将 五边形分成几个三角形?那么这五边形的内角和为多少度?
3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?
综上所述,你能得到多边形内角和公式吗?
设多边形的边数为n,则
n边形的内角和等于(n一2)180°.
想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?
由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)
分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.
如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.
分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去.
∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°
用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.
三、例题
例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?
已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.
分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.
解:如图,四边形ABCD中,∠A+∠C=180°。
∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,∴∠B+∠D= 360°-(∠A+∠C)=180°
这就是说:如果四边形一组对角互补,那么另一组对角也互补.
例2 如图,在六边 形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?
已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角.
求:∠1+∠2+∠3+∠4+∠5+∠6的值.
分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×1 80°.由于六边形的内角和为(6—2)×180°=720°.
这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360° .
解:∵六边形的任何一个外角加上它相邻的内角和为180°.
∴六边形的六个外角加上各自相邻内角的总和为6×180°.
由于六边形的内角和为(6—2)×180°=720°
∴它的外角和为 6×180°一720°=360°
如果把六边形横成n边形.(n为不小于3的正整数)
同样也可以得到 其外角和等于360°.即
多边形的外角和等于360°.
所以我们说多边形的外角和与它的边数无关.
对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°.
如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.
四、课堂练习
课本P89练习1、2、3题.
P90第2、3题
五、课堂小结
引导学生总结本节课主要内容.
六、课后作业
课本P90第4、5、6题.
备选题:
一、判断题.
1.当多边形边数增加时,它的内角和也随着增加.( )
2.当多边形边数增加时.它的外角和也随着增加.( )
3.三角形的外角和与一多边形的外角和相等.( )
4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.( )
5.四边形的四个内角至少有一个角不小于直角.( )
二、填空题.
1.一个多边形的每一个外角都等于30°,则这个多边形为 边形.
2.一个多边形的每个内角都等于135°,则这个多边形为 边形.
3.内角和等于外角和的多边形是 边形.
4.内角和为1440°的多边形是 .
5.一个多边形的内角的度数从小到大排列时,恰好依次增加相同的度数,其中最小角为100°,最大的是140°,那么这个多边形是 边形.
6.若多边形内角和等于外角和的3倍,则这个多边形是 边形.
7.五边形的对 角线有 条,它们内角和为 .
8.一个多边形的内角和为4320°,则它的边数为 .
9.多边形每个内角都相等,内角和为720°,则它的每一个外角为 .
10.四边形的'∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠D= .
11.四边形的四个内角中,直角最多有 个,钝角最多有 个, 锐角最多有 个.
12.如果一个多边形的边数增加一条,那么这个多边形的内角和增加 ,外角和增加 .
三、选择题.
1.多边形的每个外角与它相邻内角的关系是( )
A.互为余角 B.互为邻补角 C.两个角相等 D.外角大于内角
2.若n边形每个内角都等于150°,那么这个n边形是( )
A.九边形 B.十边形 C.十一边形 D.十二边形
3.一个多边形的内角和为720°,那么这个多边形的对角线条数为( )
A.6条 B.7条 C.8条 D.9条
4.随着多边形的边数n的增加,它的外角和( )
A.增 加 B.减小 C.不变 D.不定
5.若多边形的外角和等于内角和的号,它的边数是( )
A.3 B.4 C.5 D.7
6.一个多边形的内角和是1800°,那么这个多边形是( )
A.五边形 B.八边形 C.十边形 D.十二边形
7.一个多边形每个内角为108°,则这个多边形( )
A.四边形 B,五边形 C.六边形 D.七边形
8,一个多边形每个外角都是60°,这个多边形的外角和为( )
A.180° B.360° C.720° D.1080°
9.n边形的n个内角中锐角最多有( )个.
A.1个 B.2个 C.3个 D.4个
10.多边形的内角和为它的外角和的4倍,这个多边形是( )
A.八边形 B.九边形 C.十边形 D,十一边形
四、解答题.
1.一个多边形少一个内角的度数和为2300°.
(1)求它的边数; (2)求少的那个内角的度数.
2.一个八边形每一个顶点可以引几条对角线?它共 有多少条对角线?n边形呢?
3.已知多边形的内角和为其外角和的5倍,求这个多边形的边数.
4. 若一个多边形每个外角都等于它相邻的内角的 ,求这个多 边形的边数.
5.多边形的一个内角的外角与其余内角的和为600°,求这个多边形的边数.
6.n边形的内角和与外角和互比为13:2,求n.
7.五边形ABCDE的各内角都相等,且AE=DE,AD∥CB吗?
8.将五边形砍去一个角,得到的是怎样的图形?
9.四边形ABCD中,∠A+∠B=210°,∠C =4∠D.求:∠C或∠D的度数.
10.在四边形ABCD中,AB=AC=AD,∠DAC=2∠BAC.
求证:∠DBC=2∠BDC.
七年级数学教案14
1.教学重点、难点
重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
2.本节知识结构:
本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。
3.重点、难点分析:
列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。
如:用代数式表示:比 的2倍大2的数。
分析 本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的'量,即所求的数为大数,那么比和大之间量,即 的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2 +2.
4.列代数式应注意的问题:
(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。
(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。
(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(4)在代数式中出现除法时,用分数线表示。
5.教法建议:
列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
七年级数学教案15
学习目标
1. 理解有序数对的应用意义,了解平面上确定点的常用方法
2. 培养用数学的意识,激发学习兴趣.
学习重点: 理解有序数对的意义和作用
学习难点: 用有序数对表示点的位置
学习过程
一.问题导入
1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯同学们欣赏下面图案.
2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。
3.某人买了一张8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。
你能举出生活中利用数据表示位置的例子吗?
二.概念确定
有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)
利用有序数对,可以很准确地表示出一个位置。
1.在教室里,根据座位图,确定数学课代表的位置
2.教材40页练习
三.方法归类
常见的'确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
1.如图,A点为原点(0,0),则B点记为(3,1)
2.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。
例2 如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
[巩固练习]
1. 如图是某城市市区的一部分示意图,对市政府来说:
北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?
结合实际问题归纳方法
学生尝试描述位置
2. 如图,马所处的位置为(2,3).
(1) 你能表示出象的位置吗?
(2) 写出马的下一步可以到达的位置。
[小结]
1. 为什么要用有序数对表示点的位置,没有顺序可以吗?
2. 几种常用的表示点位置的方法.
[作业]
必做题:教科书44页:1题
【七年级数学教案】相关文章:
七年级数学教案02-24
七年级下册数学教案02-16
人教版七年级数学教案11-06
七年级数学教案15篇03-08
初中七年级数学教案范文03-15
分类的数学教案11-16
初中数学教案11-26
小学数学教案【经典】08-01
[精选]小学数学教案07-21