《三角形》教案最新

时间:2024-09-16 09:06:24 教案 我要投稿

[精]《三角形》教案最新

  作为一名优秀的教育工作者,有必要进行细致的教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。快来参考教案是怎么写的吧!下面是小编精心整理的《三角形》教案最新,供大家参考借鉴,希望可以帮助到有需要的朋友。

[精]《三角形》教案最新

《三角形》教案最新1

  活动目标:

  1、认识三角形,知道三角开有三条边,三个角,复习手口一致点数。

  2、培养幼儿的观察和比较能力。

  3、激发幼儿学习图形的兴趣。

  4、体会数学的生活化,体验数学游戏的乐趣。

  5、能与同伴合作,并尝试记录结果。

  教学重点、难点:

  1、认识三角形,并知道三角形有许多形状

  2、区分三角形与正方形

  活动准备:

  ppt课件、

  教具实物

  (三角形的彩纸或吹塑纸,等边三角形,等腰三角形,直角三角形,锐角三角形,钝角三角形各1张。

  够每个幼儿做1-2个三角形的小棍(长短不同),正方形彩纸一张)

  活动过程:

  教师小结:

  正方形有四条边,三角形有三条边,正方形的'四条边一样长,三角形的三条边不一样长;

  正方形有四个角,三角形有三个角;

  正方形的四个角一样大,三角形的三个角可以不一样大。(教师边说边演示)

  4、它们都是三角形吗?

  教师ppt出示各种三角形,请幼儿说说它们是不是三角形,为什么?

  (幼儿只要答出“是三角形,因为它们都有三条边,三个角”就可以了。

  教师小结:

  ①、三角形有三条边,三个角

  ②、三角形有许多兄弟,它们虽然长得不一样,可是它们都有三条边,三个角

  ③、三角形的三条边可以不一样长,三个角可以不一样大

  ④、只要一个图形有三条边,三个角,它们就是三角形

  5、让幼儿寻找常见实物中有什么东西像三角形(出示ppt)

  6、幼儿操作。

  将许多长短不同的小棍发给幼儿,让幼儿数3根小棍做三角形

  (可以找一样长的小棍也可以找不一样长的;做得快的可以做第二个,第三个)。

  教学反思:

  我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。

  在这教学过程中,我将许多长短不同的小棍放在孩子们的桌上,让孩子们数3根小棍拼做三角形

  (可以找一样长的小棍,也可以找不一样长的)。

  通过让他们动手操作,让孩子们进一步认识到了:

  1、三角形有三个角、三条边

  2、三角形的三条边可以不一样长,3、三个角可以不一样大。

《三角形》教案最新2

  【教学内容】:

  人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。

  【课程标准】:

  认识三角形,通过观察、操作、了解三角形内角和是180度。

  【学情分析】:

  学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。

  ?学习目标

  1、结合具体图形能描述出三角形的内角、内角和的含义。

  2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。

  3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。

  4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

  ?评价任务设计

  1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。达成目标1。

  2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。达成目标2。

  3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。达成目标3。

  4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”和习题第9、10、12题达成目标4和目标3。

  ?重难点

  教学重点:探索和发现三角形的内角和是180°。

  教学难点:充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°

  【教学过程】

  一、复习准备。

  1、三角形按角的不同可以分成哪几类?

  2、一个平角是多少度?1个平角等于几个直角?两个三角板上各个角的度数?

  二、探究新知

  (一)创设情境,生成问题,认识三角形的内角及内角和

  (播放课件)在图形王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“你虽然有一个钝角,可其它两个角都很小。但是我的三个角都不是很小。我的内角和比你大”。直角三角形说:“别争了,三角形的内角和是180°,我们的内角和是一样大的。”

  师:动画片看完了,请大家想一想,什么是三角形的内角和?

  师引导学生说出三角形三个内角的度数和叫做三角形的内角和。

  多媒体展示:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角),这三个内角的度数的和就叫做三角形的内角和。

  (达成目标1:利用多媒体播放动画和孩子已有的经验,通过教师的提问和引导,学生说出什么叫三角形的内角及内角和达成目标1。多媒体创设的情景也为目标二打好铺垫)

  (二)、引导猜测三角形的内角和是180度

  师:在课件展示的直角三角形、钝角三角形、锐角三角形的对话中,你赞同谁的观点?

  预设:学生回答直角三角形。

  师:你为什么这么认为呢?

  生:我是想三角板上三个角的度数是90度、45度、45度加起来是180度,90度、60度、30度加起来也是180度。

  (达成目标2:激发引导学生运用已有经验猜三角形的内角和而不是盲目猜,激起学生的疑问和好奇心,这样在教师的引导下,学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。)

  (三)、验证三角形的内角和是180度

  1.确定研究范围

  师:研究三角形的内角和,是不是应该包括所有的三角形?只研究这一个行不行?(不行)那就随便画,挨个研究吧。(学生反对)那该怎样去验证呢?请你们想个办法吧!

  师:分类验证是科学验证的一种好方法,下面我们就用分类验证的方法来验证一下,看看三角形的内角和是不是180°?

  2.操作验证

  教师让每个学习小组拿出课前制作的.各种各样的三角形,先找到三个内角,在每个内角标上序号1、2、3。然后请任意用一个三角形,想办法验证我们的猜想。如果有困难,可以启用老师提供的“智慧锦囊”或者寻求同学的帮助。

  智慧锦囊:

  (1)要知道三个内角的和,只要知道三个角分别是多少度就可以了,你觉得哪个工具可以测出角的度数?试一试。

  (2)180°的角是个特殊的角,它是个什么角?你能想办法将这三个内角转化成这样的角吗?

  3.汇报交流

  师:谁来汇报你的验证结果?

  (1)测算法

  师小结:用量的方法验证既然有误差、不准,结论就难以让人信服,那有没有办法更好地验证我们的猜测呢?谁还有别的方法?

  (2)剪拼法

  (3)折拼法

  师小结:用拼和折的方法都能将三角形的三个内角转化成一个平角,从而借助我们学过的平角知识证明三角形的内角和确实是180°,你们真会动脑筋!

  (4)推算法

  ①把一个长方形沿对角线分成两个完全一样的直角三角形。因为长方形的内角和是360°,所以一个直角三角形的内角和等于180°。(课件演示过程)

  师:直角三角形的内角和已经证明了是180°,现在我们只要能证明:锐角三角形和钝角三角形的内角和也是180°就可以了。

  课件演示

  ②一个锐角三角形,从顶点往下画一条垂线,将三角形分为两个直角三角形,因为我们已经知道直角三角形的内角和是180°,所以两个直角三角形的度数和就是360°,减去两个直角的和180°,就是要证明的三角形内角和,肯定是180°。

  4.总结提炼

  师:孩子们,刚才我们通过“量——拼——折——推”的方法分类验证了三角形的内角和是()度?

  现在可以下结论了吗?

  (板书:三角形三个内角和等于180°。)

  师:那在“三角形的争吵中”谁是对的?

  (达成目标3。此环节让学生通过“量——拼——折——推”的方法分类验证了三角形的内角和是180度。此环节充分体现了学生学习的主动性。)

  (四)利用三角形内角和是180解决问题

  1、看图,求出未知角的度数。

  2、书本85页“做一做”

  在一个三角形中,∠1=140。,∠3=25。,求∠2的度数。

  (达成目标3和目标4:能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”达成目标3和目标4.)

  三、目标达成检测方案:

  1、求出三角形各个角的度数。

  2、埃及金字塔建于4500年前的埃及古王朝时期,它是用巨大石块修砌成的方锥形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各异,外表有四个侧面,每个侧面都是等腰三角形。人们量得这个三角形的一个底角是64度。

  四、课堂小结,提升认识

  同学们,这节课你有哪些收获?我们是怎样得到“三角形内角和等于180度”这个结论的?

  师:是啊,今天我们不但知道了三角形的内角和是180°,更重要的是我们经历了探究三角形内角和的验证方法。我们从猜想出发,经过验证(用量、拼、折、推等)得到了结论并利用结论解决了一些问题。孩子们,其实我们在不知不觉中已经走了数学家的探究历程……希望同学们在今后的学习中大胆应用,勇于创新,做最棒的自己

《三角形》教案最新3

  一、教学内容

  ?三角形的特性》是人教版小学数学四年级下册第五单元中第一课时的内容。

  二、教学目标

  1、知识目标:理解三角形的定义,知道三角形各部分的名称,理解三角形稳定性的特征,并学会给三角形画高。

  2、能力目标:培养学生的观察分析和动手操作能力以及对数学知识应用的能力,进一步发展空间观念。

  3、情感目标:体验数学与生活的联系,培养学生学习数学的兴趣。

  三、教学重、难点

  教学重点:理解三角形的定义,三角形稳定性的特征。

  教学难点:掌握三角形高的画法。

  四、教学过程

  (一)导入。

  1、课件出示一组情境图:同学们,我们以前学过三角形,仔细观察一下你能在图上找到三角形吗?

  2、三角形在我们的生活中有着广泛的应用,这节课我们就来探究一下三角形的特性。(板书课题:三角形的特性)

  (二)操作感知,理解概念。

  1、发现三角形的特征。

  (1)师生每人画出一个三角形。

  小组内展示画的三角形,你发现它们有什么共同点?

  (2)让学生在自己画的三角形上尝试标出边、角、顶点。(指生上台板演。)

  2、概括三角形的定义。

  (1)学生动手摆三角形。思考:什么样的图形叫三角形?(可结合课本理解)

  (2)学生回答。

  (3)你认为定义中哪些词最重要?(理解“三条线段”“围成”。)

  3、用字母表示三角形。

  为了表达方便,我们通常把三角形的三个顶点分别用字母a、b、c表示,这个三角形可以称作三角形abc。

  4、认识三角形的底和高。

  (1)复习过直线外一点做已知直线的垂线段。

  (2)小组合作学习三角形高的画法。

  自学提示:什么是三角形的高?

  作三角形的'高用什么学具?

  怎样作三角形的高?

  (3)小组代表展示问题并演示三角形高的作法。

  (4)思考:三角形有几条高?应怎样画它们?

  (三)实验解疑,探索特性。

  1、提出问题。

  (课件出示图)同学们,在生活中三角形有着广泛的应用,仔细观察为什么把物体的这些部分做成三角形的,它具有什么特性?为了解决这个问题我们来做个实验吧。

  2、实验解疑。

  下面,请大家都来做一个实验。

  学生拿出三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?

  实验结果:三角形具有稳定性。

  请学生举出生活中应用三角形稳定性的例子。

  (四)巩固运用,提高认识。

  指导学生完成练习十五1、2、3题。

  (五)课堂小结。

  通过这节课的学习,你有什么收获?

  五、板书设计

  三角形的特性;

  三角形有三个顶点,三个角,三条边;

  由三条线段围成的图形叫做三角形;

  三角形具有稳定性。

《三角形》教案最新4

  教学目标:

  1、能直观认识长方形、正方形、三角形、圆这些平面图形。能够辨认和区别这些图形。

  2、培养学生初步的观察能力、动手操作能力和用数学交流的能力。

  教学重点:

  认识长方形、正方形、三角形、圆形

  教学难点:

  从立体图形中抽象出平面图形

  教学过程:

  一、设置情境、导入新课。

  老师:同学们看大屏幕上这张图片,你能想起来咱们学过的一篇语文课文吗?

  学生:能。《雪地里的小画家》。

  老师:是呀,他们不用颜料不用笔,几步就成一幅画,可不就是小画家吗?看!小鸡画的是什么?(竹叶)小狗画的是什么?(梅花)咦?它们画的画为什么不一样呢?

  学生a:因为他们脚的形状不一样。

  教师:你真是一双火眼金睛呀!那除了这些小动物朋友们,咱们之前学的立体图形它们也能在雪地中印出不同的花型,这就是今天咱们学习的内容。(教师板书课题)

  二、讲授新课。

  1.

  老师展示长方体、正方体、三棱柱和圆柱几个立体图形,复习之前学过的知识。

  2.

  引导学生从立体图形中分离出平面图形。并且让学生动手操作用立体图形画出长方形、正方形、三角形和圆形。

  3.

  引导学生观察几个平面图形的相同点和不同点,加深学生们对这几个图形的认识。教师并进行总结:长方形对应边相等;正方形四条边一样长;三角形三条边三个顶点;圆形是曲线无角。

  三、巩固。

  1.

  呈现一张布满各种图形的果树,让学生摘果子,把三角形、正方形、长方形、圆形的分别分开。

  2.

  每个人发一张用今天所学图形拼接成的轮船和火箭图形,规定好什么形状的`子图形涂什么颜色,让学生在规定时间内涂完。

  3.

  让孩子们做小小设计师。利用长方形、正方形、三角形和圆的组合,设计出一幅美丽的作品(电脑演示:情景激发)。用课前准备好的彩色圆形和三角形教会学生拼接成各种各样的图画并让学生到讲台前面亲子操作,丰富学生的课堂活动,激发他们的兴趣。

  四、布置作业。

  用今天学习的几个平面图形拼接成不同的图画送给每天为自己辛苦付出的爸爸妈妈。

《三角形》教案最新5

  活动目标:

  1、培养幼儿对图形的兴趣和数学活动常规。

  2、初步发展幼儿的观察力、分析能力和概括能力。

  3、感知并说出三角形的基本特征,能找出和三角形相似的物体。

  活动准备:多媒体、课件各一,图形若干。

  活动分析:观察、对比是孩子们探究的'过程,通过图形的对比引导幼儿感知三角形的基本特征,作为本次活动的重点。活动中运用课件直观、形象的特点,通过多种游戏形式,采用启发法、提示法,引导幼儿进一步掌握并概括三角形的基本特征,从而突破难点部分。活动的结束之际,组织幼儿进一步从生活环境中找出像三角形的物体,作为活动的延伸环节,自然结束。

  活动过程:

  一、导入。采用观察法,通过课件中图形宝宝的口吻引出三角形。

  二、展开。

  1、采用游戏法引导幼儿在众图形中寻找三角形。

  2、引导幼儿观察三种三角形的共同特征,发现三角形有三条边、三个角。

  3、动手操作。a.幼儿从图形筐中找出三角形,分别数出边、角的数量,进一步掌握三角形特征。b.观察并说出三角形像什么。

  4、游戏“猜猜我是谁”。组织幼儿根据图形渐渐露出部分猜测出图形,进一步巩固幼儿对图形特征的认识。

  5、游戏“捉迷藏”幼儿从简单的画面中找出三角形。

  6、引导幼儿观察并找出活动室中那些物品像三角形。

  三、延伸。

  请幼儿到生活环境中进一步寻找三角形的踪迹。

《三角形》教案最新6

  教材分析

  教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。

  教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。

  三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。

  另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。

  学情分析

  学生在前面的学习中已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°;学生通过前几年的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯,所以在学生具备这些数学知识和能力的基础上,来引导学生探索和发现三角形内角和是180°这一性质。

  要让学生明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。

  教学目标

  1、知识目标:让学生探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

  2、能力目标:培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

  3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

  教学重点和难点

  教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。

  教学难点:让学生经历探索和发现三角形的内角和是180°的过程。

  教学过程:

  (一)、激趣导入:

  1、认识三角形内角

  我们已经认识了什么是三角形,谁能说出三角形有什么特点?

  (三角形是由三条线段围成的图形,三角形有三个角,…。)

  请看屏幕(课件演示三条线段围成三角形的过程)。

  三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角

  形的内角。(这里,有必要向学生直观介绍“内角”。)

  2、设疑激趣

  现在有两个三角形朋友为了一件事正在争论,我们来帮帮它们。(播放课件)

  同学们,请你们给评评理:是这样吗?

  现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?

  这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)

  (二)、动手操作,探究新知

  1、探究特殊三角形的内角和

  师拿出两个三角板,问:它们是什么三角形?

  (直角三角形)

  请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。

  (由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)

  从刚才两个三角形内角和的计算中,你们发现了什么?

  (这两个三角形的内角和都是180°)。

  这两个三角形都是直角三角形,并且是特殊的三角形。

  2、探究一般三角形内角和

  (1).猜一猜。

  猜一猜其它三角形的内角和是多少度呢?(可能是180°)

  (2).操作、验证一般三角形内角和是180°。

  所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  (可以先量出每个内角的'度数,再加起来。)

  测量计算,是吗?那就请四人小组共同计算吧!

  老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:

  (3)小组汇报结果。

  请各小组汇报探究结果

  提问:你们发现了什么?

  小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。

  3继续探究

  (1)动手操作,验证猜测。

  没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?

  (先小组讨论,再汇报方法)

  大家的办法都很好,请你们小组合作,动手操作。

  (2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。

  学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)

  我们可以得出一个怎样的结论?(三角形的内角和是180°)

  引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。

  5、辨析概念,透彻理解。

  (出示一个大三角形)它的内角和是多少度?

  (出示一个很小的三角形)它的内角和是多少度?

  一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°.)

  把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°。)

  这两道题都有两种答案,到底哪个对?为什么?

  (学生个个脸上露出疑问。)

  大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。

  经过一翻激烈的讨论探究后,学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°

  (三)小结

  刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

  (四)、巩固练习,拓展应用

  下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

  1、求三角形中一个未知角的度数。

  (1)在三角形中,已知∠1=85°,∠2=65°,求∠3。

  (2)在三角形中,已知∠1=98°,∠2=49°,求∠3。

  2、判断

  (1)一个三角形的三个内角度数是:90°、75°、25°。()

  (2)一个三角形至少有两个角是锐角。()

  (3)钝角三角形的内角和比锐角三角形的内角和大。()

  (4)直角三角形的两个锐角和等于90°。()

  3、解决生活实际问题。

  (1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

  (2)交通警示牌“让”为等边三角形,求其中一个角的度数。

  4、拓展练习。

  利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

  小组的同学讨论一下,看谁能找到最佳方法。

  学生汇报,在图中画上虚线,教师课件演示。

  请同学们自己在练习本上计算。

  (四)、课堂总结

  通过这节课的学习,你有哪些收获?

《三角形》教案最新7

  教学目标

  知识与能力:学生通过测量、撕拼的方法探索和发现三角形三个内角和是180°。

  过程与方法:学生经历合理猜想和验证三角形内角度数和等于180°的过程,发展空间观念及分析推理能力。

  情感态度和价值观:学生在活动中体验成功的喜悦,激发学生探索数学的愿望和兴趣。

  重点难点

  教学重点:

  探究发现三角形的内角和是180度。

  教学难点:

  在猜想和验证三角形内角和的过程中发展空间观念。

  教学过程

  活动1【导入】理解内角、内角和概念

  1、谜语引入:形状似座山,稳定性能坚,三竿首尾连,学问不简单,打一几何图形猜一猜是什么?

  q:结合谜面的信息来说一说三角形有什么特点?

  2、介绍内角:这三个角都在三角形的里面,又叫内角。

  q:三角形有几个内角?

  3、介绍内角和:把三个内角的度数加起来求和就是三角形的内角和。

  引出课题:今天我们就来研究三角形内角和。

  活动2【活动】观察图形

  1、观察图形的变与不变

  ppt依次出示

  q:这是锐角三角形,什么是它的内角和?

  出示直角三角形,它的内角和是指?

  出示钝角三角形,内角和是指?

  质疑:哪个三角形的内角和最大?

  预设1:钝角三角形内角和大。(说想法)

  预设2:一样大。(说想法)

  预设3:180度。

  小结:三个三角形的样子不一样,大小也不一样,三个内角也不一样,但内角和是一样的。

  (二)活动二:猜想内角和不变的度数

  q:这个一样的度数是多少?你是怎么知道的?

  预设1:听说过,学过。

  预设2:直角三角尺上三个角的度数和是180度。

  预设3:等边三角形。

  这两个都是我们知道度数的特殊的三角形,请你根据这个特殊的三角形来大胆的猜猜三角形内角和是多少度?那任意的一个三角形的内角和度数是不是180°呢?今天我们就来一起研究。

  活动3【活动】测量验证

  (一)思考量的方法和原因

  过渡:你想怎么研究?(用量角器去量)

  q:谁来介绍介绍量的方法?

  预设:要想研究内角和,只要把三个内角度数量出来再加起来看看是不是180度就可以了。

  (二)动手测量

  ppt:操作建议:

  1、请你找到三角形的三个内角,用彩笔标序号1、2、3。

  2、用量角器仔细测量后,记录角的度数。

  3、列式计算出三角形内角和度数。

  动手测量

  (三)汇报交流:

  学生1展示测量的过程。

  q:还有谁测量的这个锐角三角形,说一说?

  追问:为什么同一个三角形内角和度数却不一样?

  q:你在测量的过程中遇到了什么困难?

  q:观察这些数据,虽然都不太一样,但是都很接近?

  小结:测量确实可以帮助我们找到三个角的度数,加起来就可以求出内角和,但是测量有误差。

  活动4【活动】拼角验证

  (一)思考其它验证方法

  q:你还有其他的方法吗?

  预设1:学生没有反应。

  师引导:说到180度,你想到什么角?(平角)

  预设2:撕拼法

  q:怎么把三个内角拼在一起?

  (生不撕,教师帮助突破,撕下三个内角。)

  q:你能在投影上拼一拼吗?

  预设3:折叠法

  你的方法也很好,你们听懂了吗?一会儿可以试试。

  预设4:描画法

  q:怎么描?你能演示一下吗?

  其他同学观察他在做什么?

  引语:刚才说的方法都很好,下面我们自己来试一试。

  (二)动手拼一拼

  操作要求:

  1、请你用彩笔在纸上随意画一个三角形,并剪下来。

  2、用彩笔标出三个内角。

  3、尝试操作。

  动手操作

  (三)汇报交流

  q:你是怎么研究的?发现了什么?

  (四)小结

  刚才每人的三角形是自己任意画出的',形状、大小都不一样。无论是撕拼、折叠、还是描画的方法,都是在把这三个内角拼在了一起,转化成一个平角,我们发现他们的内角和都是180度。

  活动5【活动】几何画板验证

  引:但我们时间有限,研究的三角形个数有限,是不是任意一个三角形的内角和都是180度呢?我们可以借助几何画板来看一看。

  师:介绍:计算机能够帮助我们比较精确地测量出三个角的度数,并计算它们的和。

  观察:老师拉动一个顶点,什么变了?什么没变?

  小结:也就是,无论我们怎么改变三角形的形状,大小,虽然它的内角在变化,但三个内角和的却是不变的,都是180度。

  活动6【练习】基础练习

  1、三角形中∠1=55°,∠2=45°,∠3=?

  2、直角三角形:我有一个锐角是40°,求另一个角?

  3、说一说:在一个三角形中,能有两个直角吗?能有两个钝角吗?为什么?

  4、拼三角形

  师:两个180°不是360°吗?

  小结:看来,组合以后的图形还要分清楚哪些是内角。

  活动7【练习】拓展练习

  (一)拓展练习

  今天,我们通过自己的研究发现三角形内角和是180度。那四边形有没有内角和呢?它的内角和是多少度?

  课件演示。

  说说这节课你的收获?

【《三角形》教案最新】相关文章:

《三角形》教案最新07-20

关于三角形的教案08-31

《三角形拼图》教案01-09

《三角形的面积》教案06-07

认识三角形教案06-13

解三角形教案02-04

三角形的性质教案01-24

《三角形的面积》教案02-02

三角形的认识教案04-01

三角形面积教案03-30