小数的意义教案

时间:2024-10-20 13:05:33 教案 我要投稿

小数的意义教案汇总15篇

  作为一位杰出的教职工,时常需要用到教案,教案是教学蓝图,可以有效提高教学效率。我们应该怎么写教案呢?下面是小编帮大家整理的小数的意义教案,欢迎大家分享。

小数的意义教案汇总15篇

小数的意义教案1

  教学目标

  1. 使学生结合具体情境初步体会小数的含义,能认、读、写一位小数,知道小数各部分的名称。

  2. 使学生通过观察、比较、分析、综合和概括等活动,经历小数含义的探索过程,增强与同伴合作的意识,体会数学与生活的密切联系。

  3. 使学生通过了解小数的产生和发展过程,提高学习数学的兴趣。

  教学过程

  一、 创设情境,引入新课

  谈话:星期天,小明和好朋友小红一起到新星文具店购买文具,文具店里的东西可真多啊。(课件出示文具店的情境,图中标明四把三角尺或直尺的价格,分别是:2角、5角、8角、3角。)

  二、 联系实际,探究发现

  1. 教学整数部分是0的小数。

  (1) 提问:小明想买一把尺子,猜猜他可能买哪种价格的尺子?

  根据学生回答板书:2角、5角、8角、3角。

  提问:仔细观察这些尺子的价格,它们都是用什么作单位的?如果用元作单位,怎样表示上面商品的价格呢?

  学生回答的同时,对应着上面的价格板书:2/10元、5/10元、8/10元、3/10元。

  提问:你能分别说说2/10元、5/10元、8/10元、3/10元表示的意思吗?

  引导:像上面的2/10元、5/10元、8/10元、3/10元,还可以用小数来表示。(边讲解边板书)如:2/10元可以写成0.2元,0.2读作零点二(师生齐读)。也就是说,把1元平均分成10份,其中的2份既可以用2/10元来表示,也可以用0.2元表示。

  提问:你能说说0.2元表示什么意思吗?会写这个小数吗?

  再问:怎样用小数表示5/10元呢?

  追问:0.5元表示什么意思?

  学生回答后练习读、写0.5。

  再让学生说一说怎样用小数表示8/10元、3/10元,并读、写0.8和0.3。

  谈话:小数在我们生活中有着非常广泛的应用,我们再来看一些例子。

  (2) 课件出示例1的情境图。

  提问:图中两个小朋友在做什么?他们量得的结果是多少?

  再问:你能用米作单位分别表示课桌面的长和宽吗?(学生分别用5/10米、0.5米表示课桌面的长,用4/10米、0.4米表示课桌面的宽。)

  (3) 完成想想做做第1题。

  课件出示想想做做第1题的尺子图。

  提问:小明买了这样一把1米长的尺子。它被平均分成了几份?(指1分米的刻度)这里的'1份是几分米?如果用分数表示是几分之几?用小数表示呢?

  课件出示相应的填空,谈话:你能在括号里填上适当的数吗?先想一想怎样填,再在书上第101页的第1题中填一填。

  学生练习后,指名汇报。

  (4) 完成想想做做第3题。

  课件出示题目,指名口答。

  提问:仔细观察这些分数,分母都是几?

  小结:十分之几用小数表示都是零点几。

  (5) 游戏:对口令。

  教师说一位小数,学生说表示几分之几,或教师说几分之几,学生说小数。同桌相互做游戏。

  2. 教学整数部分不是0的小数。

  (1) 谈话:我们再到文具店去看一看吧,这里还有两件文具。(出示例2的情境图)圆珠笔多少钱1支?笔记本多少钱一本?

  提问:你能用小数表示圆珠笔的价钱吗?自己先试一试,再和小组里的同学交流。

  全班交流,并读、写1.2元。(着重让学生说一说自己是怎样想的。)

  再问:怎样用小数表示笔记本的价钱呢?

  小结:用小数表示几元几角,可以把几角表示成零点几元,再和几元合起来就是几点几元。

  提问:今天我们认识的小数和以前学过的数有什么不同?

  讲解:我们以前学过的表示物体个数的1、2、3、4是自然数。0也是自然数,它们都是整数。像上面的0.5、0.4、1.2、3.5都是小数。小数中间的点叫小数点,小数点的左边是整数部分,右边是小数部分。(相机板书:小数点、小数部分、整数部分)

  提问:你能写出两个小数吗?读给同座位同学听听,并指出小数的整数部分和小数部分。

  指名汇报。

  三、 应用与拓展

  1. 完成想想做做第2题。(课件出示)

  让学生做在课本上,集体订正。

  2. 完成想想做做第4题。(课件出示)

  先读出这些商品的价钱,再说一说是几元几角。

  3. 找朋友。(把分数和相应的小数用线连起来,题略)

  4. 完成想想做做第5题。

  学生独立练习,并说一说是怎样想的。

  四、 总结延伸

  提问:今天这节课你学会了什么?还有什么不明白的地方?

  延伸:今天我们学习的都是一位小数,以后我们还要进一步学习位数更多的小数,更全面地认识小数。如果感兴趣,同学们可以自己找一些资料看一看。

小数的意义教案2

  (一)教学目标

  1.能体会分米、厘米、毫米的含义,建立相应的长度观念 。

  2.记住这些单位之间的进率。

  3.能估计一 些较短物体的长度。

  4.会量较短物体的长度。

  (二)教学重点与难点

  1.教学重点:理解1分米、1厘米、1毫米的实际含义。

  2.教学难点:建立分米、厘米、毫米的具体观念。

  (三)教学准备

  1.教具准备:实物投影仪、米尺、透明塑料尺、壹分硬币 、两支铅笔。

  2.学具准备:每人学生尺一把、壹分硬币一枚、线一根、长铁钉一枚。

  (四)教学过程

  1.搭好桥梁。

  (1)小朋友,想知道一个人有多高,黑板有多长,数学书本 又有多宽,可采用什么方法?(用尺量)

  (2)你怎么想到要用尺量呢?(尺上有刻度)

  (3)出示米尺:小朋友比划一下一米大约有多长?

  (4)估计:黑板大约有多长?教师实际量一量,得黑板长3米多。

  多的部分不到1米,究竟是多少?我们需要用比米小的单位来帮忙。

  2.实践操作。

  (1)认识厘米。

  ①实物投影仪上放上塑料尺,请学生观察,从“0”刻度线 到标有“1”刻度线之间的长度就是1厘米。(板书:厘米cm)

  ②学生在自己的尺上找1厘米的长度(手指宽,橡皮厚,1分 硬币的最大宽……),并用尺比量一量。

  ③量一量:铁钉有多长?(3cm)

  ④出示两支铅笔,一支10厘米,一支1厘米多一些,估计这两支铅笔大约有几个厘米长。

  (2)认识分米。

  ①这支铅笔长10厘米,还可以叫做1分米长(板书:分米dm) ,所以1分米=()厘米。

  ②同上,学生在尺上找1分米的长度,找身边的`物品长(宽) 大约是1分米的物品,可实际去量一量。(衬衣两纽扣之间、手掌宽……)

  ③在米尺上数一数,1米有几分米?也就是几个10厘米。1分米=10厘米,那么1米=()厘米。

  ④想一想:1米、1分米、1厘米有多长?

  小游戏:伯;说我比划,即同桌1人说1米(或1分米、1厘米) ,另一人马上用手比划出来。

  (3)认识毫米。

  ①还有一支铅笔为1厘米多一些,究竟是多少长呢?我们需要认识更小的长度单位——毫米(板书:毫米一)

  ②1毫米用手难以比划·了,我们就用铅笔芯来点吧。

  ③长度是1毫米的物品很难找吧?(1分硬币的厚度,数学练习簿的厚度……)

  ④猜一猜,再在尺子-上数一数()毫米=1厘米,

  3.归纳运用。

  (1)今天我们学习了什么单位?(长度单位)(完成课题 )

  你会给这些单位从大到小排排队吗?

  你知道它们之间有什么关系吗?(进率)

  (2)看看课本上是这样说的吗?(课本第85-86页)

  (3)练一练:课本第87页“练一练”1、2、3。(先观察,估计一下各物品的长度,再测量)

  (4)练一练:课本第87页“练一练”4、5、6。(其中6为同桌 合作题)

  (5)拿出线,同桌合作量一量是多少长?(1米2分米,4厘米6 毫米)

小数的意义教案3

  教学目标:

  通过复习,使学生进一步理解小数意义,掌握小数的性质和小数点位置移引起小数大小变化的规律,能比较小数的大小和化简小数。

  教学重、难点:

  进一步理解小数的意义,能利用小数点移动位置引起小数大小变化的规律进行计算。

  教学过程:

  教学过程:

  一、复习引入

  1、提问:(1)小数的性质是什么?

  (2)怎样比较小数的大小?

  (3)小数点位置移动引起小数大小变化的规律是什么?

  (4)怎样把高级单位的`名数改写成低级单位的名数?

  怎样把低级单位的名数改写成高级单位的名数?

  2、今天我们来复习这些内容。

  二、复习过程

  1、看下面图先用分数表示,再用小数表示。

  分数小数分数小数

  2、在()里添上适当的数。

  00.10.20.30.40.5

  3、回答问题

  (1)1里面有几个0.1?

  (2)1里面有几个0.01?

  (3)0.01里面有几个0.001?

  (4)0.3里面有多少个0.1?多少个0.01?多少个0.001

  4、下面哪些零可以去掉,哪些不可?

  2.12010.8009.010107000

  4.0510.0804000.000.7000

  4、直接写出下列各题的得数,比一比看谁做的又对又快。P151(4)

  5、写出大于0.04小于0.1的两位小数,最多能写几个?

  (无数个)

  6、在○里添=、〉或〈

  0.54○0.5041.23○1.32

  0.80○0.80.01○0.008

  0.05○0.500.03○0.0297

  7、几个同学的跳远成绩是:朱占强3.16米,李立3.2米,罗明2.93米,张勇3.09米,把他们的成绩按名次排列。

  8、综合练习

小数的意义教案4

  教学目标

  (一)在学生初步认识分数和小数的基础上,进一步理解小数的意义.

  (二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率.

  (三)培养学生的观察、分析、推理能力.

  教学重点和难点

  在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及单位间的进率,既是本课的重点,也是本课的难点.

  教学过程设计

  (一)复习准备

  1.谈话引入:

  在日常生产和生活中,有些数量不一定都能用整数表示,例如商品的价钱,就不一定都是整元钱,在进行测量的时候,往往不能正好得整数的结果,常常用小数表示.

  我们上学期已初步认识了小数,你能以元作单位,把下面数先写成分数,再写成小数吗?

  2.口答:(1)1角=(——)元=( )元

  (2)3角=(——)元=( )元

  (3)9分=(——)元=( )元

  (二)学习新课

  1.谈话引入:

  今天我们继续学习小数.(板书课题:小数的意义)

  在日常生活中,除了商品标价不够整元可以用小数外,在量屋子的高度时,它不够整米时,以米作单位也常用小数表示.

  2.教学小数的意义.

  (1)利用旧知识继续研究.

  我们已经知道1角是0.1元,就是把1元平均分成10份,每份是1

  是同一数量,那么十分之几的数用小数表示是几位小数?(一位小数)

  那么百分之几的数用小数表示是几位小数?(两位小数)

  (2)通过观察米尺,引出十分之几、百分之几、千分之几……都可用小数表示.

  先想想,米、分米、厘米、毫米的进率分别是多少?

  板书:1米=10分米

  =100厘米

  =1000毫米

  观察米尺.提问:

  ①把1米平均分成10份,每份是几分米?写成分数是几米?写成小数是几米?

  学生观察得出:把1米平均分成10份,每份是1分米,写成分数是

  3分米是多少米?用分数、小数怎样表示?

  师生共同明确:把1米平均分成10份,一份或者几份可以用一位小数表示.

  ②把1米平均分成100份,每份在尺子上是多少?写成分数是多少米?写成小数呢?

  学生观察米尺后得出:把1米平均分成100份,1份是1厘米,写

  怎样把7厘米写成以米作单位的分数和小数?

  启发学生想:15厘米怎样写成以米作单位的分数和小数? 经小组

  第一位写1.所以15厘米是0.15米.

  明确把1米平均分成100份,一份或几份都可以用两位小数表示.

  ③把1米平均分成1000份,1份在尺子上是多少?(1毫米)

  千分之一米怎样用小数表示?

  启发学生推理得出:千分之一写在小数点右面第三位,写作0.001.

  9毫米、63毫米以米作单位写成小数分别是多少米?

  63毫米是0.063米.

  根据上述问题,把1米平均分成1000份,1份或几份的数都可以用几位小数表示?(三位小数)

  教师提出,我们还可以照前面的方法继续分下去,可以得到四位、五位……小数.

  启发学生根据前面3个问题的研究,可以得出什么结论?

  (把1米平均分成10份,1份或几份可以用一位小数表示,分成100份,1份或几份可以用两位小数表示,分成IO00份,1份或几份可以用三位小数表示……)

  (3)启发学生概括小数的意义.

  启发性提问:

  ①上面例子都是把1米平均分成多少份?(10份,100份,1000份)

  ②这样的1份或几份,用什么样的分数来表示:(十分之几,百分之几,千分之几)

  所以相邻两个单位间的进率也是10.

  师指出:像上面这些分数也可以依照整数的写法来写,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数.

  小数的计数单位是十分之一、百分之一、千分之—……,分别写作0.1,0.01,0.001…等.

  阅读课本:95页结论.

  反馈:95页“做一做”.

  订正时说明意义,计数单位.

  (4)强化概念.

  启发性提问:

  ①十分之几的数用几位小数表示?一位小数表示几分之几?一位小数的计数单位是多少?

  ②百分之几的数用几位小数表示?两位小数表示几分之几?两位小数的计数单位是多少?

  ③千分之几的数用几位小数表示?三位小数表示几分之几?三位小数的计数单位是多少?

  ④每相邻两个单位间的进率是多少?

  (三)巩固反馈

  1.练习二十第2题、第5题.

  2.填空(投影).

  3.判断下面各题是否正确?为什么?

  (四)作业

  练习二十第1~3题.

  课堂教学设计说明

  学生在第七册中已初步学习了小数,本节课使学生进一步明确了小数的'产生,理解小数的意义,小数与分数的联系,小数的计数单位,从而对小数概念有更清楚的认识.

  教学小数的意义分两段进行.

  第一段,理解小数的意义,分两个层次.第一层利用日常生活实例和学生已有的知识经验,引导学生认识小数;第二层引导学生观察米尺的刻度,把1米平均分成10份、100份、1000份……,其中的1份或几份用一位小数,两位小数、三位小数……表示,使学生对小数的认识深入一步.

  第二段:抽象概括、明确小数的意义.

  通过一系列的启发提问,引导学生概括出小数的本质特征,使学生进一步掌握分数、小数的联系及其所表示的意义,掌握小数的计数单位及相邻单位间的进率.

  练习设计围绕重点,巩固概念,并针对易错、易混题,让学生在正误对比中加深对知识的理解,同时达到提高学生思维能力的目的.

  板书设计

  小数的意义

  1米=10分米

  =100厘米

  =1000毫米

  把1米平均分成10份,每份长1分米.

  把1米平均分成100份,每份长1厘米.

  把1米平均分成1000份,每份长1毫米.

  一位小数表示十分之几,计数单位是0.1

  两位小数表示百分之几,计数单位是0.01

  三位小数表示千分之几,计数单位是0.001

  相邻两个计数单位间的进率都是10.

小数的意义教案5

  教学目标:

  1、经历观察、测量、猜想等学习活动,感受、体验小数产生于生活,感受生活中处处都存在小数;

  2、理解小数的意义,能说出小数各部分的名称,掌握小数的读、写方法,并正确能读写小数;

  3、在合作与交流中的过程中,感受数学学习的乐趣。

  教学教法:

  教学方法是教学过程中师生双方为完成目标而采取的活动方式的组合。根据本课教学内容的特点和学生的思维特点,我选择了尝试法、引导发现法、等方法的优化组合。引导他们去发现问题、分析问题、解决问题、获取知识,从而达到训练思维、培养能力的目的。小数的含义是属概念教学,较为抽象、凝炼,根据学生对概念的认知,一般遵循:感知表象抽象概括形成概念的这一规律。

  1、从生活中了解小数,明确要用小数表示的必要性。

  2、从已有的生活经验中,理解、抽象小数的意义。

  3、 通过观察、测量,让学生充分感受、体验小数产生于生活,从而使学生感受生活中处处都存在小数 。

  4、了解小数在生活中的普遍存在及广泛运用,体验数学在身边,感受数学学习的价值和乐趣。

  教学学法:

  1、学会通过观察、测量、归纳,可以发现生活中处处都存在小数 。

  2、引导学生自主探究,培养他们用已有知识解决新问题的能力。

  3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。

  教学过程:

  一、创设情景 导入新课

  创设5.1假期情景 ,使本课内容与学生的现实生活经念相吻合

  1、在假期里你买了什么物品?花了多少钱?

  2、老师买了一本书,同学们猜一猜要多少元?

  从同学们的回答中归纳出不能用整元数表示的这种数,要用小数表示。引入课题。

  这样的设计,旨在把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。

  二、明确目标 探索新知

  同学们都知道小数就在我们的生活中存在,那么同学们想了解小数的什么?

  我预设学生的提问(预设)

  1、小数是怎么来的。(怎么产生的)

  2、什么叫小数?(小数的意义)

  3、小数是怎么读的,怎么写的?

  根据学生提的`问题,师生分析问题

  1、师生小结小数的意义

  (1)象0.1、0.3、0.9这些小数叫1位小数。(分母是10的分数,可以写成1位小数。1位小数表示十分之几。)

  (2)象0.01、0.04、0.18这些小数叫2位小数。(分母是100的分数,可以写成2位小数。2位小数表示百分之几。)

  (3)象0.001、0.015、0.219这些小数叫3位小数。(分母是1000的分数,可以写成3位小数。3位小数表示千分之几。)

  2、学习小数的写法

  三、巩固新知

  1、练习考考你;(练一练)第1题

  2、用米做单位测量同桌的高度;

  3、菜市场买菜统计表。

  【把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣】

  四、小结

  1、了解小数的历史。(小资料)

  【了解小数的历史,激发学生的爱国热情。】

  2、学了小数这节课,能谈谈你知道了些什么吗?

  五、作业布置

  1、从生活中记录一些小数,明天同学之间相互交流;

  2、完成《作业本》

  布置实践性的作业,使学生把小数在实际生活中的运用结合起来,体验教学就在身边,感受数学学习的乐趣。

小数的意义教案6

  教学目标:

  1、借助计数器,掌握小数的数位。

  2、根据小数的数位顺序表,能理解数位顺序表上的计数单位,以及进率关系。

  3、结合具体情境,能抽象出小数的基本性质的具体内容,并能牢固掌握和灵活运用。 教学重点:

  掌握小数的数位和计数单位。

  教学难点:

  掌握小数的基本性质。

  教学准备:

  课件、计数器

  教学过程:

  一、复习旧知,导入新课

  过渡:同学们,通过前几节课的学习,我们认识了小数的意义,接下来老师要来考考你们,看你们掌握得怎么样?

  (课件出示)1、填空。

  3写成小数是( ) 10

  660.56表示()写成小数是() 100

  6780.625表示( )写成小数是( ) 10000.4表示( )

  2、读一读下面一段话中的小数。

  北京地铁10号线列车的最高运行速度是80千米/时,约为22.222米/秒。

  师揭题:今天这节课,我们首先要来研究小数“22.222”中每个数字的含义。(板书课题:小数的意义(三))

  二、动手操作,探究新知

  1、认识数位。

  出示计数器,师问:这个计数器有什么特点?

  学生观察后汇报

  师小结并引导学生拨数:同学们的观察都非常仔细,??百位、十位、个位、十分位、百分位、千分位??都是小数的数位。小数点的左边依次是个位、十位、百位??右边依次是十分位、百分位、千分位??那你们能在这个计数器上拨出“22.222”吗?学生尝试在计数器上拨数,师指名上台演示。

  课件出示拨数情况,引导学生认识:

  “22.222” 中有5个“2”,这5个“2”所表示的意义是不同的。小数点右边第一1个“2”在十分位上,它表示2个0.1.

  师提问:小数点右边第2个“2”在百分位上,它表示2个

  引导学生思考后回答:11,用小数表示是0.1,所以这个“2”也可以表示210101,它也可以表示多少? 1001可以写成0.01,所以这个“2”表示2个0.01. 100

  师追问:说得很有道理,那最后一个“2”在什么位置,表示多少呢?

  学生思考后回答:最后一个“2”在千分位上,表示2个1,也可以表示2个0.001. 1000

  师引导学生再次思考:小数点左边两个2分别表示多少?

  学生先独立思考,再小组内交流,最后集体汇报。

  2、认识计数单位及计数单位之间的进率。

  师引导思考:整数的数位顺序表是个位、十位、百位??,那么小数的数位顺序是怎样的呢?

  课件出示小数的数位顺序表,介绍数位名称及对应的计数单位:

  小数点右边第一位是十分位,计数单位是十分之一(0.1);

  小数点右边第二位是百分位,计数单位是百分之一(0.01);

  小数点右边第三位是千分位,计数单位是千分之一(0.001);

  小数点右边第四位是万分位,计数单位是万分之一(0.0001);

  课件出示整数的数位顺序表,进行小组讨论:看一看,比一比,在数位顺序表上整数部分与小数部分有何异同?

  学生讨论后汇报交流,师生共同总结:

  相同点:相邻计数单位间的进率都是10.

  不同点:整数部分在小数点的左边,数位顺序是从右往左依次排列,计数单位由小到大,只有最小的计算单位——1,没有最大的计算单位;而小数部分在小数点的右边,从左往右依次排列,计数单位由大到小,没有最小的.计数单位,只有最大的计数单位——0.1.

  师强调:小数的半数单位也是“满十进1”,引导学生观察教材第6页“看一看,说一说”的图片,进而发现:10个0.1元是1元;10个0.01元是0.1元,再次明确小数的计数单位是“满十进1”。

  三、巩固运用,拓展提升

  1、出示教材第7页“试一试”情境一:同样的毛巾,小熊商店每条5元,小狗每条5.00元,这两个毛巾的价格一样吗?

  引导学生讨论后交流汇报。

  2、出示教材第7页“试一试”情境二:涂一涂,你发现了什么?

  让学生自主涂色,并汇报:0.6和0.60一样大。

  师提问:哪位同学能够运用我们学过的数位和计数单位的相关知识来解释一下为什么0.6和0.60一样大?师归纳小结小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  3、即时练习。

  课件出示题目:下面的数中哪些“0”可以去掉?哪些“0”不能去掉?

  3.203.09 6.06 50.44 5.700 200.04

  四、课堂小结

  通过这节课的学习,我们学会了哪些知识?

  板书设计:

小数的意义教案7

  教学内容: 小数的意义

  教学目标:1、使学生理解小数的意义。

  2、使学生认识数学知识源于实际生活,用于实际生活。

  3、通过分析、对比、概括培养学生的思维能力。初步渗透对应思想和分类思想。

  4、激发学生大胆质疑、问答,培养创新意识。

  教学重点:理解小数的意义

  教学难点:理解三位小数的意义

  教学准备:直尺、课件

  教学过程:

  课前谈话:同学们,你们逛过超市吗?大家在挑选商品的时候,一般看些什么?

  一、看价签,引出小数

  1、课前我知道了你们都挺爱逛超市的,在超市里买过食品、衣服,那么,你们买学习用品吗?我发现有一家文具店,那里的文具又好又便宜,你们想去看看吗?一会大家认真看,挑一件你们最喜欢或最需要的文具的价钱记下来,好吗?

  2、看课件。

  3、说说你记得都是什么?这些都是什么数?这些都是用小数表示的价钱,还能用别的方法表示吗?试一试。

  4、和小组里的同学说一说自己是怎样想的?如果组里有什么解决不了的'困难,一会儿告诉全班同学我们一起来研究。

  5、汇报:(师选择板书)

  6、刚才,我们一起研究了这么多小数,还把他们用分数表示出来了,请你们仔细观察一下,小声读读,你们有什么发现吗?(独立思考)有想法了吗?快跟组里同学说一说。

  7、汇报:生发现小数与分数之间的关系

  二、解决实际问题

  1、我们初步认识了小数,除了在价签上见过小数,你还在哪见过小数?举个例子说一说。你能说一说它是什么意思吗?

  2、测量。以小组为单位:(1)测量身边物体的长度。(2)以米为单位用小数表示出来。(3)把测量结果写在记录单上

  (主要解决三位小数)

  三、小结

  1、有关小数你还知道些什么?你是怎样知道的?

  2、小数还有许多有趣的知识,你们还想继续了解吗?你们有什么办法能学到这些知识呢?

小数的意义教案8

  【教学内容】

  《义务教育课程标准实验教科书/数学(人教版)四年级(下册)第50页。

  【教学设想】

  本课是在学生在三年级已经学习了“分数的初步认识”和“小数的初步认识”的基础上进行教学的,在教学时,我先提出比较开放的问题“你对小数已经有了哪些了解?试图了解学生真实的认知起点。其次是把教材上的直尺图改为数轴图,通过数形结合,知识迁移和实际操作等让学生主动建立小数与分数的联系,帮助学生理解小数的意义。另外是把小数各部分的名称,小数的读写法,计数单位等知识也适当渗透,这些渗透同样能促使学生进一步理解小数的意义。

  【教学目标】

  1、结合情景,让学生知道小数各部分的名称,了解小数的读写法。

  2、借助数轴图和实际操作、想象,推理等使学生明确小数的计数单位,小数与分数、整数的内在联系,理解小数的意义。

  3、通过观察、分析、对比、概括进一步提升学生的思维能力。

  【过程预设】

  一、引入

  1、板书老师的身高1.79米,到底是多高呢?

  2、你对小数已经有了哪些了解?

  3、你能举出几个小数吗?

  4、汇报,板书,交流读法。

  5、观察这些小数,小数有几部分组成?

  二、展开

  (一)研究一位小数

  1、板书0.1米,想一想,什么意思?出示数轴图,下面请你借助尺和笔,分一分,找一找,画一画,表示出0.1米?(学生操作)

  2、展示学生的作品,学生交流评价。板书:0.1米=1/10米=1分米

  3、继续观察,引导学生在数轴图继续用小数和分数表示。

  4、(讨论)它们的关系很密切,你能用一句话说说这些分数和小数的联系吗?

  (二)研究二位小数

  1、想一想,如果现在要从0到1米上表示出0.01米,你觉得该怎么表示?说说你的想法?

  2、引导学生得出0.01米用整数表示是1厘米,用分数表示就是1/100米。请你推理一下,得出其它的两位小数。

  3、选择一些小数和分数板书,观察后你能仿照前面一位小数的发现用一句话说说分数和小数的联系吗?

  (三)研究三位小数

  1、想象一下,把0.01米再平均分成10份,就把0到1米一共分成了几份?得出0.001米=1/1000米=1毫米。

  2、请同桌商量确定一个几毫米的刻度分别用小数和分数表示出来?板书一部分

  3、观察后你还能用一句话说说分数和小数的联系吗?

  4、照这样分下去,还可得到四位小数、五位小数,分别表示什么?补上......号

  (四)比较概括,归纳意义

  引导学生得出小数的意义。

  三、练习

  1、正方形纸表示1,你能表示出0.8和0.35吗?

  想一想,怎么表示?交流方法。

  2、机动。

  四、总结:经过今天的学习,你有什么收获?有什么疑问?

  植树问题

  执教者:嘉兴南湖国际实验学校王建良

  教学内容:人教版新课标实验教材第117页

  教学设想:

  每上一节课,总得回答一个问题-为什么要上这节课?每一节总有其核心的价值所在,也就是我们最想带给学生的东西,我们习惯于将它称之为一节课的主导目标。

  在教学参考第189页,《数学广角》这一单元的教学目标描述如下:

  1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

  2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教材共安排了三个例题,两端都种,两端都不种,封闭图形的植树问题。

  在单元教学目标解读与教材分析的基础上,我将在不封闭图形上的植树问题安排在同一课时中教学,主导目标确定为:让学生初步体会解决植树问题的思想方法。在课堂教学实施中着力想解决好以下两个问题:

  一是如何让学生经历一个”将复杂问题转化为一个简单的问题来研究,再运用所发现的规律来解决复杂的问题“的过程?(与教参单元教学目标2相对应)在这个过程中需要关注的问题有:转化的需要,策略的产生,方法的可行性验证。

  二是如何让学生理解植树问题在不同的情境下段数与棵数的不同关系?(与教参单元教学目标1相对应)在这个过程中,需要关注:学生正确表象的建立,段数与棵数的一一对应关系,处理好知其然与知其所以然之间的`关系。

  教学目标:

  借助直观,通过点与线段的对应,理解段数与植树棵数之间的规律,建立不同情境下植树问题的数学模型。能运用得到的规律解决相关的实际问题。发展学生解决问题的意识与能力,渗透化归的数学思想方法。

  教学过程:

  一、在个体解读中理解情境

  1、出示情境:同学们在全长500米的小路的一边植树(两端要栽)。一共需要多少棵树苗?

  2、独立读题与思考,提出需要知道的补充条件-每两棵树间隔5米。

  二、在独立解决中寻找答案

  1、静静思考,请把你的答案写下来。

  2、你是怎么想的?

  三、在全班交流中形成冲突

  1、说一说,你是怎么想的?

  2、到底哪个答案才是正确的?

  四、在独立探究中发现问题

  1、用什么办法才能说清楚到底需要多少棵?(画线段图)

  2、图画不下怎么办?

  五、在合作交流中提供帮助

  1、你是怎样画的?为什么这样画?

  2、试着画一画。

  六、在全班交流中发现规律

  1、你画了几段,种几棵?

  2、你发现了什么?

  七、在教师引领下提升结构

  1、在100段的时候需要多少棵?想象一下这幅线段图会是怎样的?

  2、在什么情况下只需要100棵树呢?还有一种情况是什么?需要多少棵树?

  3、我们刚才是怎样学习的?

  八、在应用举例中解释模型

  1、基本练习:全长200米,隔50米安一座,一共安多少座?(三种情况)

  2、举例:生活中的植树问题。

小数的意义教案9

  教材分析

  本单元内容包括小数的意义和读写法,小数的性质和小数的大小比较,小数点位置移动引起小数大小的变化,小数和复名数的相互改写、求一个小数的近似数和把较大的数改写成用“万”、“亿”作单位的数。

  小数的意义是本单元的一个重点。这里教材把认数范围扩展到三位小数,加强了小数与分数的联系,使学生明确小数表示的书分母是10、100、10000……的分数,了解小数的记数单位以及单位间的进率,从而清楚地了解小数为什么可以仿照整数的写法。小数的性质也很重要。学生知道小数末尾添0、去0不改变小数的大小,就加深了对小数的理解。它还是小数四则计算的基础。应用它可以对小数进行化简,也可以根据具体运算的需要,在小数末尾添上0或者把整数改写成小数的形式。小数大小的.比较也有助于加深学生对小数意义的理解。小数的性质已经涉及到小数大小的比较问题,但只是说明在什么情况下两个小数相等的。小数点位置的移动引起小数大小的变化是小数的又一性质。它是进行小数乘除法计算的基础,同时也是学习小数和复名数相互改写的基础。小数和复名数的相互改写以及求小数的近似数在实际中有广泛的应用,其中把较大的数改写成用“万”、“亿”作单位的数是本单元所学的几部分知识的综合应用。

  学情分析

  这部分内容是学生在学生熟练地掌握了整数的四则运算,以及在四年级上学期学习了分数的初步认识的基础上进行教学的。这部分内容是学生系统学习小数的开始。通过这部分内容的学习,使学生进一步理解小数的意义和性质,为今后学习小数的四则运算打好基础。学生在学习小数和复名数的相互改写时,需要综合运用前面学过的计量单位和进率、小数的性质、小数点位置的移动引起小数大小的变化等知识,因此要求学生逐一扎实地学习。求一个数的近似数和把一个数改写成用“万”、“亿”作单位的数容易混淆,需注意区别。

  教学要求

  1、使学生理解小数的意义,认识小数的记数单位,会读、写小数,会比较小数的大小。

  2、使学生掌握小数的性质和小数点位置移动引起小数大小变化的规律。

  3、使学生会进行小数和十进复名数的相互改写。

  4、使学生能够根据要求会用“四舍五入法”保留一定的小数数位,求出小数的近似数,并能把较大的数改写成用万或亿作单位的小数。

  教学重点:小数的意义和小数点移动引起小数大小变化的规律。

  教学难点:小数和复名数的相互改写。

  教学关键:正确理解小数的意义及小数和复名数的相互改写。

小数的意义教案10

  【教学内容】

  【教学目标】

  【教学重点 】重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点 、数大小变化的规律。

  难点:用“四舍五入”法按要求求出小数近似数。

  【教学过程】

  一、揭示课题

  这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的.近似数。

  二、复习小数的意义

  1、做期末复习第8题(1)、(2)、(3)。

  (1)学生在书上填写,集体订正。说一说0.5、0.023的意义。

  (2)说一说小数的意义是什么?

  问:一位小数、两位小数、三位小数……各表示几分之几的数?

  2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?

  (2)填空。

  0.1里面有( )个0.01。 10个0.001是( )。

  10个0.1是( )。 0.1里有( )个0.01。

  三、复习小数的性质和小数的大小比较

  1、练习。

  (1)把下面小数化简。

  4.700 16.0100 8.7100 14.00

  (2)不改变数的大小,把下面的数写成两位小数。

  4.2 13.121

  ①学生做,指名板演,集体订正。

  ②问:做题时是根据什么来做的?什么是小数的性质?

  2、做期末复习第9题,第1竖行两题。

  (1)学生在书上做,指名板演,集体订正。

  (2)让学生说一说怎样比较两个小数的大小。

  3、做期末复习第10题。

  (1)先把这些数排列起来,找出最大、最小数,并和其他数一起,写好序号。

  0.1 0.012 0.102 0.12 0.021

  (2)按要求从小到大排列。

  四、复习小数点位置移动引起小数大小变化的规律

  1、做期末复习第8题(4)、(5)。

  (1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?

  问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?

  (2)学生练习,指名回答。

  2、练习。

  (1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。

  (2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。

  五、复习求小数的近似数和整数的改写

  1、把下面小数精确到百分位。

  0.834 2.786 3.895

  (1)学生做,指名板演。

  (2)让学生说一说怎样求一个小数的近似数。

  2、(1)把下面各数改写成“万”作单位的数。

  486700521000

  (2)把下面各数改写成“亿”作单位的数。

  460000000 7189600000

  学生在练习本上做,指名板演,说一说怎样把一个较大数改写

  成“万”或“亿”作单位的数。

  3、把下面各数改写成“万”作单位的数,并保留一位小数。

  67100209500

  (1)学生在练习本上做,指名板演。

  (2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?

  4、做期末复习第9题剩下的两题。

  (1)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

  (2)学生练习,集体订正。

  (3)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

  了。

  5、做期末复习第11题。

  学生在书上做,并说明理由。

  六、全课总结

  这节课复习了什么内容?

  怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

  【作业设计】

  1、0.45表示( )。

  2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。

  3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是( )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。

  4、在○里填“”、“”或“=”。

  16.36○16.63 0.36万○3600

  0.97○1.01 0.23亿○2100万

  5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?

  10000千克稻谷可出大米多少千克?

小数的意义教案11

  教学目标:

  1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。

  2.经历探索小数意义的过程,培养归纳能力。

  3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。

  教学重难点:理解小数的意义和小数的计数单位。

  教具准备:米尺、课件。

  教学过程:

  一、回顾导入

  1.读一读信息(课件出示)想一想,这样写符合实际吗?

  (1)老师的体重是565千克。

  (2)小明的身高是145米。

  (3)笑笑的数学测验成绩是935分。

  2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?

  3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。

  二、探索新知识

  1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?

  指名测量,其他同学观看。

  2.汇报测量结果。

  3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。

  4.出示米尺图。

  上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?

  5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?

  十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?

  6.出示米尺。

  指着板书:有什么新发现?学生汇报。

  7.提问:如果我们把1米平均分成1 000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?

  让学生说出两个用毫米作单位的长度,并请自己的'同桌把它用小数表示出来。

  学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。

  8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。

  小结:分母是10、100、1 000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……

  进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。

  三、巩固练习

  第一层练习:分数小数互化。

  第二层练习。

  1.填空

  (1)0.8表示( ),它的计数单位是( ),它有( )个这样的计数单位。

  (2)1里面有( )个0.1和( )个0.01。

  (3)0.52是由( )个0.1和( )个0.01组成的。

  2.判断:

  (1)0.8是把1个整体平均分成10份,表示这样的8份。 ( )

  (2)1毫米写成小数是0.01米。 ( )

  第三层练习: 猜数游戏。

  小明和小红的数各是多少?

  四、总结

  师生共同回顾本节课内容。

  反思:

  “小数的产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。

  小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。

  在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1 000份入手,让学生在改动分母是10、100、1000的分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的不够清楚。

  引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1= 0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。

  最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。

  反思这节课,也有一些地方预设的不够充分:

  1.在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。

  2.练习量较大,没有考虑学生实际。

  “课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!

小数的意义教案12

  1课时

  有趣的小数点(一)(小数点移动的规律)

  1课时

  有趣的小数点(二)(积的小数位数与因数的小数位数之间的关系)

  1课时

  世界人口

  2课时

  人口与环保 练习三

  3课时

  三 小数乘法

  小数乘法

  内容:P40~41

  课时:1

  教学目标:

  1、通过具体情境和实际操作,了解小数乘法的意义。

  2、结合小数乘法的意义,能计算出简单的小数与整数相乘的得数。

  教学过程:

  一、创设问题情境:

  1、同学们都有过购物的经历吗?今天,我们来个网上模拟购物。学生看图进行购物。要求说出买什么,买多少,付多少钱?

  2、对于学生提出的乘法问题,让学生说说自己是怎样列式的,怎样算的。

  二、探索小数乘法的计算方法,建立数学模型。

  1、刚才同学们都购过物了,老师想买3根棒棒糖,请你们帮老师算算。我该付多少钱?

  2、学生列式,尝试计算。

  3、汇报交流自己是怎样算0.2×3的。

  4、引导学生讨论各种计算方法:可能用连加的方法做;可能直接用乘法算,最后看是几位小数;也有可能利用单位换算成整数计算;也有可能直观地用几何模型涂一涂的方法。

  5、用你喜欢的方法来解决“1.5千克苹果需要多少元?”

  三、运用新知,深化理解小数乘法的.意义。

  1、完成P41的涂一涂。做完后让学生说说为什么这样涂,理解小数乘法的意义。

  2、独立完成练一练的第1和第3题。

  3、谈谈你还有哪些问题要和大家交流。

  教学反思:

  在学生一定的认知起点上如何切入教学起点?这节课的一项教学目标是理解小数乘法的意义。大部分学生都知道。那么重点是控索小数乘法的计算方法。我在两个班做了不同的教学过程:先是一个班,按照教案的顺序进行。模拟购物,列算式付账。重点讨论5包方便面的钱数。如何计算0.8×5?学生主要有下列的想法:1、从进位的思想来计算;2、从元、角、分的单位换算转化整数乘法;3、猜测:先看作整数乘法计算,然后确定小数点的位置。很少有学生利用乘法的意义来算。觉得那样太笨了。由于想法各种各样,没有最后优化,学生的思维水平最后能不能得到提高,无法确定。

  另一个班调整教学程序:直接切入主题:小数乘法你都知道了多少?让学生举例列算式汇报自己对小数乘法都知道了哪些?有三分之一的学生举手汇报。对于一位整数乘小数有知道怎样算,也仅限于会算,并不是能很好地说明为什么可以这样算。对于两位小数乘两位小数基本上不会。从学生的计算结果来看,正确率比较高。他们主要是运用上面的方法3。

  书上第2题涂一涂略显低于学生的思维。本想直观上让孩子涂一涂,根据涂的结果来体会小数乘法的意义,但多数孩子先算好,再来涂,没有很好的思维价值。

  通过这节课的教学,我认为这节课还要坚持一种数学思想:让学生学会学习。会算,怎样算处于知其然而不知其所以然的状态。你们这种确定小数点的位置方法是不是正确呢?举例验证。在这里学生可能会应用已知的知识来解释,从而证明这种方法是正确的。形成猜测、验证的数学思维方法。

小数的意义教案13

  一、设疑激趣

  师:今天我们学习的内容跟哪种数有关?你从哪里发现的信息?

  生:小数,从大屏幕上。

  师:小数的意义就是小数表示什么?那你知道吗?

  生:不知道。

  师:那我们先来回顾一下我们的“小数”朋友,你在生活中遇见过小数吗?

  生:遇见过。

  师:在哪遇见过?

  生1:在计算器上计算有余数的除法时出现了小数。

  生2:去超市买东西时会遇见小数。(师跟进说标价是小数)

  生3:卖菜时遇见小数,(一生补充说是称量重量时出现小数)

  【设计意图:让学生回顾和小数的“相遇”引出小数的生活意义,把数学和生活联系,让学生体会生活与数学的联系,以及数学的生活性,以此来激发学生的探究欲望。】

  二、探究新知

  1、小数的产生

  师:可见小数在生活中是很有用的,那今天我们就先来研究一下它是怎样产生的。刚才同学们说在标价、计量、测量时会用到小数,还有计算时会出现小数,看是这样的吗?(大屏幕出示,测量课桌的长的图片)测量结果课桌长是多少呢?

  生:(异口同声地回答)60厘米。

  师:怎样用米来作单位呢?(有几人举手)它有1米吗?(没有)那不到1米可以用什么数来表示?(生小数)用哪个小数来表示呢?

  生:一百分之六十。

  师:一百分之六十是小数吗?(不是)那是什么数?(分数)那你说可以用分数来表示,那还可以用谁来表示呢?

  生:0.60。

  师:(师提示要带上单位)0.60米。这样我们就得到了一个小数0.60。体育赛事里也有小数,(出示世界飞人的100米短跑的成绩)博尔特以多少的成绩夺冠?

  生:9.58秒。

  师:出示一次数学检测的成绩98.5分,也是检测,再来一组口算。

  出示口算:

  10÷10= 1÷10=

  100÷10= 1÷100=

  1000÷10= 1÷1000=

  【设计意图:兴趣是最活跃的心理成分,是一种带趋向性的心理特征。苏霍姆林斯基也说过:如果教师不设法使学生产生情绪高昂和智力振奋的状态就急于传授知识,不动情感的脑力劳动只会带来疲倦,没有欢欣鼓舞的心情,没有学习的兴趣,学习就会成为学生的负担。因此,在教学中,我创设了超市物品的价格、跑步成绩、身高、体重、体温等情境,让学生感到亲切,引起情感共鸣,体验身边处处有小数。同时,让学生体验测量课桌的长,使学生体会到在实际测量中有时会得不到整数值,必须用新的数来表示。进而又让学生进行口算,让学生动手操作、口算,亲身体验 小数是怎样产生的,激发学生的积极性和主动性。】

  生: 0,赶紧改成1。

  师:非常欣赏他知错就改的精神,但我更希望你能把问题完整的回答下来,语言叙述要准确,(再次完整的回答)。

  师:1÷10=?(没人举手)那先来想想这道算式表示的意义是什么?

  生:1里面有多少个十。

  师:还可以用那句话来说?

  生:把1平均分成10份,每份是几?都说是十分之一。

  师:计算结果出现不是整数时,我们可以用以前分数表示,还可以用小数来表示。谁知道十分之一等于多少呢?(学生都愣了)十分之一是多少呢?用小数多少呢?(一生说是0.1)对吗?先留着,不知道,画一个问号。下边1÷100=?(0.01)用分数怎样表示呢?(一百分之一)那1÷1000=? 就是把1平均分成1000分每份是多少?(一千分之一)那好我们一起来看一下(出示好几张图片)

  师:刚才在进行计算和测量时,往往得不到整数的结果。这时就可以用小数来表示,这就是小数的产生,存在的生活意义。

  【反思:教师太过着急了,没有耐心等待孩子的思维发展,没能和上学生的心弦。原本是等孩子们经历完三道计算后再引出小数的,但是一次就出来了。所以小数的产生没能顺理成章的出现。】

  2、教学小数的意义

  师:能不能把刚才得到的小数读出来呢?从左往右,要学生一起读。你能不能把这几个小数分成两类呢?

  0.85 9.58 38.2 0.6 39.4 98.5

  生:0.85 9.58是一类,其余是一类。

  师:能不能说说你的分类理由?

  生:后面是两位、一位。

  师:她说是后面,(一生即使补充是小数点后面)说得真好,来欣赏一下,(追问,指着0.85 9.58问)小数点后面是几位呀?(两位)那我们就把它称作两位小数,(指着38.2 0.6 39.4 98.5)小数点后面有几位?(一位)那就叫(学生根据直觉说)一位小数。那小数肯定还会有?

  生:三位小数,四位小数,五位小数……

  师:小数的位数是无尽的,研究小数也要从简单入手,咱们就先从研究一位小数入手。我们借助常用的一个长度单位来研究,(出示米尺图)请读出一句话。

  【设计意图:让学生通过观察思考及演示,层层设问,利用旧知逐步将学生引向新知。学生对小数的位数有一定的理解,渗透化难为易的数学研究思想。】

  【反思:本环节的分类有两种,一种是按小数的位数分类,另一种是按照整数部分是否0(是否纯小数)来分,一种是为本节的小数意义作铺垫,一种是为小数的后续研究做伏笔,但自己却把第一种分法板示后,把后者遗忘了。】

  教师出示:把 1米平均分成10份。

  师:把1米平均分成10份,每一份是多长?

  生:10厘米。

  1分米。

  师:1分米和10厘米相等吗?(相等)都可以,那你能不能用一个分数来表示呢?

  生:一百分之一。

  生:十分之一。

  师:把一米平均分成了十分,那分母就应该是几?(10)十分之一米可以用哪个小数来表示?(0.1米)观察1分米,1/10米,0.1米它们都是指把一米平均分成10份,其中的一份的长度,那你说这三个数是否相等?(等于,完成板书1分米=1/10米=0.1米,擦掉问号)1分米是其中的几份呢?

  师:这个数如何表示呢?(4/10米,0.4米)这两个长度一样吗?(一样)那就可以用等号连接。谁能说一下4/10米里面有多少个1/10米?(4个)

  师:你能表示这个数吗?(7分米,7/10米,0.7米)那你能说说0.7里面有多少个0.1吗?(异口同声,7个)

  擦掉单位发现:1/10 =0.1,那你以后看到0.1就要想到1/10,0.1就是谁了?(1/10)0.4里面有( )个1/10,0.4就是分数( )。0.7里面有( )个1/10,0.7就是分数( )。

  师:你发现分数与小数的联系了吗?

  分母是10的分数,可以写成一位小数。一位小数表示十分之几,它是的计数单位是十分之一,也就是0.1。

  师:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。

  【设计意图:在后面的教学中实现知识的正向迁移,理解分数与小数之间的联系。进而理解小数的意义。】

  (2)认识两位小数

  师(引导学生观察米尺):把1米平均分成100份,每份是多少呢?

  生:是一百分之一米。

  师:还可以怎样表示呢?

  生:0.01米,1厘米。(补充板书)

  师:一百分之一米,它的分母是多少?(100)分母是100的分数写成了几位小数?(两位小数)你还能把几厘米表示成这样的数吗?你想表示几厘米就表示几厘米?(老师是涂色吗?)不是,是自己写一个几厘米把它用小数,分数表示。

  【反思:问题提出的较为模糊,所以自己不断地去补充、重复问题。就这还有孩子不知我说啥,还是自己的问题指向目标不明确造成的。】

  交流自己写的:

  师:你写的是多少?

  生1: 7厘米,是7/100米,0.07米。

  师:你能猜一猜两位小数与什么样的分数有关系吗?

  (指名回答并板书:1厘米=1/100米=0.01米;7厘米=7/100米=0.07米。)

  生(口答):0.01里面有( )个1/100,0.20里面有( )个1/100, 0.32里面有( )个1/100,并说出用哪个分数来表示。

  引导发现:两位小数表示百分之几,它的计数单位是百分之一,也就是0.01。

  师:0.32里面有多少个百分之一呢?(32个)这就是小数0.32表示的意义。

  (3)认识三位小数

  出示:一位小数表示十分之几,它的计数单位是十分之一,可以写作 0.1。

  两位小数表示百分之几,它的计数单位是百分之一,可以写作0.01。

  师:刚才我们认识了一位小数、两位小数的意义和计数单位,那以此类推,你知道

  三位小数表示什么?(千分之几)它的计数单位是(千分之一),可以写作(0.001)。

  四位小数表示什么呢?计数单位呢?可以写作?五位小数呢?小数的位数能说完吗?……(不能)是无穷的。

  师(借助米尺,使学生明确):把1米平均分成一千份,每份是多少?(1毫米)

  1毫米是千分之一米,还可以写成0.001米来表示。(板书:1毫米, 米,0.001米 )

  【设计意图:数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米=1/10米=0、1米时,先让学生初步感悟十进制分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识二位小数、三位小数,从而归纳出小数的意义。后又通过观察、思考、类推出三位、四位小数的计数单位。】

  (4)抽象、概括小数的意义

  师:小数是什么?

  补充并概括:小数其实就是分母是10、100、1000……的分数的另一种书写形式。分母是10、100、1000、……的'分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫做小数。

  师:0.85是几位小数?它就是哪个分数呢?它的意义是什么呢?0.85表示什么?

  生:85个0.01,还可以表示把一个整体平均分成100份,有这样的85份。

  师:这就是0.85这个小数表示的意义。0.1、0.01、0.001……这些是小数的计数单位,那整数的计数单位有哪些?

  生:个、十、百、千、万……

  师:每相邻两个计数单位之间的进率是多少?(10)接下来我们来研究小数的计数单位。

  3、小数单位间的进率

  师:这是一个正方形,可以用“1”来表示,(演示把它平均分成十份,其中一份涂红色问),这是怎样分的?(十分之一、平均分)怎样分?平均分成10份,涂色部分是其中的几份?(1份)可以用哪个数来表示?(十分之一)还可应用谁来表示?(0.1)1里面有多少个0.1呢?(10个)

  师:(把图继续分成100份)发生了怎样的变化?平均分成了多少分份?(100份)其中的一份用哪个数来表示?(0.01、一百分之一)那0.1里有几个0.01呢?(10个)那小数计数单位之间的进率也是10。把这个正方形平均分成1000份呢?每份是多少?0.01里面有多少个0.001?那我们就接着把小数的计数单位写在整数的计数单位后面,并用小数点隔开,这样就把整数和小数整合了。

  【反思:这个问题的抛出有点突然,显得计数单位更加抽象了,不如换成先让学生猜测它们之间的进率,在通过正方形平均分的动手操作、验证。借助正方形的十分之一、百分之一、千分之一来揭示小数的计数单位间的进率。】

  三、巩固练习

  师:9. 58的9在哪一位上?(个位)表示什么?(9个一)这个5表示什么?(5个0.1)8呢?(8个0.01)

  1、下面括号里能填几。

  0.1米里有( )个0.01米,0.01米里面有( )个0.001米。

  得出:相邻两个计数单位之间的进率是10。

  师:现在你知道为什么要借助长度来研究小数的意义吗?(知道)因为毫米、厘米、分米、米每相邻的单位之间的进率也是10。

  【设计意图:借助长度单位理解,再次得出每相邻两个计数单位之间的进率是10。重点理解“相邻”二字的含义,突破难点,巩固分数与小数之间的关系,加深对小数意义、小数计数单位及单位间进率的理解,并达到学以致用。】

  2、(1)用合适的数表示图中的涂色部分。

  (2)用合适的数表示图中的空白部分。

  3、先写出一个两位小数,再用阴影表示这个小数。(交流自己写的小数及其意义)

  4、找朋友。

  四、课堂总结

  师:以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系?

  生:每相邻的计数单位之间的进率都是十。

  生:小数就是分数。

  生:小数的计数单位是0.1、0.01、0.001……也可以用分数十分之一、百分之一、千分之一……来表示。

  五、你知道吗

  了解小数的起源、发展史。

小数的意义教案14

  教学内容

  六年制小学数学第八册第86页。

  教学目标

  1.初步理解小数的意义,认识小数的计数单位,知道小数的整数部分和小数部分,什么是纯小数和带小数。

  2.知道小数是在实际生活中产生的,并且有着广泛的应用。进行学习目的性教育,认识我国是应用小数最早的国家,进行爱国主义教育。

  教学重点、难点

  教学重点:理解小数的意义,认识小数的计数单位。

  教学难点:利用小数的意义进行单位的改写与把“”改成用小数表示,十分位上要添0“这一类分数改成用小数表示的题目。

  教学过程

  (一)复习准备,引出课题

  1.口答。

  1米=()分米1分米=米6分米=米

  1米=()厘米1厘米=米3厘米=米

  1米=()毫米1毫米=米

  1元=()角5角=元

  1元=()分7分=元

  2.引出课题:

  前面我们已经学了分数的认识,不足整米整元的可以用分数表示。实际生活中,人们进行测量计算时,往往不能得到整数的结果,比如同学们的身高,往往不是整米数,这些除了用分数表示外,还可以用小数来表示。我国是最早运用小数的国家,今天这节课就一起来学习~~~一小数的意义。

  (二)新课教学

  1.小数意义的.教学。

  (1)从商品标价引人,利用分数的知识认识小数。

  1元=10角,4角=元可以用0.4元表示,表示十分之几可以用一位小数表示;

  1元=100分,5分=元可以用0.05元表示,表示百分之几可以用两位小数表示。

  l元4角5分可以用小数1.45元表示。

  (2)投影出示米尺,学生看图说,()里填什么?

  1米=()分米,l分米=米,写成时小数是0.1米;3分米

  就是”“米,可以写成()米。

  1米=()厘米,1厘米=米,写成小数是0.01米;7厘米是米,可以写成()米;23厘米呢,1毫米=米,写成小数是0.01米;9毫米=米。以写成小数()米;143毫米呢?

  (3)小结概括小数的意义。

  上面例题中的0.4、0.1、0.3都表示十分之几:0.05、0.01、0.07

  都表示百分之几;0.001、0.O09、0.143都表示千分之几。

  这种用来表示十分之几、百分之几、千分之几......的数,叫做小数。出示小数的定义。

  2;小数各部分名称和计数单位。

  (1)”.“叫做小数点。

  小数点左边是整数部分,右边表示小数部分。

  小数的计数单位有:

  0.1(十分之一)如:0.3里面有3个0.1或3个十分之一。

  0.01(百分之一)如:0.23里面有23个0.01或23个百分之一。

  0.001(千分之一)如0.143里面有143个0.001或143个千分之一。

  (3)观察下列各小数的整数部分有什么不同?

  0.40.051.450.0091.238.024

  整数部分是0的:0.40.050.009

  整数部分不是0的:1.451.231.024

  根据整数部分的不同情况,可将小数分为两大类,读课本第88页:整数部分是0的叫做纯小数,比1小;整数部分不是0的叫带小数,比1大。

  (三)巩固练习

  1.”练一练“第1题。

  反馈校对。问:为什么要这样填?

  2.”练一练“第2题。

  说一说,你是怎么想的?(例:4分米是1米的,写作小数为0.4米)

  3.”练一练“第3题,学生口答。

  (四)总结

  今大学了什么?(小数的意义)

  (1)什么叫小数?

  (2)小数各部分的名称和计数单位是什么?

  (3)小数是怎么分类的?

  (五)提高训练

  1.下列各数哪些是纯小数,哪些是带小数?(卡片出示,学生口答)

  0.257.84.0128.0030.30.50.001

  2.判断:4角7分=0.047元2米2厘米:2.002米

  4分米=0.04米31毫米=0.031米

  27厘米=2.7米3元零4分=3.04元

  (1)小组讨论

  (2)指名学生回答。

  (六)作业:《作业本》第66页(六十三)。

  说明:数的扩展,是人们对客观世界认识水平提高的重要标志。在设计时,力图再现小数产生的过程,从中学到小数的意义和表示方法。这节课中,教师讲解的内容较多,讲解时要做到简洁,浅显易懂,并要在学生已有一定的感性经验后再概括定义。

小数的意义教案15

  教学目标:

  1、通过练习进一步掌握小数加减法的计算方法。

  2、通过练习进一步掌握小数加减混合运算的方法和简便计算的方法。

  3、通过活动,培养学生自主探索、合作交流的能力,动手操作的能力。培养学生综合运用知识解决现实问题,收集信息、处理信息的能力。

  教学重点:

  小数加减混合运算的方法和简便计算的方

  教学难点:

  小数加减混合运算的方法和简便计算的方

  教法学法:

  主动探究法、练习法。小组合作交流法

  教学准备:

  小黑板

  教学过程:

  一、复习导入新课

  1、复习小数的意义。

  2、怎样比较小数的大小。

  3、怎样进行小数加减的计算。

  二、展示交流。

  专题训练一:完成课本18页第一题、第二题。

  专题训练二:完成课本18页第三题

  专题训练三;完成课本18页第四题。

  专题训练四:完成课本18页第五题

  专题训练五:完成课本18页第六题。

  三、课堂小结

  四、作业布置

  完成相关配套练习。

  五、单元测试

  (一)小小知识窗看谁本领高!(25分)

  1、0.78里面有( )个0.01,3.6里面有( )个0.1。

  2、4个百、5个十、3个十分之一,组成的数是( )。

  3、0.050的'计数单位是( ),它含有( )个这样的计数单位。

  4、58厘米=( )米

  540克=( )千克

  7元8角3分=( )元

  9吨40千克=( )吨

  5、小数相邻两个单位之间的进率是( )。

  6、10.1千克、1000克、1.1吨、1千克10克按从大到小的顺序排列是

  ( )﹥( )﹥( )﹥( )。

  7、在○里填上<、>、=。

  7.9○8.2

  0.09○0.12

  5.7○5.8

  3.61米○362厘米

  284克○0.284千克

  5.3米○532厘米

  8、0.8不改变大小,写成三位小数是( )。

  9、一个小数,整数部分的最低位是( )位,小数部分的最高位是( )位。

  10、□5.□5,使这个数最小是( ),使这个数最大是( )。

  (二)火眼金睛辨对错。(10分)

  1、0.3与0.300大小相同,计数单位也相同。 ( )

  2、小数点的后边添上0或去掉0,小数大小不变。 ( )

  3、4.4时=4时40分。 ( )

  4、整数加法的运算定律同样适用于小数加法。 ( )

  5、2.7和2.9之间只有一个小数。 ( )

  (三)选择。 (10分)

  1、0.9比10少( )

  A、0.1

  B、9.1

  C、9

  2、由2、4、5三个数字组成的最大的两位小数是( )

  A、4.25

  B、2.54

  C、5.42

  3、大于4.35小于5.35的小数有( )个

  A、9

  B、10

  C、无数

  4、8080.80这个数( )位上的零可以去掉。

  A、百

  B、十

  C、百分

  5、小红在计算小数减法时,将减数3.8错看成38,得108,那么正确的结果是( )

  A、66.2

  B、142.2

  C、10.8

  (四)计算。(32分)

  1、口算:(10分)

  6.9-6=

  0.9+0.6=

  1-0.09=

  0.9+0.1=

  2.7+2.2=

  0.2+0.8=

  0.7-0.7=

  5.5+11=

  1.3-0=

  9.7-7=

  2、列竖式计算:(6分)

  27.09-9.28

  22.45-19.156

  9.07+2.88

  3、脱式计算,能简算的就简算:(6分)

  15.89-(5.89+6.98)

  4.9+12.87-5.38

  75.6-10.8-9.2

  4、列式计算。(10分)

  (1)一个数比2.02与3.28的和多1.3,这个数是多少?

  (2)从100.86里减去10.54与20.86的和,差是多少?

  (五)解决问题:(18分)

  1、五月份某运输公司一队运货30.6吨,二队运货35.08吨,三队比二队多运货2.02吨,三个队五月份共运货多少吨?(4分)

  2、妈妈买鞋用去125.4元,买袜子用去13.8元,给了售货员150元,还剩多少元?(用两种方法计算)(6分)

  3、光明小学四二班向灾区的小朋友捐款情况如下表

  小组: 第一小组、第二小组、第三小组

  钱数(元): 50.61、比第一小组少18.29、比第二小组多42.87

  (1)第三小组捐款多少元?(2分)

  (2)三个小组一共捐款多少元?(3分)

  (3)请你提出一个数学问题?并解答。(3分)

  (六)智力大比拼(5分)

  一桶油连桶重55.1千克,用去一半后连桶重30.1千克,这桶油重多少千克?桶重多少千克?

【小数的意义教案】相关文章:

《小数的意义》教案02-17

小数的意义教案02-10

《小数的意义》的教案02-17

小数的意义教案10-20

小数的意义教案范文06-14

小数的意义教案优秀07-25

关于小数的意义教案04-10

小数的意义教案 15篇02-14

小数的意义教案15篇02-15

小数除法的意义和除数是整数的小数除法教案09-05