梯形面积的教案
作为一位优秀的人民教师,常常需要准备教案,编写教案有利于我们科学、合理地支配课堂时间。教案应该怎么写才好呢?下面是小编精心整理的梯形面积的教案,希望能够帮助到大家。
梯形面积的教案1
情况分析:
梯形的面积计算是在学生经历了平行四边形和三角形面积的计算公式推导过程的基础上教学的。因此要注意引导学生利用已有的学习经验,自主探索梯形的面积计算公式。书上安排让学生选择一组梯形剪下来,想想选择两个怎样的梯形能拼成平行四边形,由于已有了把两个完全一样的三角形拼成平行四边形的经验,学生不仅能顺利选择,而且也能自然认识到“每个梯形的面积是拼成的平行四边形面积的一半”,这儿难点是引导学生讨论梯形的上底、下底、高与拼成的平行四边形的底、高有什么关系,从而探索每个平行四边形的面积与拼成的平行四边形面积之间的关系。
因此,本节课关键可以引导学生联系已有经验与方法,运用并解决到新的问题中去。
教学目标:
1、使学生通过观察、操作、猜测、填表、讨论等方法探索并掌握梯形面积的计算方法,通过迁移前面学法,自主探究梯形上下底、高与平行四边形的底、高之间的关系,能正确计算梯形的面积,应用公式解决相关的实际问题。
2、培养学生观察、推理、归纳能力,体会转化思想的价值。
3、让学生进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。
重点:探索并掌握梯形的面积计算方法。
难点:理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。
准备:剪下书后的梯形(学生用)
教学过程:
一、回忆旧知,引出话题。
1、同学们,前面我们已经学习了平行四边形、三角形面积的计算。
(出示画有梯形的小黑板)这是什么图形?想一想,怎样的图形称为梯形?(只有一组对边平行的四边形叫做梯形。)
你知道梯形各部分的名称吗?谁愿意来指着黑板上的梯形说一说?(师在学生指出上底、下底、高后随机标出a、b、h)
1、 那么怎样 计算梯形的面积呢?你准备怎样来推导梯形面积的计算方法呢?(同桌交流)
师可以适时启发:回想一下,前面我们在推导三角形的面积计算公式时是把它转化成什么图形来研究的呢?
对!我们在研究一种新图形的时候,都是想办法把它转化成我们已经学过的'图形,再求出新图形的面积。
2、 今天我们研究梯形面积的计算方法,你有一些什么想法,能把你心里想到的东西跟大家说说吗?(板书课题:梯形面积的计算)
(通过师生交流使学生认识到:要计算梯形的面积,可以先想办法把梯形转化成已经学过的图形,再求面积。)
设计意图:这里为学生的学习作了一些铺垫,一是基础知识方面的,回忆梯形的有关知识为探索梯形面积的计算方法作知识上的准备,二是解题策略方面的,突出“转化”思想的重要性,并提示学生在研究梯形时可以怎样思考,这样可以降低一些学困生的学习难度;直接引出话题,更可以使学生明确学习目标。
二、探究新知
1、师继续启发:你准备用几个怎样的梯形来研究?(2个完全一样的梯形)为什么?(因为它们可以拼成平行四边形)师及时鼓励:你的猜想够大胆!根据上节课学习的知识,想到2个完全一样的梯形也一定能拼成平行四边形了。好,那么任何2个完全一样的梯形究竟能不能拼成平行四边形呢?如果能的话,又该怎样拼呢?
师:好!请同学们拿出剪好的梯形,看看哪两个能拼成平行四边形,先拼一拼,再求出拼成的平行四边形和每个梯形的面积,填好表后在小组里交流。
2、(出示例6)学生动手拼,并求出拼成的平行四边形和梯形的面积,填表、交流。
拼成的平行四边形
梯 形
底(cm)
高(cm)
面积(cm2)
上底
(cm)
下底
(cm)
高
(cm)
面积
(cm2)
3、小组讨论:
(1)拼成平行四边形的两个梯形有什么关系?
(2)拼成的平行四边形的底与梯形的上底、下底有什么关系?
拼成的平行四边形的高与梯形的高有什么关系?每个梯形的面积与拼成的平行四边形的面积呢?
(3)根据平行四边形的面积公式,怎样求梯形的面积?
学生汇报结果:
(1)拼成平行四边形的2个梯形是完全相同的。
(2)拼成平行四边形的底就是梯形的上底与下底的和,拼成平行四边形的就是梯形的高,每个梯形的面积则是拼成平行四边形面积的一半。
(3)因为平行四边形的面积=底×高,所以梯形的面积 =(上底+下底)×高÷2
(教师随机板书成:)
平行四边形的面积= 底 × 高
梯 形 的 面 积 =(上底+下底)×高÷2
4、如果用s表示梯形的面积,有a、b和h分别表示梯形的上底、下底和高,那么你准备怎样用字母表示梯形面积计算公式?(学生独立尝试,指名板演:字母公式:s=(a+b) ×h÷2)教师再次强调公式中的“÷2”,这儿的“÷2”能少吗?什么?
5、试一试:P20 学生独立完成,再交流思考过程与计算结果。
设计意图:通过学生大胆猜测,如何选择图形——动手操作——观察、交流、讨论——汇报得出公式的系列过程,使学生很自然地产生,一步步向前探索的需要,这个让学生经历“建立猜想、实际操作、观察发现、抽象公式”的过程,既使学生理解了公式的来龙去脉,锻炼了数学揄能力,又能使学生实实在在经历了由建立猜想到实验验证,再到归纳发现的全过程,感受到数学方法的内在魅力。
三、巩固练习。
1、完成P20练一练 第1题
提问:涂色梯形的面积与整个平行四边形的面积有什么关系?
2、完成P20练一练 第2题:
(1)提问:你能准确说出每个图形的上底、下底和高吗?
(2)再计算它们的面积。
3、完成P20练一练 第3题
结合题意,使学生先读懂题目,并理解“横截面”的含义:
(1)说一说,你是怎样理解“横截面”的?
(2)指一指,图中的物体的“横截面”具体在哪里?
(3)再应用公式进行计算。
设计意图:通过系列练习,让学生在观察直观图形中进一步加深梯形与相应平行四边形的面积关系的理解,以及利用面积公式解决简单实际问题,从而巩固梯形面积计算公式。
四、全课总结。
今天我们学习了梯形面积的计算,回想一下,我们是如何推导出它的面积计算公式的?想一想,通过剪、拼能把一个梯形转化成平行四边形吗?有兴趣的同学可以课后去试一试。
梯形面积的教案2
教学目标
重点:Δ
难点:※知识与技能
过程与方法
情感态度与价值观
Δ使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积.
※培养学生运用数学知识解决生活中问题的能力.
教具,学具
电脑,课件
课件
梯形面积的计算练习
设计思路
一,复习有关知识,做到有的放失.
二,通过基本练习,让学生进一步熟悉公式,明白求面积必须要知道的量是哪些 拼成的平行四边形和原来梯形的关系.
三,进行提高练习,结合练习四第2题,让学生先在小组里说说怎样找出面积相等的梯形.由于这4个梯形的高相等,只要比较它们的商,下底的和是否相等.第3题通过讨论使学生明白:直角梯形中与上,下底垂直的那条腰的长度就是梯形的高.第5题要注意两个问题:1,统一面积单位;2,讲清楚数量关系.第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些.在此基础上,再让学生分别进行计算.
三,针对学生在学习过程中出现的问题适当的进行补充和强化.
教学过程
自我设计
一,复习梯形面积的计算公式.
二,基本练习:
1,求下面梯形的面积:
上底2米 下底3米 高5米
上底4分米 下底5分米 高2分米
2,填空:
两个完全一样的梯形可以拼成一个( )形,这个拼成的图形的底等于梯形的( )与( )的和,高等于梯形的( ),每个梯形的面积等于拼成的平行四边形面积的( ).
3,梯形的上底是a,下底是b,高是c,则它的面积 =( )
4,一个梯形上底与下底的和是15米,高是4米,面积是( )平方米.
5,一个梯形的面积是8平方厘米,如果它的上底,下底和高各扩大2倍,它的面积是( )平方厘米.
6,判断:
1)梯形的面积等于平行四边形的面积的一半. ( )
2)两个完全相同的直角梯形,可以拼成一个长方形. ( )
3)一个上底是5厘米,下底是8厘米,高是3厘米的梯形,它的面积是12平方厘米. ( )
三,提高练习:
1,练习四第1题.用两个完全一样的梯形拼成一个平行四边形,已知每个梯形的面积是24平方分米,拼成的平行四边形的面积是多少平方分米
2,第2题 让学生先在小组里说说怎样找出面积相等的梯形.由于这4个梯形的高相等,只要比较它们的商,下底的和是否相等.这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的
3,第3题 右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上,下底垂直的那条腰的长度就是梯形的高.
4,第5题 要注意两个问题:1,统一面积单位;2,讲清楚数量关系.
5,第6题 先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的'条件又有哪些.在此基础上,再让学生分别进行计算.
课后反思
通过基本练习,让学生进一步熟悉公式,明白求面积必须要知道的量是哪些 拼成的平行四边形和原来梯形的关系.进行提高练习,结合练习四第2题,让学生先在小组里说说怎样找出面积相等的梯形.由于这4个梯形的高相等,只要比较它们的商,下底的和是否相等.第3题通过讨论使学生明白:直角梯形中与上,下底垂直的那条腰的长度就是梯形的高.第5题要注意两个问题:1,统一面积单位;2,讲清楚数量关系.第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些.在此基础上,再让学生分别进行计算.
梯形面积的教案3
教学目标:
1、通过学生操作拼图,使学生在理解的基础上,总结概括并掌握梯形面积的计算公式,学会用字母表示公式,并能正确计算梯形的面积。
2、通过多媒体的直观演示,让学生在观察比较、动手操作的基础上,发展学生的空间观念,进一步学习用转化的方法思考问题。
3、培养学生的分析、综合、抽象、概括以及解决实际问题的能力,培养学生创新意识。
教学重点:
掌握梯形面积的计算公式,并能够运用公式正确计算梯形的面积。
教学难点:
梯形面积计算公式的推导。
教学用具:
计算机课件、实物投影、两个完全一样的一般梯形(若干)、直角梯形、等腰梯形,并标有梯形的各部分名称
学具:同上、一把剪刀
教学过程:
一、复习铺垫
1、同学们,谁还记得我们认识了哪些平面图形?
2、在这些图形中,已经学过哪些图形的面积?谁给大家说一说?
3、过渡语:学习平行四边形和三角形的面积时,我们是把新的图形转化成学过的'图形,推导出面积的计算公式。今天这节课,我们继续用这种方法来研究梯形的面积。
4、板书课题:梯形面积的计算
二、合作探究,推导公式
1、老师给大家几个思考讨论题,请一个同学读一读。出示思考题:
(1)请你拼一拼、摆一摆、折一折、剪一剪,把梯形转化成学过的图形。
(2)梯形的面积与转化后图形的面积有什么关系?
(3)转化后图形的各部分相当于梯形的哪些部分?
(4)试着推导出梯形的面积公式。
2、现在同学们小组合作,看看谁能够通过自己的努力,发现梯形面积的计算公式,并按照思考题的顺序进行讨论。
3、学生拼摆讨论,教师巡视点拨。
4、汇报拼摆过程。学生前边演示,叙述推导。
梯形面积的教案4
教材分析
“梯形的面积”是在学生认识了梯形特征,掌握平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材没有安排用数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。
学情分析
本课以小组合作,动手操作为主教学,这样设计有利于全班参与,更为学困生提供了思考的机会。其次有利于学生间的充分交流与合作,为探索出更多的方法提供了机会。
教学目标
1.在实际情境中,认识计算梯形面积的必要性。
2.引导学生在自主参与探索的过程中,发现并掌握梯形的`面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。
3.结合数学“再创造”过程,培养学生观察、操作、比较等逻辑思维能力与初步的科学探究能力。
4.通过小组合作学习,培养学生合作学习的能力。
教学重点和难点
教学重点:探索并掌握梯形面积是本节课的重点
教学难点:理解梯形面积计算公式的推导过程是本课的难点。
教学流程示意
(一)、复习旧知
本环节由点开始学生就展开想象,在兴趣盎然的状态中打开了思维,轻松自然的引出各种已学平面图形的面积。
(二)、探究新知
此环节为学生创设了一个广阔的天空,顺其天性,自然调动已有的数学策略,突破教材以导为主的限制,以学生活动为主。
(三)深化巩固
运用公式是课堂教学中不可缺少的一个过程,这一环节通过练习既能巩固公式,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生体会到数学来源于生活,又应用于生活,同时感受祖国伟大的壮举,从而产生爱国主义情怀。
梯形面积的教案5
练习要求:使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。
练习重点:应用所学的知识解决一些实际问题。
练习过程:
一、基本练习
1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。
7.2÷0.122.4÷0.30.2×12.6×5
0.38×10000.8×2526.1-3.5-7.5
3.8+2.5+6.210÷2.54.8×0.2+5.2×0.2
2.看图思考并回答。
(1)怎样计算梯形的面积?
(2)梯形面积的计算公式是怎样推导出来的?
(3)右图所示梯形的`面积是多少?
二、指导练习
1.练习十八第6题,名数的改写。
(1)名数的改写方法是什么?根据学生的回答板书:
除以它们之间的进率
低级单位高级单位
乘它们之间的进率
(2)根据改写的方法将第6题的结果填在课本上。
3.6公顷=()平方米1平方米=()公顷
4平方千米=()公顷52公顷=()平方千米
160平方厘米=()平方分米=()平方米
0.25平方米=()平方分米=()平方厘米
(3)集体订正时让学生讲一讲自己的想法。
2.练习十八第8题:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?
(1)生独立审题,分小组讨论解法。
(2)选代表列出解答算式,不计算。
(3)由学生讲所列算式的想法,
(4)指导学生讲“(100+48)×250”为什么不除以2?
(5)学生计算出它的面积,集体订正。
三、课堂练习
1.练习十九第7题:根据表中所给的数值算出每种渠道横截面的面积。
渠口宽(米)
3.1
1.8
2.0
2.0
渠底宽(米)
1.5
1.2
1.0
0.8
渠深(米)
0.8
0.8
0.5
0.6
横截面面积(平方米)
生独立解答出结果并填在课本上,集体订正。
2.练习十八第10题:一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?
四、作业
练习十九第9题。
梯形面积的教案6
教学内容:教材P95~96例3及练习二十一第2、3、4题。
教学目标:
知识与技能:在平行四边形、三角形的面积计算公式推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。正确、较熟练地运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力。
过程与方法:通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。
情感、态度与价值观:渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系.提高学生学习数学的兴趣。
教学重点:理解并掌握梯形的面积公式.会计算梯形的面积。
教学难点:自主探究梯形的面积公式。
教学方法:动手实践、自主探索、合作交流
教学准备:师:多媒体、完全一样的梯形若干个。生:剪刀、两个完全一样的梯形纸片(如等腰梯形、直角梯形等)、练习本。
教学过程
课前预习案
判断
(1)两个完全相同的梯形可以拼成一个平行四边形,拼成的平行四边形的面积是梯形的2倍。 ( )
(2)梯形的面积比平行四边形的面积小。 ( )
(3)一个面积是80平方厘米的平行四边形,分割成两个完全一样的梯形,每个梯形的面积是40平方厘米。 ( )
一、谈话导入
师:前面我们学习了三角形和平行四边形的面积公式,在公式的推导过程中运用了变形的思想。这一节我们一起来学习梯形的面积。
二、创设情境,探索新知
1、计算面积(单位厘米)
(第1题图)
(第2题图)
2、 计算面积(单位厘米)
怎么计算呢?能不能运用转换的思想,变成已经学过的图形。 已学过的图形,三角形,平行四边形,长方形。)
讨论梯形面积推导过程。转化为两个三角形。从这里可以看出两个三角形的高与梯形的高都、
两个一样的梯形拼成一个平行四边形。平行四边形的底为梯形的(上底+下底),高为梯形的高。那么梯形的面积=(上底+下底)×高÷2剪切拼接成长方形,长为梯形的中位线,宽为梯形的高。那么:梯形的面积=(上底+下底)×高÷2
3、如果用 S 表示梯形的面积,梯形面积的计算公式可以写成:S=(a+b)h÷2
三、学以致用
1.出示教材第96页例3。
教师:什么是横截面?
请学生独立解决,全班核对答案。
教师:因为我们刚刚开始学梯形的面积公式,对公式不熟,所以计算时可以先写上公式,再列算式。等以后熟练了,公式可以省略。
2.出示教材第96页“做一做”。
教师:这题特别要看清楚问题,问的是“它们的面积分别是多少”,所以问的是“左边梯形的面积是多少”和“右边梯形的面积是多少”,千万不要把“分别”看成“共”,变成求整个大梯形的面积。
3.下面图中哪几个梯形的面积是相等的?为什么?
小结:这几个梯形的高相等,所以判断哪几个梯形的面积相等,只要看哪几个梯形的上底与下底的和相等就可以了。
四、课堂检测
1.填空。
(1)两个完全一样的梯形能拼成一个( ),拼成的.平行四边形的底由梯形的上底和下底的( )组成,所以梯形的面积=( ),用字母表示是( )。
(3)1680平方厘米=( )平方分米 0.95平方米=( )平方分米
2.判断。
(1)任意一个平行四边形都可以分成两个大小和形状都相同的梯形。( )
(2)平行四边形的面积大于梯形的面积。 ( )
(3)两个面积相等的梯形可以拼成一个平行四边形。( )
(4)梯形的面积等于梯形的上底加下底的和乘以高。( )
3完成教材第97页第1题到第5题。
(1)完成教材第96页“做一做”。先说一说这是一个什么图形,并对该图进行分析。
学生可以把它看成一个大梯形,梯形的上底是(40+45) cm,下底是(71+65) cm,高是40cm,也可以看成两个直角梯形,其中一个梯形的上底是40cm,下底是7lcm,另一个梯形的上底是45cm,下底是65cm,高都是40cm,算出两个梯形的面积再加起来。
(2)完成教材第97页“练习二十一”第3题。
本题需要先测量计算所需条件的长度,再利用梯形面积计算公式求面积。
(3)完成教材第97页“练习二十一”第4题。先让学生观察飞机模型的机翼是什么形状,(是两个完全相同的梯形)再让学生说一说怎样求机翼的面积。求机翼的面积,可以先求出一个梯形的面积,再乘2;也可以根据梯形面积公式的推导经验,设想把两个梯形拼成一个底长lOOmm+48mm,高250mm的平行四边形,求出它的面积。
五、课堂小结
师:这节课你学会了什么?有哪些收获?
引导总结:
1.在推导梯形的面积公式时,可以把梯形转化成我们学过的图形来推导。
2.梯形的面积=(上底+下底)×高÷2。
3.用字母表示:S=(a+b)×h÷2。
布置作业:
板书设计:
梯形的面积
梯形的面积=(上底+下底)×高÷2
用字母表示:S=(a+b)×h÷2
例3:
S=(a+b)h÷2
=(36+120)×135÷2
=156×135÷2
=10530 (m2)
梯形面积的教案7
教学目标:
1、使学生理解掌握梯形面积公式的推导,并能运用公式正确的进行计算
2、通过引导学生操作和对图形的观察比较,发展学生的空间观念
3、使学生进一步认识转化的数学思想方法,发展分析综合抽象概括等思维能力
教学重点:理解并掌握梯形面积公式,并会利用公式计算
教学难点:梯形面积公式的推导过程
教具:梯形纸板若干
学具:剪刀、梯形纸板若干
教学过程
一、复习平等四边形、三角形面积公式和推导过程
出示一梯形
标出各部分名称
师:你会计算梯形的面积吗?生:会
求出梯形面积及为什么要用这一公式作为梯形面积公式
二、新课
拿出准备好的梯形纸板操作
师:试一试梯形能否转化以学会的`计算面积的图形
可自己思考可小组共同操作并把你的结论记录下来
(生操作师参与其中)
汇报:边讲解边演示(可能会出现以下几种分法)
㈠、两个完全一样的梯形重合在一起经旋转和平移可拼成平行四边形
平行四边形=底×高
一个梯形=(上底+下底)×高÷2
㈡、只用一个梯形
①沿一条对角线可把一个梯形分成两个梯形
梯形面积=两个三角形面积之和
=下底×高÷2+上底×高÷2
②通过梯形上面一个顶点作梯形一腰平行线可分成一个平行四边形和一个三角形
S梯=平行四边形面积+三角面积
=上底×高十(下底-上底)×高÷2
③沿梯形上底两顶点作两条高分成一个长方形和两个三角形
④梯形上下底对折剪开?梯成平行四边形
S梯=(上底+下底)×高÷2
S梯=中位线×2×高÷2
反过来
⑤梯形上下底对析,两底角间对折拼成一个长方形(两层)
S梯=(上底+下底)÷2×(高÷2)×2
⑥通过梯形右腰中点作一腰平行线,得右边一个小三角形,再以小三角形上顶点为中心旋转拼成一个平行四边形
S梯=(上底+下底)÷2×高
⑦把梯形打开上顶点与右腰中点连接得一个小三角形把小三角形旋转成一个大三角形
S梯=(下底+上底)×高÷2
同学们找出了这么多种方法,真的很不错,但你知道为什么选用S梯=(上底+下底)×高÷2这个公式呢
拿一例说明S梯=下底×高÷2+上底×高÷2
利用乘法分配律也可以得到S=(上底+下底)×高÷2
其它几个公式经过化简也可以得到这一公式,这个公式用字母怎样表示?
质疑:在操作中你遇到了什么困惑
小结:求梯形面积需什么条件
练习:1、求下面梯形面积(单位:厘米)
2、(如图):求梯形的高(单位:厘米)
3、猜:S梯=54平方厘米时上、下底高可能是多少厘米?
4、一等腰梯形腰长8厘米,高6厘米,这梯形周长比腰多20厘米求梯形面积?
梯形面积的教案8
教学目标:
1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。
3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的
教学重点:理解、掌握梯形面积的计算公式。
教学难点:理解梯形面积公式的推导过程
教具准备: 各小组准备两个完全一样的梯形。
教学过程
一、复习并导入:
(1)出示一个三角形,提问:这是一个三角形,怎样求它的`面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
(2)出示梯形,让学生说出它的上底、下底和各是多少厘米。
(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算。
二、新课进行
(一),推导公式
①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。
(2)观察思考
①教师提出问题引导学生观察。
a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
(二)深化认识。
(1)启发学生回忆平行四边形面积公式的推导方法。
①提问:想一想平行四边形面积公式是怎样推导得到的?
②学生回答,教师在展示台再现平行四边形面积公式的推导方法。
(2)引导操作。
①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?
②学生动手操作、探究、讨论,教师作适当指导。
(3)信息反馈,扩展思路。
说一说你是怎样割补的?教师展示各种割补方法。
(三)公式应用。
课件出示练习题请学生完成。
三、巩固练习
完成课后相应练习题
四、小结
通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?
梯形面积的教案9
活动目标
1、使学生初步学会应用梯形面积公式求堆放时横截面呈近似梯形的物体的数量,并能解决生活中一些类似的实际问题。
2、使学生在经历感知、分析、归纳和应用的过程中培养思维能力,体验数学的应用价值,增强数学应用意识。
3、使学生感悟数学文化的广袤与久远,形成积极的数学情感。
活动过程
一、故事引入,激发兴趣
讲述:德国有位世界知名的数学家,名叫高斯(1777~1855)。他从小就很聪明,上学后不久,有一次老师布置了一道数学题:把从1到100的自然数加起来,和是多少?当别的同学都在埋头苦算的时候,小高斯却早就得到了答案,得数是5050,这使得老师非常吃惊。你想知道高斯是用什么方法很快算出得数的吗?上完今天的数学活动课,你就会知道答案了。(板书课题:数学活动课)
[意图:课始,教师采用讲述数学家故事的方式引入,能有效吸引学生的注意力,激发学生以积极的心理态势投入到活动中来。]
二、直观演示,探究方法
1.基本练习。
图形
底
高
面积
平行四边形
6米
4米
梯形
上底8厘米
10厘米
下底12厘米
提问:计算多边形的面积时要注意些什么?梯形的面积怎样计算?[板书:梯形的面积=(上底+下底)×高÷2]
[意图:基本题的'练习,旨在唤起学生认知结构中多边形面积计算的知识储备,为后续活动的展开打好基础。]
2.探究方法。
出示右图:
提问:这是一位工人师傅砌的墙,它的形状近似于什么图形?(梯形)砖块的排列有什么规律?(下一层总比上一层多1块砖)
提问:你能算出这儿一共有多少块砖吗?
指名板演:3+4+5+6+7+8=33(块)。交流时,让学生说一说是怎样想的。
出示和上图完全一样的图片,并将两个图拼成一个近似的平行四边形(图略)。
提问:把这两面完全相同的墙拼起来,近似于什么图形?现在每层都有几块砖?有几层?现在看来,求原先的一面墙共有多少块砖,还可以怎样列式?
指名板演:(3+8)×6÷2=33(块)。
提问:“3”“8”“6”分别指这面墙的什么?为什么还要除以2呢?
再问:你发现最上层的块数、最下层的块数和层数之间有什么关系?[根据学生回答板书:(砖的块数最上层块数+最下层块数)×层数÷2]
提问:由此你想到了什么?(这个公式和梯形面积计算公式很相似)
比较:刚才我们用两种方法求出了这面墙一共有多少块砖,还根据第二种方法得出了一个公式,请同学们比较一下,这两种方法中,哪一种方法更简便些?
小结:通过刚才的学习,我们发现用梯形的面积计算公式作为模型,可以求出堆放物体的横截面看起来是梯形,且每相邻两层之间的差都相等的物体的数量。像这样的应用在生活中还有很多。
[意图:通过直观演示与分析交流,引导学生感知方法的来龙去脉,较好地完成关于计算方法的认知建构。]
三、走向生活,解决问题
1、小明参观钢铁厂时,看到许多钢管堆成横截面近似梯形的形状(图略)。最上层有9根,最下层有16根,有8层。这堆钢管一共有多少根?
让学生数一数每层的根数,确定每相邻两层根数的差都是1,再让学生独立完成。
学生完成后,提问:你是怎样求一共有多少根钢管的?有把每一层的根数相加的吗?
2、一堆圆木,堆成横截面是近似梯形,最上层有9根,最下层有17根,而且每层总比上一层多一根,这堆圆木共多少根?
学生读题后提问:堆放的层数不知道,应该怎样求呢?
3、体育馆南一区最前排有8个座位,最后排有16个座位,后一排总比前一排多1个座位。体育馆南一区共有座位多少个?
学生独立完成后,组织反馈。
[意图:练习设计的目的在于让学生及时巩固所学方法,同时从中体验到数学知识在生活中的广泛应用。]
四、拓展延伸,介绍历史
出示下面两道算式:
1+2+3+4+5+6+7+8+9
12+13+14+15+16+17+18+19
提问:你能快速地求出这些数的和吗?还需要一个一个地加吗?
学生计算后,集体交流方法与答案。
提问:你现在知道高斯为什么算得那么快了吗?
谈话:数学真奇妙,想不到梯形的面积计算公式竟然可以算出一列数的和,这是偶然的巧合还是数学内在的本质联系呢?学生回答后,教师以算式二为例讲解缘由。(过程略)
讲述:其实,像这样的算式,数学家们把它叫做等差数列求和。什么是等差数列呢?也就是一列数中后一个数与前一个数的差总是相等的。我们再来看一些这方面的资料。
出示介绍古埃及、古巴比伦以及古代中国有关等差数列研究成果的短片。(内容略)
学生阅读材料后,教师提问:阅读了这段材料后,你有什么感受?
[意图:等差数列求和及其历史的引入,能丰富学生的认识视域,拓展学生的精神世界,使数学所具有的文化特性浸润于学生心间。]
五、活动总结(略)
梯形面积的教案10
1. 梯形面积计算公式的推导。
编排意图
这部分内容的教学是在学习了平行四边形和三角形面积计算的基础上进行的。与前两节一样,教材先通过小轿车车窗玻璃是梯形的这样一个生活实例引入梯形面积计算。然后通过学生动手实验探索出面积计算公式,最后用字母表示出梯形的面积计算公式。但是要求又有提高,不再给出具体的方法,而是要求用学过的方法去推导梯形面积计算公式。这里仍然要运用转化成已学过图形的方法,但是从教材中学生的操作可以看出,方法与途径多了,可以用分割的方法,也可以用拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。
教学建议
学生经过平行四边形和三角形面积公式的推导,已经知道要把梯形转化为学过的图形进行推导。前面平行四边形和三角形转化的方法不同,平行四边形主要是用割补的方法,而三角形主要用拼摆的方法。本课要求用学过的方法去推导,没有指明具体的方法。在学生操作实验前,可以先回忆一下前面运用过的两种方法,有条件的可以把前面推导的过程制成课件,进行展示,加以回顾。在此基础上放手让学生自己去做,教师不必提出统一的操作要求。
2. 梯形面积计算公式推导有多种方法,教材显示了三种方法。
(1)两个一样的梯形拼成一个平行四边形。
推导过程:
两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的(上底+下底),这个平行四边形的高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半,所以,梯形的面积=(上底+下底)×高÷2
(2)把一个梯形剪成两个三角形(见下左图)。
推导:
梯形的面积=三角形1的面积+三角形2的面积
=梯形上底×高÷2+梯形下底×高÷2
=(梯形上底+梯形下底)×高÷2
(3)把一个梯形剪成一个平行四边形和一个三角形(见上右图)。
推导:
梯形的面积= 平行四边形面积+三角形面积
= 平行四边形的底×高+三角形的底×高÷2
=(平行四边形的底+三角形的底÷2)×高
=(平行四边形的底+三角形的底÷2)×高×2÷2
=(平行四边形的底×2+三角形的底÷2×2)×高÷2
=(平行四边形的底+平行四边形的底+三角形的底)×高÷2
因为 梯形的上底=平行四边形的底
梯形的下底=平行四边形的底+三角形的底
所以梯形的面积=(上底+下底)×高÷2
第(1)种方法比较容易推导和理解,(2)和(3)因为涉及乘除法运算定律、性质和等式变形,学生的推导会有困难。教学中要鼓励学生用多种方法进行推导,在此基础上进行汇报和交流。可以第(1)种方法为研究重点,让学生叙述推导的过程,得出梯形面积计算公式。(2)和(3)种方法可视学生接受能力,不做统一要求。
学生在操作实验中,可能会出现更多的方法。例如教材第96页的方法,注意给学生留有较充分的'操作和交流时间。
推导过程:
从梯形两腰中点的连线将梯形剪开,拼成一个平行四边形。
平行四边形的底等于(梯形的上底+梯形的下底)
平行四边形的高等于梯形的高÷2
梯形的面积等于拼成的平行四边形的面积
所以 梯形的面积=(上底 +下底)×高÷2
3.例3及“做一做”。
编排意图
(1)例3应用梯形面积计算公式解决实际问题。
(2)“做一做”是计算引入部分提出的车窗玻璃的面积,注意是求两个梯形的面积。
教学建议
(1)例3可结合图片和横截面的示意图帮助学生理解横截面的含义,找到直角梯形的高也是它的一个腰长,再应用公式进行计算。
(2)结合例3和“做一做”,检查学生运用公式计算的情况,强调计算时不要忘记除以2。
4.关于练习十七一些习题的说明和教学建议。
第1、3题是应用梯形面积计算公式求面积。第1题需要先测量计算所需条件的长度,再计算;第3题要选择条件进行计算,有些是间接条件要转化为直接条件。通过练习可以加深学生对梯形面积计算公式的理解和记忆。
第2、4、5、6题都是应用梯形面积计算公式解决实际问题。
第2题,飞机模型的机翼是两个完全相同的梯形。求机翼的面积,可以先求出一个梯形的面积,再乘2;也可以根据梯形面积公式的推导经验,设想把两个梯形拼成一个底长100mm+48mm,高250mm的平行四边形,求出它的面积。
第4题,注意让学生观察图示找到计算所需条件。花坛的三面围篱笆,形成一个直角梯形。20m就是它的高,用46m-20m可以得到梯形上底与下底的和。
第5题,要结合示意图先让学生理解水渠的横截面。水渠的渠口宽、渠底宽和渠深分别是梯形的上底、下底和高,再计算出梯形的面积。
第6题,可结合教材中的图使学生理解圆木堆的横截面可以看作一个梯形,梯形的上底长相当于顶层的根数,梯形的下底长相当于底层的根数,梯形的高相当于圆木的层数。所以可以借助梯形面积计算公式计算出圆木的总根数。
第8*题是选作题。首先要考虑如何剪去一个最大的平行四边形。应该是以梯形上底长度为底长的平行四边形。
剩下的是三角形,可以用两种方法求面积。
方法一 梯形的面积-剪去的平行四边形的面积
(2+3.5)×1.8÷2-2×1.8=1.35 (cm2)
方法二用梯形的下底长减去梯形的上底长得到剩下三角形的底长,乘梯形的高, 再除以2,得到剩下的三角形的面积。
(3.5-2)×1.8÷2 = 1.35(cm2)
梯形面积的教案11
教学内容:教材P97~98练习二十一第1、5~10题。
教学目标:
知识与技能:通过练习使学生能较为熟练地运用梯形的相关知识去解决问题。
过程与方法:培养小组的互助合作精神,体验在这种互助中取得成功的愉悦感受。
情感、态度与价值观:培养学生自助和互助的能力,学会与同伴合作、交流,提高自己提问求助以及指导别人的能力。
教学重点:熟练运用梯形的相关知识求梯形的面积以及底和高。
教学难点:提高整理、分析、解决问题的能力。
教学方法:学练结合。
教学准备:多媒体。
教学过程
课前预习案
一、课前反思
通过昨天的学习,你都学会了什么,还有那些不懂的地方呢?
二、交流解惑
自主学习
1、以小组为单位进行反思
2、以小组为单位回顾上节课学习的知识,说一说都学会了什么,还有哪些不懂的,在小组内解决,解决不了的班内汇报。
三、合作考试
(1、先独立答题 2、组内交流 3、师生交流)
按要求填表
名称面积公式底高面积平行四边形2.8m4cm三角形6.8dm5dm梯形下底:2.8m 上底:1.2m
四、指导练习
1.教材第97页练习二十一第1题。
(1)教师出示水渠模型,帮助学生理解:水渠横截面面积就是梯形的面积,渠口宽就是梯形的上底,渠底宽就是梯形的下底,渠深就是梯形的高。
(2)学生独立完成习题,教师巡视,发现问题及时纠正。
(3)指名板演,再讲解。
2.教材第98页练习二十一第6题。
注意让学生观察图示找到计算所需条件。花坛的三面围篱笆,形成一个直角梯形。20m就是它的高,用46m-20m可以得到梯形上底与下底的和。
2.教材第98页练习二十一第8题。
(1)观察这堆圆木的横截面,你有什么新的发现?
学生讨论后汇报,教师提示:横截面是梯形,因此可以用梯形面积计算公式来计算圆木的总根数。
(2)学生计算验证。
(3)圆木顶层根数、底层根数、层数各是梯形的哪一部分?
教师引导学生,并归纳:圆木顶层根数就是梯形的上底,底层根数就是梯形的下底,层数就是梯形的高。
3.教材第98页练习二十一第9题。
(1)学生汇报自己测量的`数据和计算结果。
(2)集体交流测量方法和计算方法。
4.教材第98页练习二十一第11*题。
(1)先引导学生读题,理解题意。
(2)组织学生比赛,看谁的方法最多。
(3)汇报交流,全班集体订正。
首先要考虑如何剪去一个最大的平行四边形。应该是以梯形上底长度为底长的平行四边形。 剩下的是三角形,可以用两种方法求面积。
方法一:梯形的面积-剪去的平行四边形的面积
(2+3.5)×1.8÷2-2×1.8=1.35 (cm2)
方法二:用梯形的下底长减去梯形的上底长得到剩下三角形的底长,乘梯形的高, 再除以2,得到剩下的三角形的面积。
(3.5-2)×1.8÷2 =1.35(cm2)
四、课后小结
通过这节课的学习,你在哪些方面又有了提高?
布置作业:
板书设计:
梯形面积的练习
梯形中剪去一个最大的平行四边形,求剩下的面积(即三角形的面积)
剩下三角形的面积=梯形的面积-剪去的平行四边形的面积
梯形面积的教案12
班级情况及学生特点分析:
我所任教的五年级二班学生共52人,因为我班的学生基础较差,上课好动,作业拖拉,虽然训练一个学年,但还是不令人十分满意 。因此教学借助多媒体课件及自制学具来激发他们的学习兴趣,设计使学生带着"想知道梯形的面积是多少吗?你用什么方法知道它们的面积呢?"先独立操作,然后再小组交流,集中小组中不同的解法。然后再全班以组进行汇报在教学中我以学生的发展为着眼点,大力培养学生的综合能力,拓宽学生视野,改变学生的方式,逐渐尝试建立发现问题――自主探究--解释应用的教学模式,确立以学生为主体的探索性学习方式。
教学内容:梯形面积的计算。
教学内容分析:
本节课是北师大教材五年级上册第二单元“图形的面积”中的一课时,教学内容是梯形的面积计算。梯形的面积是在学生掌握基本平面图形的特征和求三角形、平行四边形面积的基础上的进一步扩展,教材这样安排的目的是通过学生观察比较的活动,让每个学生懂得面积计算方法的多样化。同时,也让他们掌握梯形的面积计算公式的来源。这样,也为学生自己探索基本图形面积计算打下基础。
教学目标:
1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。
3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:理解、掌握梯形面积的计算公式。
教学难点:理解梯形面积公式的推导过程。
教学课时:1课时
教学准备:
1. 学生准备两个完全一样的梯形。
2. 老师准备多媒体课件。
教学过程:
1.导入新课
(1)投影出示一个三角形,提问:
这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。
(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
2.新课展开
第一层次,推导公式
(1)操作学具
①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?
②学生拿出两个完全一样的`梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。
(2)观察思考
①教师提出问题引导学生观察。
a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,深化认识。
(1)启发学生回忆平行四边形面积公式的推导方法。
①提问:想一想平行四边形面积公式是怎样推导得到的?
②学生回答,教师在展示台再现平行四边形面积公式的推导方法。
(2)引导操作。
①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?
②学生动手操作、探究、讨论,教师作适当指导。
(3)信息反馈,扩展思路。
说一说你是怎样割补的?教师展示各种割补方法。
第三层次,公式应用。
(1)出示课本第89页的例题,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。
3.巩固练习
(1)完成练习十七第1、2和3题。
(2)讨论完成练习十七第4和6题。
4.全课小结
这节课你们有什么收获?你们还想了解什么?学生列举活动中的种种收获、困惑。教师给予引导、肯定、鼓励和指正。
课后反思:
!《梯形面积的计算》教学反思
在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:
一、提出问题,激发兴趣
我先运用投影出示了一个三角形,让学生回顾三角形的面积计算方法,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?
学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。
二、注重合作,促进交流
学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。
这时,我提醒他们:“小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!”
学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。
三、思维拓展,能力提升
新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?
开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:“你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?”学生兴趣盎然。很快就表示出两个三角形的面积,即:上底×高÷2、下底×高÷2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。
很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。
由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。
梯形面积的教案13
教材分析
1.这部分内容的教学是在学习了平行四边形和三角形面积计算的基础上进行的。与前两节一样,教材先通过小轿车车窗玻璃是梯形的这样一个生活实例引入梯形面积计算。然后通过学生动手实验探索出面积计算公式,最后用字母表示出梯形的面积计算公式。
2.本节课的核心内容是使学生运用转化成已学过图形的方法去推导梯形面积计算公式。只有学好本节课,才能真正使学生理解和掌握梯形的.面积的计算方法,从而应用于生活实践中。
学情分析
1.本班学生喜欢动手操作、合作交流。
2.学生经过平行四边形和三角形面积公式的推导,已经知道要把梯形转化为学过的图形进行推导。前面平行四边形和三角形转化的方法不同,平行四边形主要是用割补的方法,而三角形主要用拼摆的方法。本课要求用学过的方法去推导,没有指明具体的方法。在学生操作实验前,可以先回忆一下前面运用过的两种方法,在此基础上放手让学生自己去做。
3.梯形面积计算公式推导有多种方法,教材显示了三种方法。第一种方法比较容易推导和理解,第二和第三种方法因为涉及乘除法运算定律、性质和等式变形,学生的推导会有困难。
教学目标
1.知识与技能:
使学生在探索活动中深刻体验和感悟梯形面积计算公式的推导过程。
2.过程与方法:
通过动手操作,观察,比较,发展学生的空间观念,在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。
3.情感态度与价值观:
激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。
教学重点和难点
教学重点:
理解梯形面积计算公式的推导,并能正确运用梯形面积的计算公式进行计算。
教学难点:
运用不同的方法推导出梯形的面积公式。
梯形面积的教案14
教学内容:练习十九的第11~15题。
教学目的:通过练习,使学生进一步熟悉平行四边形、三角形、梯形面积的计算公式,提高计算面积的熟练程度。
教具准备:将复习题中的平行四边形、三角形、梯形画在小黑板上。用厚纸做一个平行四边形、两个完全一样的三角形和两个完全相同的梯形。
教学过程:
一、复习平行四边形、三角形、梯形面积的计算公式。
出示下列图形:
问:这3个图形分别是什么形?(平行四边形、三角形和梯形)
平行四边形的面积怎样计算?公式是什么?(学生回答后,教师板书:S=ah)
平行四边形的面积计算公式是怎样推导出来的?(教师出示一个平行四边形,让一学生说推导过程,教师边听边演示)
三角形的面积怎样计算的?公式是什么?(学生回答后,教师板书:S=ah÷2)
为什么要除以2?(学生回答,教师出示两个完全相同的三角形,演示用两个三角形拼摆一个平行四边形的过程)
梯形的面积是怎样计算的?公式是什么?(学生回答后,教师板书:S=(a+b)h÷2)
梯形的面积计算公式是怎样推导出来的?(学生回答,教师演示用两个完全相同的梯形拼摆一个平行四边形的过程。)
量出求这3个图形面积所需要的.线段的长度。(让学生到黑板前量一量,并标在图上。让每个学生在自己的练习本上计算出这3个图形的面积,算完后,集体核对答案)
二、做练习十九中的题目。
1、第12题,先让学生说一说题中的图形各是什么形,再让学生独立计算。教师注意巡视,了解学生做的情况,核对时,进行有针对性的讲解。
2、第13题和第15题,让学生独立计算,做完后集体订正。
3、第18题,学生做完后,可以提问:在梯形中剪下一个最大的三角形,你是怎样剪的?
这个最大的三角形是唯一的吗?为什么?(不是唯一的,因为以梯形的下底为三角形的底,顶点在梯形的上底上的三角形有无数个,它们的面积是相等的。)
4、练习十九后面的思考题,学生自己试做。教师提示:这道题可以用梯形面积减去以4厘米为底,以12厘米为高的三角形的面积来计算;也可以用含有未知数X的等式来计算。
三、作业。
练习十九第11题和第14题。
课后小结:
梯形面积的教案15
一、复习准备。
1、出示平行四边形图。
2、提问:这是什么图形?知道底和高会求面积吗?如果剪去这个平行四边形的一角,剩下的会得到什么图形呢?哪个图形的面积你会直接计算?梯形的面积该怎样计算呢?
3、揭题。
二、新授。
1、出示梯形图。
(1)提问:这是什么图形?说说梯形各部分的名称。提示:求梯形的面积能不能像推导三角形面积计算公式一样,把它转化成已经学过的图形,计算它的面积?
(2)操作实验。
反馈:你拼成了什么图形?指名拼一拼。
指导拼法。
①重合。
②旋转。哪个梯形旋转?一般可以怎样移动一个梯形?旋转到两下底成一条直线为止。
③平移。
思考:通过重合、旋转、平移的方法将两个完全一样的梯形拼成了一个平行四边形,每个梯形的面积与拼成的平行四边形的面积有什么关系?反过来还可以怎么说?
2、出示直角梯形图。
(1)两个完全一样的直角梯形又能拼成一个怎样的图形,动手拼一拼。
(2)提问:拼成了什么图形?平行四边形与梯形有什么关系?
(3)观察:每个直角梯形的面积与拼成的长方形的`面积有什么关系?
小结:两个完全一样的梯形经过重合、旋转、平移的方法可以拼成一个平行四边形或长方形,并且每个梯形的面积是拼成的平行四边形或长方形的一半。
3、观察拼成的平行四边形。
思考:(1)比较梯形的上底下底与拼成的平行四边形的底有什么关系?
(2)比较梯形的高与拼成的平行四边形的高有什么关系?
同桌讨论完成填空。
4、填表。
(1)提问:是不是所有的完全一样的两个梯形都能拼成平行四边形呢?拿出梯形用同样的方法拼一拼,并把数据填入表中。
(2)从实验中你有什么发现?说说怎样求梯形的面积?
5、教学字母公式。
提示:可以将梯形转化成平行四边形来推导它的面积计算公式,还可以将它转化成别的图形来推导它的面积计算公式。课后思考。
三、应用。
1、 应用公式求梯形面积必须知道什么?知道梯形的上底、下底和高怎样求出梯形的面积?
2、学习例题。
3、 完成“练一练”。
4、 拓展。
四、总结。
1、 这节课学习了什么内容?是将梯形转化成什么图形来学习它的面积计算公式的?
2、 通过什么方法转化的?
3、 梯形的面积计算公式是什么?应用公式时要注意什么?为什么要除以2?
五、板书。
梯形面积的计算
平行四边形的面积 = 底×高
梯形的面积 = (上底+下底)×高 2
S = (a+b) h 2
引导学生运用“转化”的方法推导梯形面积的计算公式。
(一)复习:
1、复习已学的图形面积计算公式:
师述:“同学们你们都学过哪些图形的面积,是怎样计算的?”
根据学生的回答依次板书:长方形面积=长×宽
正方形面积=边长×边长
平行四边形面积=底×高
三角形面积=底×高÷2
2、复习三角形、平行四边形面积计算公式的推导步骤:
师述“想一想你们是分几步把平行四边形、三角形面积的计算公式推导出来的?”
根据学生回答依次板书:步骤:1、转化
2、找关系
3、推导公式
4、所用方法
课件、两个完全一样的普通梯形、两组两个完全一样的直角梯形、普通梯形一个。
【梯形面积的教案】相关文章:
梯形的面积教案09-16
梯形面积教案11-27
《梯形面积》教学反思08-31
《梯形的面积》教学反思03-17
《梯形面积》教学反思02-25
《梯形的面积》的教学反思06-08
梯形面积的教学反思08-30
梯形的面积教学反思03-24
“梯形的面积计算”教学反思04-14
梯形的面积教学反思15篇03-31