三角形的教案

时间:2024-08-31 07:20:52 教案 我要投稿

关于三角形的教案

  作为一名老师,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写才好呢?以下是小编帮大家整理的关于三角形的教案,仅供参考,欢迎大家阅读。

关于三角形的教案

关于三角形的教案1

  一、导入新课。

  1、谈话:今天我们继续来研究三角形,研究内容与三角形的角有关。先回忆一下我们学过哪几种角?怎样判断一个角是直角、锐角还是钝角呢?

  2、学生交流。

  (直角可以用三角板上的直角去比一比,比直角大的是钝角,小的是锐角,如果用眼睛观察不能确定,也可以用三角板上的直角去比一比。还可以使用量角器测量。)

  二、学习新课。

  1、谈话:每个三角形都有几个角?这些角在三角形的内部,我们称之为三角形的内角。

  出示:xxxx。

  谈话:这里有6个各式各样的三角形,请同学们仔细观察每个三角形的内角,看看它们各有几个锐角、直角和钝角,并把结果填在表格中。

  2、学生观察并填表。

  例如:1号这个三角形有2个锐角、1个直角、0个钝角

  提问:观察表格中的数据,你有什么发现?

  (学生在小组里讨论后交流。

  如:在一个三角形中锐角个数最多,至少2个;直角或钝角个数最多有1个,且不同时存在……)

  3、自己任意画一个三角形,看看是三个内角各是什么角。

  归纳:每一个三角形都有两个锐角,另外一个角有的是锐角、有的是直角、有的是钝角。

  4、提问:想一想,这些三角形可以分成几类?怎样分?

  (在小组里讨论后指名交流。

  归纳:三个角都是锐角的三角形,一个钝角两个锐角的三角形,一个直角两个锐角的`三角形。

  谈话:每一类三角形有自己的名称。谁来猜猜看?(让学生试着说说)

  小结:三角形按角的确可以分为锐角三角形、钝角三角形、直角三角形三类。5。提问:刚才例题中的三角形哪几个是锐角三角形、钝角三角形、直角三角形?

  你画的三角形是什么三角形?

  (学生交流)

  6、提问:你觉得什么样的三角形是锐角三角形?什么样的三角形是直角三角形?什么样的三角形是钝角三角形?

  (1)学生交流。

  (2)结合书本出示各类三角形的定义:

  三个角都是锐角的三角形是锐角三角形;

  有一个角是直角的三角形是直角三角形;

  有一个角是钝角的三角形是钝角三角形;

  (1)提问:为什么直角三角形只说有一个角是直角而不说有两个锐角和一个直角,钝角三角形只说有一个角是钝角而

  不说有两个锐角和一个钝角?

  (学生交流)

  7、用集合图表示分类结果。

  1)出示一个椭圆。

  提问:如果我们用这个圆表示三角形这个整体,你能把它分成几个部分,填写出每部分的名称?(2)学生思考后试一试,交流。

  (把所有的三角形看作一个整体,锐角三角形、直角三角形、钝角三角形都是这个整体的一部分。)

  (3)结合学生汇报板书出示

  三、巩固练习,完成“想想做做”。

  1、第2题。

  (1)学生独立完成。

  (2)指名交流,说说自己是怎样判断的,是否三个角都要看是什么角?

  (只要看最大的角是什么角就可以判断)

  2、第3题。

  (1)学生在钉子板上分别围出锐角三角形、直角三角形和钝角三角形。

  (2)同桌检验。

  3、第4题。

  (1)学生动手折一折。

  (2)指名上前交流折法。

  4、第5题。

  (1)学生审题后独立思考,在小组里说说自己打算怎么做。

  (2)指名交流。

  5、第6题。

  (1)学生审题后独立画一画。

  (2)展示一份作业,交流画法。(右边的三角形画法不止一种。)

  (3)提问:仔细观察,画出的线段有什么特点?

  (学生交流:就是三角形的高。)

  6、第7题。

  (1)学生独立完成,同桌交流。

  (2)全班展示交流,有多种不同的答案。

  四、课堂小结。

  1、谈话:今天我们学习了什么内容?你有什么收获?

  2、布置作业:补充习题第18页。

关于三角形的教案2

  教学目标:

  1、知识目标:

  (1)熟记角边角公理、角角边推论的内容;

  (2)能应用角边角公理及其推论证明两个三角形全等.

  2、能力目标:

  (1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;

  (2)通过观察几何图形,培养学生的识图能力.

  3、情感目标:

  (1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

  (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.

  教学重点:

  学会运用角边角公理及其推论证明两个三角形全等.

  教学难点:

  SAS公理、ASA公理和AAS推论的综合运用.

  教学用具:

  直尺、微机

  教学方法:

  探究类比法

  教学过程

  1、新课引入

  投影显示

  这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”.于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案.

  2、公理的获得

  问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的`元素呢?

  让学生粗略地概括出角边角的公理.然后和学生一起做实验,根据三角形全等定义对公理进行验证.

  公理:有两角和它们的夹边对应相等的两个三角形全等.

  应用格式:(略)

  强调:

  (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

  (2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)

  所以找条件归结成两句话:已知中找,图形中看.

  (3)、公理与前面公理1的区别与联系.

  以上几点可运用类比公理1的模式进行学习.

  3、推论的获得

  改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?

  学生分析讨论,教师巡视,适当参与讨论.

  4、公理的应用

  (1)讲解例1.学生分析完成,教师注重完成后的总结.

  注意区别“对应边和对边”

  解:(略)

  (2)讲解例2

  投影例2:

  学生思考、分析,适当点拨,找学生代表口述证明思路

  让学生在练习本上定出证明,一名学生板书 . 教师强调

  证明格式:用大括号写出公理的三个条件,最后写出

  结论.

  第1 2页

关于三角形的教案3

  教学目标

  (一)使学生理解三角形的意义,掌握三角形的特征,学会按角的特征给三角形分类、

  (二)培养学生观察能力、识图能力和归纳概括能力、

  教学重点和难点

  使学生理解三角形的意义和特征,会按角的特征给三角形进行分类,既是教学的重点,也是学习的难点、

  教学过程设计

  (一)复习准备

  1、指出下面各是什么图形?(投影)

  说出长方形、正方形的边是直线、射线还是线段?

  2、指出下面各是什么角?

  说出什么叫直角、锐角、钝角?

  组成角的两条边是什么线?

  3、请大家在本子上画出直角(用三角板)、锐角、钝角各一个。

  小结:我们已经学习了线段和角,如果把角的两条边改为线段,把角的两个端点连起来会出现什么图形?(三角形)

  我们今天就来研究和认识三角形、(板书课题:三角形的认识)

  (二)学习新课

  1、理解三角形的意义。

  (1)我们已学过三角形,你能举例说出哪些物体的面是三角形吗?(红领巾、三角板、小红旗等)

  (2)结合复习题,思考讨论:

  ①三角形是几条线段围成的?

  ②什么样的图形叫三角形?

  在讨论的基础上,引导学生概括:三角形是由三条线段围成的',由三条线段围成的图形叫做三角形。

  (3)巩固概念、

  ①找一找,哪些是三角形?(投影)

  ②用三条线段组成的图形叫做三角形、这句话对不对?为什么?

  在学生回答的基础上,教师强调,看一个图形是不是三角形,要从两方面看:一是看只有三条线段,二是要看是否围成的封闭图形。

  2、掌握三角形的特征。

  刚才大家找出这么多三角形,它们的形状各不相同,进一步观察一下,这些三角形有没有共同的地方?

  启发学生明确:它们都是三条线段围成的,它们都有三个角,都有三个顶点、

  再引导学生概括:围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点、

  3、教学三角形的特性。

  我们学习的三角形在日常生活中有很多地方要用到,像自行车的车架、房梁架等、为什么要用三角形的呢?我们来做一次实验、

  教师用事先准备好的木框,让同学们拉一拉。

  先拉五边形木框。(变形)

  再拉四边形木框。(变形)

  后拉三角形木框。(拉不动,三角形不变)

  提问:通过三角形木框拉不动,你明白了什么道理?可以得出什么结论?

  引导学生明确:三角形的三条边长度固定,三角形的形状和大小就固定不变了、因而三角形具有稳定性、这就是三角形的特征、

  你能举出生活中有哪些用到三角形的特性吗?(椅子腿松动了,可以固定一个三角形铁架)

  4、教学三角形的分类。

  三角形是多种多样的,我们可以根据三角形中角的不同进行分类、怎样分?

  (1)出示投影片,观察每个三角形内角的度数。

  (2)比较这三个三角形的三个角,它们有什么相同点和不同点?

  引导学生明确:相同点是每个三角形都至少有两个锐角;不同点是还有一个角分别是锐角、钝角和直角。

  (3)分类:

  根据上边三个三角形三个角的特点的分析,可以把三角形分成三类

  图①,三个角都是锐角,它就叫锐角三角形、(板书)

  提问:图②、图③只有两个锐角,能叫锐角三角形吗?(不能)

  引导学生根据另一个角来区分、图②还有一个角是直角,它就叫直角三角形,图③还有一个钝角,它就叫钝角三角形、

  请同学再概括一下,根据三角形角的特征可以把三角形分成几类?分别叫做什么三角形?

  教师板书:

  三个角都是锐角的三角形叫做锐角三角形;

  有一个角是直角的三角形叫做直角三角形;

  有一个角是钝角的三角形叫做钝角三角形、

  (4)三角形的关系

  我们可以用集合图表示这种三角形之间的关系、把所有三角形看作一个整体,用一个圆圈表示、(画圆圈)好像是一个大家庭,因为三角形分成三类,就好象是包含三个小家庭、

  (边说边把集合图补充完整、)

  每种三角形就是这个整体的一部分、反过来说,这三种三角形正好组成了所有的三角形、

  (5)怎样判断三角形的类型呢?

  填表后观察、(投影)

  由上表可以看出,三角形中至少要有两个锐角,所以判断三角形的类型,应看它最大的内角、……

  (三)巩固反馈

  1、说说三角形的意义、特征、

  2、三角形有什么特性?

  3、三角形按角分,可以分为哪几类?

  4、判断题、

  (1)由三条线段组成的图形叫三角形、

  (2)锐角三角形中最大的角一定小于90°、

  (3)看到三角形中一个锐角,可以断定这是一个锐角三角形、

  (4)三角形中能有两个直角吗?为什么?

  (四)作业

  练习三十一第1~3题。

关于三角形的教案4

  教材与学情:

  解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

  信息论原理:

  将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

  教学目标

  ⒈认知目标:

  ⑴懂得常见名词(如仰角、俯角)的意义

  ⑵能正确理解题意,将实际问题转化为数学

  ⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

  ⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

  ⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

  教学重点、难点:

  重点:利用解直角三角形来解决一些实际问题

  难点:正确理解题意,将实际问题转化为数学问题。

  信息优化策略:

  ⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

  ⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

  ⑶重视学法指导,以加速教学效绩信息的顺利体现。

  教学媒体:

  投影仪、教具(一个锐角三角形,可变换图2-图7)

  高潮设计:

  1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

  2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

  教学过程

  一、复习引入,输入并贮存信息

  1.提问:如图,在Rt△ABC中,∠C=90°。

  ⑴三边a、b、c有什么关系?

  ⑵两锐角∠A、∠B有怎样的关系?

  ⑶边与角之间有怎样的关系?

  2.提问:解直角三角形应具备怎样的条件:

  注:直角三角形的边角关系及解直角三角形的.条件由投影给出,便于学生贮存信息

  二、实例讲解,处理信息:

  例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。

  ⑴引导学生将实际问题转化为数学问题。

  ⑵分析:求AB可以解Rt△ABD和

  Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。

  ⑶解题过程,学生练习。

  ⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。

  例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。

  分析:

  ⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。

  ⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。

  解:设山高AB=x米

  在Rt△ADB中,∠B=90°∠ADB=45°

  ∵BD=AB=x(米)

  在Rt△ABC中,tgC=AB/BC

  ∴BC=AB/tgC=√3(米)

  ∵CD=BC-BD

  ∴√3x-x=20 解得 x=(10√3+10)米

  答:山高AB是(10√3+10)米

  三、归纳总结,优化信息

  例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。

  四、变式训练,强化信息

  (投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。

  练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。

  练习3:在塔PQ的正西方向A点测得顶端P的

  仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。

  教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

  ⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。

  ⑵引导学生归纳三个练习题的等量关系:

  练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2

  五、作业布置,反馈信息

  《几何》第三册P57第10题,P58第4题。

  板书设计:

  解直角三角形的应用

  例1已知:………例2已知:………小结:………

  求:………求:………

  解:………解:………

  练习1已知:………练习2已知:………练习3已知:………

  求:………求:………求:………

  解:………解:………解:………

关于三角形的教案5

  教学目标

  (1)使学生理解三角形、三角形的边、顶点、内角的概念;

  (2)正确理解三角形的角平分线、中线、高这三个概念的含义、联系及区别;

  (3)能正确地画出一个三角形的角平分线、中线和高;

  (4)能用符号规范地表示一个三角形及六个元素;

  (5)通过对三角形有关概念的教学,提高学生对概念的辨析能力和画图能力;

  (6)让学生结合具体形象叙述定义,训练他们的语言表达能力,激发学生学习几何的兴趣。.

  教学重点:明确组成三角形的六个元素,正确理解三角形的“高”、“角平分线”和“中线”这三个概念的含义、联系和区别。

  教学难点:三角形高的画法

  教学用具:三角板、投影、微机

  教学方法:启发探究法

  教学过程

  1、温故知新,揭示课题

  引言之后,先让学生:

  (1)试说出三角形以及三角形的边、顶点、角的概念

  (2)如图1:试画出 的平分线、BC边上的中线、BC边上的高

  然后,在此基础上,揭示课题,提出思考题:三角形是由三条线段组成的,这里要强调“首尾顺次相接”为什么要加上这个条件?具备什么条件的线段才是三角形的角平分线、三角形的中线、三角形的高。

  2、运用反例,揭示内涵

  由上面分析,让学生判断辨别下列图2中哪一个是正确的?(对第三个图)直角三角形只有一条高对吗?

  3、讨论归纳,深化定义

  引导启发学生,归纳讨论探索得到的结果:

  定义1 三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。

  强调:三角形的角平分线是一条线段,而角的平分线是一条射线。

  定义2 三角形的中线:在三角形中,连结一个顶点和它的对边中点的线段。

  强调:三角形中线是一条线段。

  定义3 三角形的高:从三角形的一个顶点向它对边画垂线,顶点和垂足间的线段。

  强调:三角形的'高是线段,而垂线是直线。

  这一环节运用电教手段,利用<几何画板>动画的功能,增加直观性有利于学生理解掌握定义

  4、符号表示,加深理解

  通过符号的表述,使学生对三角形的角平分线、中线、高的理解得到加深和强化,在记忆上也趋于简化。

  5、初步运用,反复辨析

  练习的设计遵循由由浅入深、循序渐进的原则,三个题目,三个层次:

  题1 三角形的一条高是( )

  A.直线 B.射线 C.垂线 .D.垂线段

  题2 画钝角三角形 的高AE。

  题3

  先让学生思考练习,然后师生一起分析纠正,最后教师点拨小结。这环节运用电教手段,以增大教学容量和直观性,提高效率。

  6、归纳总结,强化思想

  这节课着重讲了三角形的角平分线、中线和高,在集会理解上述定义时,必须注意到两点:一是三条都是线段;二是钝角三角形与直角三角形的高的画法。

  揭示了文字语言、图形语言、符号语言在几何中的作用,要求在学习时熟练三种语言的相互转化。

  7、布置作业,题目是:

  (1)书面作业P30#2,3 P41#5(做在书上)

  (2)交本作业P41#4

  (3)

  思考题1:

  思考题2:

  8.探究活动

  1、以3根火柴为边,可以组成一个三角形,用6根火柴为边最多可以组成几个三角形?9根火柴最多能组成几个三角形?

  2、从三角形一个顶角引出的三角形角平分线、一条中线能否重合?此时这个三角形的形状如何?

  答案:1.4、7;

  2.能.三角形为等腰三角形.

关于三角形的教案6

  教学内容:

  北师大版小学数学四年级下册第二单元“三角形边的关系”。

  教材分析:

  《三角形边的关系》是四年级下册第二单元认识图形中的第四课内容,是小学 “空间与图形”领域中新增添的内容,是在线段、角、顶点、三角形分类等三角形知识学习的基础上的延伸。为今后学习三角形面积和应用提供了重要条件。

  学生分析:

  从接触三角形以来,都是针对已成立的三角形进行学习和研究的,从未涉及到:“两边之和小于第三边的三条线段不能围成三角形”这一陌生领域。在生活实际中缺乏鲜活实例和经验,固而学生在学习该段内容时,会有与生活实践相割裂的感觉。学生对较抽象的问题无法明白其含义。所以这段知识的理解对学生来说有相当的难度,学生不够自信,没有勇气参与,学习的兴趣和主动性不足,无法完全独立的进行探究活动。需要老师以学生体验过程为主,以感知探索的方法为重,给予指导。

  教学目标:

  1、知识与技能:使学生发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。

  2、过程与方法:让学生通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养学生发现问题的意识及提出问题的能力,积累探索问题的方法和经验。

  3、情感态度价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。

  教学准备:

  多媒体课件、实物投影、小棒若干。

  教学过程:

  一、导入

  1、师:同学们,最近几天咱们一直在围绕哪种图形进行学习?

  (生:三角形)。

  师:什么是三角形?

  (生:由三条线段首尾相接围成的平面图行就是三角形。)

  师:围成三角形的三条线段是三角形的什么?

  (生:边。)

  2、解释课题

  今天咱们就来共同研究三角形的三条边之间有什么奥秘。

  二、探究活动

  1、用4组不同长度的小棒围三角形,初步感受能否摆成三角形与小棒的.长度有关。

  ①师:刚才咱们说了“由三条线段首尾相接围成的平面图行就是三角形”,那么如果用小棒代替线段来围三角形,得用几根小棒?

  师:是不是只要给你3根小棒你就一定能围成一个三角形?

  师:怎么验证咱们说得对不对呢?

  (生:实际动手摆一摆、围一围。)

  师:那好,课前咱们都准备了几组长度不同的小棒,接下来咱们就来摆一摆。在动手之前咱们先来一起看一看“活动要求”。

  ②课件出示“活动要求”。

  学生自读活动要求,师:清楚活动要求了吗?开始吧!。

  ③学生动手摆一摆并完成活动记录表。

  ④汇报活动结果。

  师:通过刚才的活动,是不是只要是3根小棒就一定能摆成三角形?(生:不一定。)

  师:在刚才的4组小棒中,那几组能摆成三角形?哪几组摆不成三角形?你觉得能否摆成三角形跟小棒的什么有关?(生:小棒的长度。)

  2、进一步探究怎样的3根小棒能摆成三角形。

  ①课件分别演示4组小棒摆三角形的过程。

  ②两根短小棒长度之后小于长小棒时摆不成三角形。

  出示第3组小棒(2,3,6)。

  师:这3根小棒能摆成三角形吗?最后会出现什么情况?(2厘米和3厘米的两个短小棒与6厘米的小棒重合并且没能首尾相接。)

  师:为什么这3根小棒摆不成三角形?(生:小棒太短了。)

  师:为什么太短了?(生:2厘米加3厘米都不到6厘米,有缺口,接不上。)

  师板书:2+3<6

  师:这3根小棒能摆成三角形吗?(1,2,5 2,2,8)

  师:咱们来观察一下这几组小棒之间的关系,什么情况下的3根小棒摆不成三角形?

  归纳:两根短小棒长度之后小于长小棒时摆不成三角形。

  ③两根短小棒长度之后等于长小棒时摆不成三角形。

  师:既然你们觉得小棒太短了围不成三角形,那我现在把2厘米的小棒延长1厘米,这时就成了第4组小棒(3,3,6)的长度,你们刚才摆成三角形了吗?

  课件演示。

  师:出现了什么情况?(3厘米和3厘米的两个短小棒与6厘米的小棒刚好重合。)

  板书:3+3=6

  师:那么3,5,8这3根小棒能摆成吗?5,6,11呢?

  师:那么怎样的3根小棒也摆不成三角形呢?

  归纳:两根短小棒长度之后等于长小棒时也摆不成三角形。

  ④小结

  师:咱们能不能用一句话概括摆不成三角形的两种情况?

  生:两根短小棒长度之后小于或等于长小棒时摆不成三角形。

  ⑤探究怎样的3根小棒能摆成三角形。

  师:现在咱们知道了两根短小棒长度之后小于或等于长小棒时摆不成三角形,那大家能不能大胆猜测一下,怎样的3根小棒能摆成三角形?

  生:两根短小棒长度之后大于长小棒时能摆成三角形。

  师:是这样吗?咱们再来看看能摆成三角形的那两组小棒的长度,算一算是否验证了咱们的猜想。

  学生算一算验证猜测。

  师:那么怎样的3根小棒能摆成三角形?

  归纳:两根短小棒长度之后大于长小棒时能摆成三角形。

  3、进一步探究三角形边之间的关系

  ①师:这是咱们摆成三角形的那2组小棒。当我们用小棒摆成三角形后,小棒相当于三角形的什么?(生:三角形的边。)

  ②师:请你算一算,比一比。

  学生同桌两人交流。

  个别学生汇报计算结果。

  ③师:那么三角形的三条边之间有什么关系?

  学生思考。

  ④归纳总结

  三角形任意两边之和大于第三边。(板书)

  师:这就是三角形边之间的关系。刚才咱们是从这两个三角形发现的这个结论。现在咱们利用课前画的任意三角形来算一算,看是不是任意一个三角形都具备这样的规律。

  (学生计算验证)

  三、随堂练习

  师:通过刚才的学习我们知道了三角形任意两边之和大于第三边的规律。但学习的最终目的是学以致用。下面陈老师准备了一些习题,敢不敢试一试?

  1、淘气从家到学校有两条路可以走。从下图中你能看出那条路近吗?用今天所学的知识说说你的理由。

  2、完成“练一练”1-3

  四、布置作业

  练一练。4

  五、全课小结

关于三角形的教案7

  1、知道三角形高、中线、角平分线的定义

  2、会做任意三角形高、中线、角平分线

  重点

  会做任意三角形高、中线、角平分线

  难点

  会做任意三角形高、中线、角平分线

  教学方法

  讲练结合、探索交流课型新授课教具投影仪

  一、三角形的高

  1、复习:过点A做BC的垂线,垂足为D

  2、在黑板上做△ABC,过点A做对边BC

  的垂线,垂足为D,我们

  就将线段AD称为△ABC的高

  3高的定义:在三角形中,从一个顶点向它的对边所在的直线做垂线,顶点与垂

  足之间的线段称为三角形的高

  例如在上图中,我们从△ABC的一个顶点出发,向它对边BC所在

  的直线作垂线,垂足为D,线段AD就是三角形的高

  注:1)三角形的高必为线段

  2)三角形的高必过顶点垂直于对边

  3)三角形有三条高

  为了将这三条高加以区别,我们把AD称为BC边上的高

  例:做出下列三角形的三条高

  1锐角三角形:

  可由教师先做示范,然后再让学生自行画出

  其余两个

  2直角三角形

  由于∠C等于900,说明AC⊥BC,那么BC

  边上的高即为AC,AC边上的高即为BC,

  3钝角三角形

  二,三角形的角平分线

  1引入:一知△ABC,做∠A的平分线AD交BC与点E,线段AE就称为△ABC的角平分线

  2定义:在三角形中,一个内角的平分线与它的对边相交,,这个角的顶点与交点间的线段称为三角形的角平分线

  3注:1)三角形的角平分线必为线段,而一个角的角平分线为一条射线

  2)三角形的角平分线必过顶点平分三角形的一内角如上所示,△ABC的角平分线AE平分∠A,即∠BAE=∠CAE=∠BAC

  3)三角形有三条角平分线

  为了将这三条角平分线加以区别,我们把AE称为∠BACD的角平分线

  例:做出下列三角形的三条角平分线

  教师先做示范,然后再让学生自行画出其余两个

  锐角三角形

  直角三角形

  钝角三角形

  三,中线

  1引入:如右所示,取BC的中点F,连结AF,那么线段AF就称为△ABC的中线

  2定义:在三角形中,连结一个顶点与它对边中点的`线段,叫做三角形的中线

  如上所示,线段AF就是△ABC的中线

  31)三角形的中线必为线段

  2)三角形的中线必平分对边如上所示,线段AF是△ABC的中线

  必有:BF=CF=BC

  3)三角形有三条中线

  例:做出下列三角形的三条角平分线

  教师先做示范,然后再让学生自行画出其余两个

  锐角三角形

  直角三角形:

  钝角三角形

  素材A:

  1在△ABC中,AD是角平分线,

  BE是中线,∠BAD=400,则

  ∠CAD=,

  若AC=6cm,则AE=

  素材B:

  2下列说法正确的是()

  A三角形的角平分线、中线、高都在三角形的内部

  B直角三角形只有一条高

  C三角形的三条至少有一条在三角形内

  D钝角三角形的三条高均在三角形外

  答案:1400、6㎝2C

关于三角形的教案8

  预习要求:看教科书第2—3页,做一做练习一第1-3题。

  教学目标:

  1.通过把长方形或正方形折、剪、拼等活动,直观认识三角形和平行四边形,知道这两个图形的名称;并能识别三角形和平行四边形,初步知道它们在日常生活中的应用。

  2.在折图形、剪图形、拼图形等活动中,体会图形的变换,发展对图形的空间想象能力。

  3.在学习活动中积累对数学的兴趣,增强与同学交往、合作的意识。

  教学重点:

  直观认识三角形和平行四边形,知道它们的名称,并能识别这些图形,知道它们在日常生活中的应用。

  教学难点:

  让学生动手在钉子板上围、用小棒拼平行四边形。

  教学用具:

  长方形模型、长方形和正方形的纸、课件、小棒。

  教学过程:

  一、复习铺垫

  出示长方形问“小朋友们,谁愿意来介绍一下这位老朋友?他介绍得对吗?”接着出示第二个图形(正方形),问:“这个老朋友又是谁呢?”再出示圆:“它叫什么名字?这是我们已经认识的长方形、正方形和圆三位老朋友。我发现你们很喜欢折纸,是吗?今天我特意为大家准备了一个折纸的游戏,高兴吗?

  二、启发思维、引出新知

  1.认识三角形

  (1)教师出示一张正方形纸,提问:这是什么图形?

  学生回答:这是正方形。

  师:你能把一张正方形纸对折成一样的两部分吗?

  学生活动,教师巡视,了解学生折纸的情况。

  组织学生交流你是怎样折的,折出了什么图形?

  师:我们现在折出来的是一个什么图形呢?

  生答:三角形。

  师:小朋友们一下就认识了我们的新朋友。对了,这就是三角形。出示并贴上三角形。

  板书:三角形

  (2)提问:这样的图形好像在哪儿也看到过?想一想?

  先在小组里交流。学生回答。

  老师也带来了几个三角形。

  师小结:在我们的生活中有许多物体的面是三角形面,只要小朋友多观察,就会有更多的发现。

  2.认识平行四边形

  (1)这是一张什么形状的纸?(演示长方形纸)怎样折一下,把它折成两个完全一样的三角形?

  (2)学生先想一想,然后同桌商量着试折。教师巡视

  (3)交流。你们会像他一样折吗?

  (4)折好后把两个三角形剪下来。要想知道这两个三角形是不是完全一样,你能有什么办法?(把它们叠在一起)这就是完全一样。

  (5)现在我们手里都有这样两个一样的三角形,用它们拼一拼,看看能拼出什么图形?学生分组活动,教师巡视。

  交流探讨。同学们可能拼出以下几种图形:三角形、长方形、四边形、平行四边形。每出现一种拼法,请一位同学在投影仪上向大家展示。

  师:这个图形真漂亮,它叫什么名字呀!这个图形就是我们要认识的另一个新朋友——平行四边形。(出示图形,并板书:平行四边形)(板书)

  出示一个长方形的.模型,提问:“这个图形的面是一个什么图形?”学生回答后,老师将这个长方形轻轻拉动,这时出现的是一个平行四边形。提问:“现在这个图形的面变成了一个什么图形?”

  小结:我们已经认识了长方形,其实只要把它稍微变一变,就是一个平行四边形了,你看:(演示长方形变平行四边形)。对我们生活中有很多地方就利用了平行四边形可以变的特点制作了很多东西,如:篱笆、楼梯、伸缩门、可拉伸的衣架等。

  三、体验深化

  (P3做一做2)画出自己喜欢的图形

  四、练习巩固

  (1)练习一第1题。教师在大屏幕上出示练习一第1题图,学生分组找学过的平面图形并涂一涂,最后全班交流;

  (2)练习一第2、3题。学生独立完成。

关于三角形的教案9

  教学目标:

  1、探索并发现三角形任意两边的和大于第三边。

  2、在实验过程中,培养学生自主探索合作交流的能力。

  3、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。

  教学重难点:

  1、探索并发现三角形任意两边之和大于第三边。

  2、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。

  教具准备

  直尺、小棒

  教学过程:

  课前可以请学生准备四组小棒,课上组织学生摆一摆,让学生边操作边把有关的数据记录在表内。当学生完成操作活动后,教师可以组织学生先讨论能围成三角形的两组小棒的`数据,并在填出或=。

  一、数学活动

  1、出示一组长短不一的几根小棒,请你挑选几根围成三角形。

  不重复,你还可以怎么围?

  通过实验,发现并不是任意三根小棒都可以围成三角形。出示不能围成三角形的情况,你发现了什么?想一想,为什么?

  2、三角形形路线,从邮局到杏云村,走哪条路最近?为什么?

  3、是不是任意两条边的程度的和一定比第三条边大呢?画一画,算一算。把计算结果填写在第33页的表上。

  二、运用知识模

  1、第1题:下面各组线段能围成三角形吗?

  2、第2题:组织学生用小棒摆一摆,并填入表中。

  3、第3题:摆一摆,填一填。

  4、第4题:如果三角形的两条边的长分别是5厘米和8厘米,那么第三条边可能是多长?有多个答案,第三边只要大于3厘米小于13厘米即可。鼓励学生尽可能多的得到答案。

  三、总结

  通过今天的学习你有什么想法?

  板书设计:

  三角形边的关系

  三角形任意两边的和大于第三边

关于三角形的教案10

  教学目标

  (一)使学生了解并掌握等腰三角形、等边三角形的特征,认识三角形的底和高、

  (二)学会画三角形、

  (三)进一步提高学生观察能力和画图能力、

  教学重点和难点

  使学生理解等腰三角形、等边三角形的特点,掌握底和高的概念是教学的重点;辨认三角形的底和高,尤其是当高不是处于铅垂位置时,对底的认识容易出错,因此辨认和画高是学习的难点、

  教学过程设计

  (一)复习准备

  1、口答:

  (1)说说什么叫做三角形?它有什么特征?

  (2)按角的特征,三角形可以分成哪几类?各叫做什么三角形?

  2、指出下面各叫做什么三角形?(投影)

  (二)学习新课

  我们学习了根据三角形角的特征把三角形分成直角三角形、锐角三角形、钝角三角形,今天继续学习对三角形的认识、(板书课题:三角形的认识(二))

  1、教学等腰三角形、

  (1)我们班得到了一面卫生流动红旗(如图),以及同学们戴的红领巾都是三角形、

  观察一下这样的三角形,它们的边有什么特点?

  (2)动手测量、(拿出事先准备好的三角形、)

  测量每个三角形三条边的长度,你发现了什么?这三个三角形的边长有什么共同特点?

  (3)动手折叠、

  上面的每个三角形,能不能折叠成互相重叠的图形?

  (4)通过我们的观察、测量、折叠,你发现这些三角形有什么特点?

  引导学生明确:这些三角形都有两条边相等,两个角相等、

  教师指出并板书:两条边相等的三角形叫做等腰三角形、

  2、认识等腰三角形各部分名称、

  出示一等腰三角形,结合图形认识各部分名称、在等腰三角形里,相等的两条边叫做腰,另一条边叫做底,两个腰的夹角叫顶角,底边上

  的两个角叫底角、

  (3)认识等腰三角形的性质、

  让学生量一量自己手中三个等腰三角形,每个等腰三角形的底角、

  你发现了什么?

  在度量的基础上,引导学生明确:等腰三角形两个底角相等、(板书)

  反馈:下面哪些图形是等腰三角形?

  3、教学等边三角形、出示三幅图:

  指定三人到黑板上测量每个三角形的边长和每个角的度数、

  全班同学测量课本145页右上角图、

  通过测量你发现这些三角形边、角各有什么特点?

  引导学生得出:每个三角形的三条边长度都相等,每个三角形的`三个角都相等、

  教师指出并板书:

  三条边都相等的三角形叫做等边三角形,又叫做正三角形、

  等边三角形的三个角都相等、

  通过把等边三角形与等腰三角形对比,引导学生明确等边三角形是特殊的等腰三角形、

  4、认识三角形的底和高,并画高、

  (1)认识三角形的底和高、

  我们已经学过从直线外一点向直线作垂线的方法、现在利用这个知识来认识三角形的高、

  ①画锐角三角形,师边作图边说明、

  从三角形的一个顶点到它的对边作一条垂线、顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底、

  提问:

  锐角三角形有几条高?

  如果从B点画高,它的底边是哪条线段?

  如果从C点画高,它的底边是哪条线段?

  引导学生明确:锐角三角形的底和高不止一个,从任何一个顶点都可以向它的对边作高、这样三角形就有3个底和3个高、

  ②画直角三角形的高、

  想一想,直角三角形应该怎样画高?

  通过观察思考明确:因为直角三角形两条边成直角,所以夹直角的一条边是高,另一条边就是底、

  再找一找另外一条高在哪儿?从而明确从直角的顶点向斜边作一条垂线,所以直角三条形的另一条高在斜边上、

  ③画钝角三角形的高、

  右图这个钝角三角形,从A点作高,底边应是BC,高要画在三角形外;从B点作高,底边是AC,高也要画在三角形外、这两条高的画法我们就不研究了、

  只有从C点向对边作高,底边是AB,高画在三角形里、因此钝角三角形只有从钝角的顶点向对边作高、教师边作图边说明、

  教师强调指出:每画完一条高,要标上垂足、

  反馈:

  ①指出各图的底和高、(投影)

  ②学生动手画高、

  在自己准备好的三角形上画高、教师巡视、

  5、学习画三角形、

  根据三角形的边长和角的度数,可以画符合已知条件的三角形、

  例?一个三角形的两条边长分别是2。5厘米和2厘米,它们的夹角是30°、根据这些条件画出三角形、

  教师边演示边与学生同画、

  先画一个30°的角、从这个角的顶点起,在一条边上量出2。5厘米的线段,在另一条上量出2厘米的线段,各点上一个点、用线段把这两个点连接起来、

  让学生说说画三角形的步骤、

  学生试画:两条边长都是3厘米,夹角是40°的三角形、

  教师行间巡视指导、

  完成146页“做一做”、

  (三)巩固反馈

  1、出示一组图形,各是什么三角形?(投影)

  2、完成练习三十一第5,6题

  3、判断下面说法对吗?

  (1)一个三角形里如果有两个锐角,必定是一个锐角三角形、

  (2)所有的等边三角形都是等腰三角形、

  (3)所有的等腰三角形都是锐角三角形、

  (四)作业

  练习三十一第7~10题。

  课堂教学设计说明

  学生已经掌握了根据三角形角的特征对三角形进行分类,在这个基础上,本节课学习根据边的特点认识等腰三角形和等边三角形,并认识三角形的底和高,会画三角形的高和三角形、

  新课分为四部分、第一部分,认识等腰三角形,通过动手实践、测量、折叠,从而建立等腰三角形概念,了解各部分名称及其性质、第二部分,用同样方法认识等边三角形,并明确等边三角形是特殊的等腰三角形、第三部分,认识三角形的底和高,并会画高、今后学习三角形面积要常用到,因此一定要让学生掌握、最后一部分动手操作,让学生学会画三角形,掌握画三角形的步骤、教师要高度重视,加强指导、

  本节课既重视教师的直观、演示,更要重视学生的动手实践,以逐步提高学生的识图、作图能力。

关于三角形的教案11

  教学目标:

  1.通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。

  2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。

  3.在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。

  教学重点:理解、掌握“三角形任意两边之和大于第三边”的性质。

  教学难点:引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。教学准备:、不同长度纸条若干张、实验表格。

  教学过程:

  一、 创设情境

  1、出示情境图。

  师:通过刚才摆三角形,你发现了什么?

  (引导学生提出这样的问题:为什么我们用的三张纸条中有两条长的和大于第三条长却没有摆成三角形呢?)

  师:通过刚才是实验,我们可以发现三角形三条边在长短上有某种关系,但究竟怎样的三张纸条才能摆成一个三角形?让我们再来做一个实验。

  2、 动手实验2:进一步探究怎样的三张纸条才可以摆成三角形。

  师:每组同学任意选择下面三组中的任意一组纸条做进一步实验,并完成相应的`实验记录。(1)4c 5c 9c (2) 3c 6c 10c (3) 6c 7c 8c

  学生汇报展示:能或不能摆成三角形任意两边的和是否大于第三边( 1 )不 能4+5=9 4+9>5 5+9>4发现:两边之和有时大于第三边,有时等于第三边,不能摆成三角形( 2 )不 能6+10>3 3+10>6 3+6<10发现:两边之和有时大于第三边,有时小于第三边,不能摆成三角形( 3 )能6+7>8 6+8>7 7+8>6发现:任意两边之和大于第三边,能摆成三角形师:对于三角形的三边关系,怎样表达更严密?体会任意两边的含义。

  三、 拓展应用:

  1、 说一说老师为什么走中间的这条路最近?

  2、 判断:哪一组中的3根小棒可以摆成一个三角形?(单位:厘米)

  (1)3,6,9 (2)4,4,10

  (学生通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形,教师再让学生讨论交流好方法)

  3、解决问题:

  师:小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。

  (1)第三根木条可以是多少分米?(取整数)

  (2)第三边的木条的长度是a分米,那么a的取值范围是( )

  四、 回顾反思:

  同学们,今天学到了什么知识?你最大的收获是什么?还有哪些不懂的地方吗?

关于三角形的教案12

  一、目标与要求

  1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

  2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

  3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

  4.三角形的内角和定理,能用平行线的性质推出这一定理。

  5.能应用三角形内角和定理解决一些简单的实际问题。

  二、重点

  三角形内角和定理;

  对三角形有关概念的了解,能用符号语言表示三条形。

  三、难点

  三角形内角和定理的推理的过程;

  在具体的图形中不重复,且不遗漏地识别所有三角形;

  用三角形三边不等关系判定三条线段可否组成三角形。

  四、知识框架

  五、知识点、概念总结

  1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2.三角形的分类

  3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的.高。

  5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

关于三角形的教案13

  1、知识与技能目标:联系实际和利用生活经验,通过观察、操作、测量、联想等学习活动,认识三角形的基本特征,初步形成三角形的概念,初步认识三角形的底和高,感悟三角形的底和高的相互依存的关系。

  2、过程与方法目标:在认识三角形的基本特征及底和高的活动中,体会认识多边形特征的基本方法,发展观察能力和比较、抽象、概括等思维能力。

  3、情感、态度与价值观目标:认识到三角形是日常生活中的常见图形,在学习活动中进一步产生学习图形的兴趣和积极性。

  教学重点:认识三角形的基本特征,认识三角形的底和高。

  教学难点:懂得底和高的对应关系,会画三角形指定边上的高。

  教学准备:小棒、三角板、导学案、多媒体课件等。

  教学过程:

  一、联想揭题

  师:刚才,看到有一个家,你会想到什么?

  生:房子

  师:(课前在黑板上画好一幅房子示意图)

  下面请同学看黑板,板上有一幅房子图,从图中你可以想到我们学过的什么图形?

  生1-2-3:三角形、长方形--

  师:根据我们已学的知识,你能在推理的基础上,说一说,这节课我们学习什么?

  生:三角形

  师:真棒!这节课我们就一起走进三角形的世界!(板书三角形)

  二、探究新知

  (一)认识三角形

  1、想一想(联想)

  师:看到“三角形”,你想到了什么?

  生:

  2、说一说(举例)

  师:从房子图上,我们找到了三角形,想想生活中的场景、结合平时观察,你能从什么地方的图上找出三角形?

  生:自行车上、电线杆上----

  师:(出示图片)我也在课前找了一些图片,请大家一起来看一看

  3、做一做(操作)

  师:数学来源于生活。平时观察中,我们能发现三角形,你能创造出三角形吗?

  生:能

  师:(课前准备:3根小棒、方格纸、一副三角尺)

  学生活动:

  请你们拿出课前自己准备好的小棒,每人做一个三角形。

  (请一个学生上前面摆)

  师:你们是这样摆的吗?

  生:是的

  4、画一画

  师:好,请同学们在纸上画出一个三角形。同时思考什么样的图形是三角形。

  (学生画三角形,请一生上黑板画一个三角形)

  师:表扬,画好的同学有

  师:请同学生们观察我们摆出和画出的三角形,联系生活的图形说一说什么样的图叫三角形?

  生1-2-3-4-

  师:这就是三角形的定义:板书

  师:我们知道有三条线段首尾连接的叫三角形。让你给它各部分起个名称分别叫什么呢?

  生:

  师:(显示PPT三角形名称)(板书3个顶点、3条边、三个角)

  教师:板书)如果在三角形的三个顶点上分别写上三个不同的大写字母,如:A、B、C,那么这个三角形就是“三角形ABC”,也可以称为“三角形ACB”或“三角形BAC”等。

  教师:再说说,三角形ABC的3条边、3个角、3个顶点分别是什么?3条边:AB、AC、BC;3个顶点:A、B、C;3个角:∠A、∠B、∠C。

  五、判断三角形

  师:同学们对三角形认识了,我们一起来看看下面的图形哪个是三角形?

  (PPT)

  六、画图

  师:大家对三角形的基础知识掌握得很好,下面请同学们在导学案方格上任连三个点画出三角形。

  学生操作

  师:(讲解)你是如何画的?

  生1-2-3--

  提问:观察图形,你有什么发现?

  引导学生发现:不在同一条直线上的三个点都能画出一个三角形。

  师:有没有同学连在一条线上的三个点?你们为什么不连?

  过渡:请大家用笔将这四个点都连起来,想象一下,现在这连好的图形像我们屋顶的'~生:梁

  (二)、三角形的高

  1、引出高的定义

  师:(PPT)出示人字梁这些线段中,哪一根最特殊?

  生:中间的一根

  师:为什么?

  生:

  师:(揭示高的定义)在数学上,人们把:从三角形的一个顶点向它的对边作一条垂直线段,这条垂直线段就是三角形的高,(板书:画出三角形的高,标上直角标记,并在所画线段的旁边标出“高”字)这条对边是三角形的底。(板书:底)

  (黑板)随之板书)强调:高要用虚线表示,并标上垂直符号。

  PPT视频画高

  2、教学确定底画高

  师:通过观看,闭上眼睛联想一下,画高就和我们以前学的画什么差不多?

  生:画垂线

  师:现在,你们一定能画出三角形指定的高,请你画一画(完成导学案中的第4题)

  叫学生上黑板画一画学生作高,师指导。

  展示学生作业

  让学生说说如何作高的。

  3、摆三角形的高

  师:在摆的三角形上摆出它的高。你有什么发现

  4、画出下面三角形各边对应的高。

  学生动手

  三、巩固练习

  完成书第76页练一练

  讲解

  四、总结拓展

  1、欣赏三角形元素的图片、设计理念、三角形文化运用等

  2、画直角三角形、钝角三角形高

【三角形的教案】相关文章:

全等三角形教案05-25

解三角形教案02-04

全等三角形的教案02-24

《三角形的面积》教案02-02

三角形的认识教案04-01

认识三角形教案06-13

《三角形》教案最新07-20

三角形的认识教案04-12

《三角形的面积》教案06-07