三角形内角和教案

时间:2024-10-20 14:46:01 教案 我要投稿

[合集]三角形内角和教案15篇

  作为一位杰出的教职工,通常需要准备好一份教案,教案有助于学生理解并掌握系统的知识。我们该怎么去写教案呢?下面是小编收集整理的三角形内角和教案,希望对大家有所帮助。

[合集]三角形内角和教案15篇

三角形内角和教案1

  教材分析及重难点:

  三角形的内角和是180°是三角形的一个重要性质。在此学习探究有助于学生理解三角形的三个内角之间的关系,也是进一步学习空间图形知识的基础。教材清晰地呈现三个版块:(1)先通过让学生画并度量不同类型的三角形的内角度数,并分别计算出它们的和,使学生初步感知到它们的内角和是180?。(2)提出用实验的方法加以验证。把一个三角形的三个角剪下来,引导学生拼成一个平角来加以验证,并概括三角形的内角和是180度。(3)“做一做”应用这一结论解决问题。

  教学时可先安排猜角游戏,以激发学生的兴趣,调动学生探索的愿望。然后小组合作画出几个不同类型的三角形,再量一量、算一算每个三角形内角的和各是多少度。也可以让学生先量出三角形每个内角的度数,报出其中两个内角的度数,请教师猜第三个内角的度数,结果老师总是能猜出来。以此激起学生的疑问,然后请学生算一算每个三角形内角和的度数。使学生初步感知它们的和大约是180°,是不是准确呢?再引导学生用剪拼角、度量三个角实验来验证,进而概括出结论。教学时要注意两点:一是应使学生先理解“内角”“内角和”的含义;二是为了使所得的结论具有普遍性,要分别对锐角三角形、直角三角形、钝角三角形进行操作实验。

  教学目标

  知识目标:掌握三角形内角和是180度这一规律,并能实际应用。

  能力目标:培养学生主动探索、动手操作的能力;发展学生的空间观念和初步的逻辑思维能力;培养学生初步形成验证结论的意识;培养学生之间良好的合作学习的习惯。

  情感目标:让学生感悟数学知识内在联系的逻辑之美,提高审美意识。

  教学重难点

  教学重点:让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程;知道三角形的内角和是180度并且能应用。

  教学难点:三角形内角和是180度的探索和验证。

  教学准备:1、学具准备:各种类型的三角形学具和学习资料。

  2、教具准备:各种类型的三角形教具、实物投影仪、FLASH动画课件。

  教学过程[设计一]

  一.课题引入

  1.抢答:出示各种类型的三角形教具,要求学生快速回答出三角形的类型,并且说明为什么叫做锐角(钝角或直角)三角形的理由。

  2.启迪:启发学生给那些处于三角形里面的不同类型的角定义一个共同的名称----内角。

  3.设疑:你能画出有两个内角都是直角的`三角形吗?

  4.实践:学生操作并回答(不能)

  5.引导:说明三角形的三个内角之间一定存在着什么关系,激发学生求知的欲望,同时引出课题----三角形的内角和

  二.探索过程

  (一)情境提问:呈现动画课件,明确研究的问题是求出:三角形的内角和

  (三角形三个内角的度数的和叫做三角形的内角和。)

  (二)量一量、算一算:

  (个人猜想――独立计算――同桌交流――全班汇报)

  1.学生先个人猜想

  2.独立测量并计算

  3.和同桌交流,看看有什么发现,形成初步结论。

  4.在全班汇报,同时发现新的问题

  5.揭示规律:三角形的内角和大约是180度。

  6.老师引导:能否用其它方法进一步验证三角形三个内角和就是180度。

  (三)验证过程

  (独立思考----小组讨论操作方法――合作操作――汇报结论)

  1.合作操作,并在小组内生成验证结论。

  2.小组汇报:(生通过实物投影仪进行展示,师据学生可能的方法进行小结和课件展示)

  3.揭题:任意三角形的内角和就是180度。(板书)

  (四)反思判断

  1.为什么刚才在测量时有的小组出现了测出的三角形的内角和不是180度的情况呢?学生再次测量,找到误差产生的原因。

  2.巩固映证:用今天学到的知识去说明为什么笑笑和淘气提供的两个大小不同的三角形,它们的内角之和是相等的,都是180度。

  三.反馈练习(课件)

  1.求三角形角的度数

  2.填一填:

  (1)一个三角形中,有两个角分别是55o和75o,另一个角是()度,这是()三角形。

  (2)一个等腰三角形的顶角是150o,两个底角分别是()度和()度。

  (3)一个等腰三角形的底角是45o,它的顶角是()度。

  3.已知直角三角形的一个锐角,求另一个内角。

  4.已知等边三角形,求它的三个内角。

  5.己知等腰三角形的一个顶角,角求它的底角。

  四.联系生活实际,再次感受生活中的数学。

  五.全课小结:通过今天的学习,你有什么样的收获?

  六.课后延展

  运用你学到三角形内角和的知识和研究问题的方法,探索四边形的内角以及五边形、六边形......的内角和。

三角形内角和教案2

  教学内容

  人教版小学数学第八册第五单元第85页例5

  任务分析

  教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。

  学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的.内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。

  教学目标

  1、通过实验、操作、推理归纳出三角形内角和是180°。

  2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。

  3、通过拼摆,感受数学的转化思想。

  教学重点

  探究发现和验证“三角形的内角和180度”。

  教学难点

  验证三角形的内角和是180度。

  教学准备

  多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。

  教学过程

  一、复习旧知,学习铺垫

  1、一个平角是多少度?等于几个直角?

  2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解规律

  1、说明三角形的三个内角和

  说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?

  师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。

  板书课题:“三角形的内角和”。

  揭示课题:今天我们一起来探究三角形的内角和有什么规律。

  2、探究三角形的内角和规律

  探究1:量一量,算一算

  以小组为单位,用量角器计算出三种三角形的内角和各是多少度?

  生讨论汇报,并引导学生发现:三角形的内角和接近180°。

  师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?

  学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?

  探究2:摆一摆,拼一拼

  引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?

  生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做

  如图:

  (1)

  锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.

  (2)

  让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.

  (3)

  让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.

  引导学生归纳:三角形的内角和是180°。

  是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)

  板书:三角形的内角和是180°

  三、巩固练习,应用规律

  1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?

  学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?

  学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以

  (180°-80°)÷2

  =100°÷2

  =50°

  四、拓展练习,深化规律

  1、求出下面各角的度数。

  (1) (2)

  2、判断

  (1)三角形任意两个内角的和大于第三个角。( )

  (2)锐角三角形任意两个内角的和大于直角。( )

  (3)有一个角是60°的等腰三角形不一定是等边三角形。( )

  3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?

  ( ) ( )

  五、课堂小结,分享提升

  1、谈谈这节课你有什么收获?

  2、课后思考题

  三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)

  板书设计

三角形内角和教案3

  教学目标:

  1、让学生亲自动手,通过量、剪、拼等活动,发现并证实三角形的内角和是180°,应用三角形内角和的知识解决实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识,探索精神和实践能力。

  重点、难点:

  经历“三角形内角和是180°”这一知识的形成,发展和应用的全过程。

  三角形内角和是180°的探索和验证。

  教学过程:

  一、揭示课题

  1、今天我们一起来学习三角形的内角和,那什么是三角形的内角和?(三角形里面的角),它有几个内角?(三个)出示纸片,那什么又是三角形的内角和呢?(把三角形的三个角的度数加起来就是三角形的`内角和)

  出示课件

  2、提出问题,为后面做铺垫。

  现在有3个三角形(出示课件),直角三角形说:“我是直角三角形,我的内角和最大”钝角三角形说:“我有一个钝角,比你们三个角都大,所以我的内角和才是最大的。锐角三角形说:“我虽然是锐角三角形,但我的个头最大,所以我的内角和才是最大的。

  孩子们,它们这样吵起来可不是办法呀!你们可知道它们谁的内角和最大呢?那我们就一起来证明给他们看。

  二、新授

  1、任意画不同的类型的三角形,算一算三个内角和是多少度。我们就画三个不同类型的三角形,算一算三个内角和是多少度,我们有三大组,为了节约时间,每一大组画一种又分几小组,三人一小组,一人画,一人量,一人记录。(小组合作,画图,量角,记录,计算)

  指名汇报结果并板书(至少一种一个板书),有不同意见的举手,相差1、2度很正常,量角会有误差(你们完成的又快又好,因此可见小组合作很到位)

  师出示一个大直角三角板,请大家算一算这个三角板的内角和是多少?

  (三角形的内角和都是一样大的,都是180°,仅仅一个实验还不能让它们心服口服,下面我们再来做两个实验,让它们心服口服)

  1、拼一拼,折一折

  孩子们,我们又活动起来吧,拼一拼折一折,让它们看一看,拿出你们准备好的三角形。我们一起来:拿出一个三角形(不管形状),撕下三个角,然后拼在一起(注意三个角的顶点要在同一个点上)你们发现了什么?(拼成了一个平角,这一点就是平角的顶点)

  我们再拿出一个三角形,折一折(注意科学的严谨性,折的时候不留很宽的缝隙)你又发现了什么?(这个三角形还是组成了一个平角)

  通过这三次实验,我们可以得出结论:三角形的内角和等于180°,不分形状,不分大小,任何一个三角形的内角和都是180°

  此时,这三个三角形还争吵吗?它们都心服口服了。

  孩子们,你们真了不起,轻而易举就平息了一场争吵。现在你能不能利用所学知识解决一些问题呢?

  三、练习

  1、抢答游戏(答对的给你的那一小组加一分)

  ①

  这个三角形的内角和是多少度。

  ②

  把这个三角形平均分成两个小三角形,每个小三角形是多少度。

  ③

  这个小三角形再分成一大一小两个三角形,这个三角形的内角和分别是多少度?

  ④

  三个小三角形拼成一个更大的三角形,它的内角和是多少度?

  2、智慧角

  3、判断(用手语表示)(哪个小组同学全部举手,就由哪个小组回答,口说手划答对加一分)

  4、知识扩展

  其实三角形的内角和是一个小朋友发现并提出来的,当时他只有12岁,比你们大一点点,真了不起,你们想知道他是谁吗?(帕斯卡)

  出示课件

  孩子们,其实你们跟他们同样聪明,以后,我们就利用所学知识去发现探索新的知识和规律,只要努力,就一定会成功的,孩子们加油吧!

  四、总结

  任何一个三角形不分大小,不分形状,它们的内角和都是180°

三角形内角和教案4

  教学内容:

  新课程实验教科书小学数学四年级下册85页例5。

  设计思路:

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。先让学生思考直角三角形的另外两个角是什么角,再设疑让学生判断一个三角形中有两个角是直角,引出课题。接着让学生猜想是不是所有的三角形的内角和是180°。学生通过用量的方法得出三角形的内角和大约是180°(存在误差),再引导学生通过剪拼、折拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。接着引导学生理解将一个长方形按对角线剪成两个直角三角形,让学生发现可以用360度除以2推算所有直角三角形的内角和是180度。这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力。让学生体验数学学习的快乐。

  教材分析:

  依据是《新课程标准》(实验稿)。新课标中,分两个阶段分层写进了“三角形内角和”:1、在第二学段“几何与图形”第七条中说:“通过观察、操作了解三角形内角和是180°”;2、在第三学段“空间与图形”第4条第3点中说:“利用同位角、对角相等的基本事实证明三角形的内角和定理。

  三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  学生分析

  1、四年级的学生已经有了探索三角形内角和的知识(或技能)基础。如掌握了锐角、直角、钝角、平角的概念;知道直角或平角的度数、会用量角器度量角的度数。认识长方形、正方形,知道他们的四个角都是直角,认识了三角形,知道了三角形根据角分,有锐角三角形、直角三角形和钝角三角形。已经知道了等腰三角形和正三角形。

  2、学生的起点。已经有不少学生知道了三角形内角和是180度的结论,但是很可能都知其然不知其所以然。

  教学目标:

  1、通过量、剪、拼等方法,探索和发现三角形内角和是180°。

  2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。

  3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

  教学重点:引导学生发现三角形内角和是180°

  教学难点:用不同方法验证三角形的内角和是180°

  教具学具准备:课件、学生准备不同类型的三角形各一个,长方形。剪刀、量角器。

  教学过程:

  一、创设情景,引出问题

  导语

  师:第几次来这里上课?在这里上课和在教室有什么不一样吗?

  (交代话筒的分布)

  今天有很多听课的老师都想了解你,能向老师介绍你自己吗?

  你介绍了自己的姓名

  你介绍的内容更丰富了,有姓名、岁数。

  你的声音很响亮,有更响亮的吗?

  看来我们虹桥镇一小四一班的同学真的很棒。

  可以上课了吗?上课。同学们好

  我们先来猜个谜语,请大家齐读一遍。

  猜谜语:(课件)

  形状似座山,稳定性能坚

  三竿首尾连,学问不简单(打一几何图形)三角形(板书)

  1、小游戏

  猜三角形(课件)

  师:这个三角形的一部分被长方形给遮住了,你知道这是什么三角形吗?

  师:被遮住的两个角是什么角?

  生:两个角都是锐角。

  师:如果有人说被遮住的两个角中还有一个角是直角,你们觉得对吗?为什么?

  (这个环节容易忘记)

  生:在一个三角形里面不可能有两个直角

  生:这样就不是三角形了

  生:三角形的内角和是180度,如果有两个角是直角,另一个角不是没有度数了。

  (让学生拿出直角三角板上来说明三角形的内角和是180°)

  2、引出课题

  这就是三角形里角的奥秘,这节课我们就来研究有关三角形角的知识”三角形内角和“。(板书课题)

  二、探究

  1、三角形的内角、内角和

  (1)三角形内角(课件)

  三角形里面的三个角都是三角形的内角。为了方便研究我们把每个三角形都标上内角∠1、内角∠2、内角∠3。

  (2)三角形内角和

  师:内角和指的是什么?

  生:三角形的三个角的度数的和,就是三角形的内角和。

  (多让几个学生说一说)

  2、猜一猜

  师:这个三角形的内角和是多少度?

  生:180°

  师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

  生:是。

  生:不是

  预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

  预设2师:可以用什么方法验证三角形的内角和是180度。

  生:量一量。(量角器)

  师:用量角器度量,你能说的更明白一些吗?

  3、量一量

  (1)出示要求(课件)

  师:(我在信封里为大家准备了三个不同的三角形和一张表格)三个三角形和一张表格,四人小组合作,你们觉得怎样分工度量的速度会最快?

  生:每一个同学量一个三角形的内角度数另一个人记录。

  师:量的同学:量出的每个角的度数,把每个角的度数写在三角形里面。三个角的度数都量好后,再汇报给记录的同学登记。(还要在实物投影上例举)

  师:记录的'同学:要监督小组其他同学量的是不是很准确、真实,不能改掉小组成员度量出来的数据。(开始)

  量一量、算一算不同类型三角形内角和各是多少度?

  (2)小组合作探究

  (大部分的同学已经量好了。没有量好的小组,先停下来。让我们一起来分享其他同学的测量成果。我这里收集到了两个小组的测量记录表,这张是那个小组的?请这个小组的组长带上三个三角形上来给大家介绍他们组的测量情况。请你给大家介绍你们组测量的三角形的形状,每个角的度数和内角和是多少?)学生汇报的时候教师板书。

  (3)汇报交流

  测量记录表

  三角形的形状

  每个内角的度数

  三个内角和

  (实物投影)选择有代表性的作品展示

  学生的汇报中可能会出现答案不是惟一的情况。如180°179°181°等

  (板书)

  (分别对这几个数进行统计)

  我们来统计测量出来是多少度的同学最多。例如、179°的有2人,180°的有13人,181的有1人等等。(度量结果是181度的同学请举手,179度的请举手,还有不一样的吗?)

  师:观察这些测量结果你能发现什么?

  生:都在180°左右。

  生:从大到小的顺序。

  4、剪拼、折拼

  (1)剪拼、撕拼

  (学生的注意力要集中)

  预设1师:用度量的方法验证,得到的结果不统一,有没有比度量更精确的验证方法?(让学生多思考),也就是不用度量你能用别的方法验证吗?

  预设2师:不着急,看黑板(板书),内角和就是(~~)

  生:就是把内角合并在一起。

  度量的验证方法是分别量出每个角的度数,分成单个研究。

  如果把三个角合在一起考虑呢?你还有什么验证方法?

  求三角形内角和就是把三角形的三个角和起来考虑问题,三个角和起来是什么角?三个角和起来是多少度的角,你有办法吗?

  预设3师:如果三角形的内角和是180度,180度的角就是我们以前学过的平角

  把三角形的三个角拼起来是不是一个平角?

  有什么方法能把三角形的三个内角合并在一起?

  预设4师:我在电脑里收索一个验证方法。(课件演示)

  生:把三角形的三个角剪下来,再拼成一个角。

  师:你能说的更明白一些吗?

  让学生在实物投影上演示(可以把剪下来的三个角,用固体胶固定在白色的长方形卡纸上。)

  师:你们觉得他得方法可行吗?

  要求

  请大家四人小组合作,用他的方法验证。

  全班小组操作

  大部分的小组已经拼好了,还没拼好的小组先停一停。我们一起来分享其他小组的验证结果

  汇报交流

  预设1师:(把学生的作品展示)把三个角拼在一起你们有什么发现?

  (你能看出这是用什么三角形拼成的?为什么?三个角拼在一起你有什么发现?)

  预设2让学生上来介绍

  师:你怎么做?发现了什么?(课堂纪律)

  让学生展示不同类型的三角形拼成一个平角。说明三角形的内角和是180°

  (板书:剪拼一个平角)

  课件演示

  师:这种验证方法是谁第一个发现的,我们用掌声来祝贺他。

  (2)折拼

  师:用剪拼的方法是比较精确,美中不足就是把三角形给剪了或是撕了,有没有更好验证方法?

  预设1生:用折的方法

  小组合作把剩下的一个三角形的折成一个平角。

  展示

  师:要把三角形的三个角折成一个平角靠我们现在的经验是有点难。看电脑是怎样折的。

  课件演示

  师:先要找到两条边的中点,用线连接起来,再按这条线折起来。再把另外的两个角折起来就可以了。

  预设2学生不会想到用折的方法。

  师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)

  5、计算,推理(看学生基础选用)

  A、将一个长方形按对角线剪成两个完全一样的直角三角形。因为长方形的四个角都是直角,长方形的内角和是360°,所以剪成后的直角三角形的内角和是180°

  (回家以后,同学们可以剪一个三角形折一折,我在信封里还为大家准备一个长方形彩色卡纸,如果将一个长方形剪成两个直角个三角形)

  师:你发现了什么?

  生:直角三角形的内角和是180°

  师:你能说得更明白一些吗?

  师:你能算出这个直角三角形的内角和吗?

  生:90°乘4等于360°,在把360°除以2就等于180°(板书)

  师:我们给这种验证方法娶个名字?(推算)

  师:这个直角三角形可以用推算的方法验证,是不是所有的直角三角形都可以用这种方法推算呢?

  (课件演示)

  师:推算的验证方法是谁先发现的,我们也对他表示祝贺。

  小结

  师:这节课通过我们班同学共同合作,我们用了几种验证方法。

  师:撕拼和折拼方法有什么相同点?(注意说话有说服力)

  生:都是把三角形的三个角拼成一个平角。

  师:为什么度量的方法会得到不同的结果?

  师:可能是度量的时候有误差,如果准确测量结果就是180°(把不是180°的数据擦掉)

  数学文化

  师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。

  6、解疑

  为什么在一个三角形中不可有两个角是直角或两个角是钝角?

  生:因为三角形的内角和是180°

  反思:在活动中,我没有像过去那样告诉学生怎样去做,让学生做机械的操作员,也不是随意放开,让学生盲目地做,而是把放与引有机结合,鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。

  三、应用三角形的内角和解决问题

  我们就用这个结论来解决问题

  1.看图求出未知角的度数。

  180°-55°-65°180°-(55°+65°)

  =125°-65°=180°-120°

  =60°=60°

  刚才是已知两个内角的度数,求另一个内角的度数。如果只告诉你一个内角的度数,你会求出另外两个内角的度数吗?如果一个内角的度数也不告诉你,你能知道三个内角的度数吗?

  2、请说出下列每个三角形每个角的度数。

  180°÷3=60°180°-96°=84°180°-90°-40=50°

  84°÷2=42°90°-40°=50°

  3、判断(请大家用手语来判断)

  (1)一个三角形的三个内角度数是:80°、75°、24°。()

  (2)大三角形比小三角形的内角和大。()

  教师准备两个大小不一样角度一样的三角形

  (3)两个小三角形拼成一个大三角形,大三角形的内角和是360°()

  师:你能改正吗?

  生:两个小的三角形拼成一个大四边形,四边形的内角和是360。

  (准备两个三角形刚好可以拼成四边形)

  师:小三角形的两个直角角已经不是大三角形的内角,要减去180°所以大三角形的内角和是180°

  4、求四边形、五边形、六边形的内角和

  下课的时间就要到了,我们来一个挑战题。你们敢接受挑战吗?

  图形

  名称

  三角形

  四边形

  五边形

  六边形

  有几个三角形

  1

  内角和

  180°

  如果要求10边形的内角和,你会求吗?你有什么发现?

  四、回顾

  这节课你有什么收获?我们是怎样研究三角形的内角和是180°?

  师:这节课我们分别用度量、撕拼、折拼推算个的方法对猜想进行验证,最后运用三角形内角和是180°的知识解决问题。如果给你重新选择,你会选择什么方法验证?

  我们用360度除以2推算出所有直角三角形的内角和是180度,你会应用直角三角形的内角和是180度,推算这个大锐角三角形的内角和吗?(课件)

  (4)、一个锐角三角形、钝角三角形分成两个直角三角形。也可以推出锐角三角形的内角和是180°

  板书

  三角形内角和180°

  猜想实验验证

  度量180°179°181°182°183°

  剪拼一个平角

  折拼

三角形内角和教案5

  一、教材简介:

  本微课选自北京师范大学出版社初中数学七年级下册第四章《三角形》的第一节《认识三角形》的内容,学生在学习了“三角形的概念”之后,自然要想到“三角形的内角和”,因此本节微课起着承上启下的作用。教学内容是《三角形内角和》。

  二、设计理念:

  我在设计这一堂微课时,主要从七年级学生以形象思维为主,对新事物容易产生兴趣的特点出发,创设问题情景“在以前小学学习三角形的内角和的结论时,是通过撕、拼的方法直观得到的,你知道其中的依据吗?”来激发学生探究的欲望。然后通过老师借助Z+Z超级画板展示“三角形的内角和等于180°”的动画以及通过旋转和平移三角形的两个角到第三个角的方法,一方面让学生去发现问题,另一方面使学生通过多角度思考、分析、说理、操作加深学生对三角形内角和为180°的理解,从而突出和解决了本节课的重点,同时在教学中注重在直观操作的基础上进行简单的推理,使学生学会用一定的方式有条理地表达推理过程。在学生探究得出三角形的内角和等于180°之后,教师通过借助Z+Z超级画板拖动三角形的任意一个点,改变三角形的形状,动态显示了“三角形的内角和”始终等于180°的数据。加深对“三角形的内角和“的理解。最后同过练习,检测学生对“三角形的内角和”的应用掌握程度,拓展学生视野,提高学生认识水平。

  设计特色是力求通过Z+Z超级画板动画等多媒体教学手段,使抽象知识动态化,降低学生认知难度。以问题为导向,引导学生推断分析,锻炼学生逻辑思维。教学过程充分体现出以学生为主体,教师为主导的特点,启发引导学生通过多角度思考、分析、说理、操作的过程中主动地去获取知识,体验过程、感悟方法,以提高学生学习的有效性。

  三、学情分析:

  七年级的学生形象思维比较好,但空间思维比较差,注意力容易转移,需要教师结运用多媒体技术展示三角形内角和,因此本节课我展示“三角形的内角和”的动画给学生看,将思维的可视化展示给学生,使学生能保持较大的学习兴趣,从而努力培养学生的发现问题的能力、推理能力、有条理的表达能力、发展空间观念。

  四、教学目标

  知识与技能:通过观察、操作、想象、推理“三角形内角和等于180°”的活动过程,发展空间观念,推理能力和有条理地表达能力。

  过程与方法:通过自主探究,结合具体实例,掌握三角形三个角和等于180°。

  情感、态度价值观:在探究学习中体会数学的现实意义,培养学习数学的信心,体验解决问题方法的多样性。

  五、教学重难点

  教学重点:三角形的内角和。

  教学难点:三角形的内角和。

  六、教学用具

  “三角形的内角和”动画、制作多媒体课件。

  七、教学过程:

  教学环节

  教学内容

  教学活动

  设计意图

  教师的组织和引导

  学生活动

  提出问题,自主探究

  一、三角形内角和

  展示书本P81页的做一做,提出问题:

  1、在小学通过撕、拼方法得到三角形内角和等于180°,依据是什么?

  2、展示“三角形内角和等于180°”动画。

  3、引导学生利用“平行线的判定与性质”探究、推理、得出“三角形内角和等于180°”的结论

  3、利用“三角形内角和”的动画,拖动三角形的任意点,用数据显示三角形的.内角和等于180°。

  阅读课本p81页,回忆小学通过撕、拼方法得到三角形内角和等于180°。

  观看“三角形内角和等于180°”动画。

  探究、想象、推理、得出结论。

  观看动画,加深理解三角形内角和等于180°。

  根据做一做,激发学生的探究欲望。

  动画形象地呈现在学生眼前,直观操作与说理结合起来。

  培养学生的推理能力和有条理地表达能力,发展空间观念。

  效果检测,引领提升

  练习

  展示有梯度的课堂练习。

  做练习

  对所学知识加以运用和深化归纳总结,深化认知

  总结拓展

  总结本节知识点

  归纳知识点

  学会总结

  板书设计

  一、三角形三个内角和等于180°

  教学反思:

  该微课针对我校生源不是很好的实际情况和“三角形内角和”很难理解的特点,面向学生,聚焦学习过程,关注个性差异,采用问题导学、自主探究模式,聚焦知识点讲解,呈现教师如何用Z+Z超级画板软件引导学生学习,学生如何在教师的引导下自主学习的过程,充分体现教师的主导作用和学生的主体作用;针对七年级学生以形象思维为主、好奇心强的特点,充分发挥多媒体在学科中的运用,教师展示“三角形内角和”动画,让学生根据“平行线的判定和性质”获得“三角形内角和等于180°”的结论,体现思维过程。培养学生的推理能力和有条理地表达能力,发展空间观念。符合新课标倡导的探究性学习的理念。事实证明,符合学生的认知心理,达到了很好的效果。

三角形内角和教案6

  教学内容:

  p.28、29

  教材简析:

  本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。

  教学目标:

  1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。

  2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。

  3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

  教学准备:

  三角板,量角器、点子图、自制的三种三角形纸片等。

  教学过程:

  一、提出猜想

  老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180

  看了这2个算式你有什么猜想?

  (三角形的三个角加起来等于180度)

  二、验证猜想

  1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

  老师注意巡视和指导。交流各自加得的结果,说说你的发现。

  2、折、拼:学生用自己事先剪好的图形,折一折。

  指名介绍折的'方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

  继续用该方法折钝角三角形,得到同样的结果。

  直角三角形的折法有不同吗?

  通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

  3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。

  在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。

  小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。

  4、试一试

  三角形中,角1=75,角2=39,角3=( )

  算一算,量一量,结果相同吗?

  三、完成想想做做

  1、算出下面每个三角形中未知角的度数。

  在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

  指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

  2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

  可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?

  然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。

  3、用一张正方形纸折一折,填一填。

  4、说理:一个直角三角形中最多有几个直角?为什么?

  一个钝角三角形中最多有几个直角?为什么?

  四、布置作业

  第4、5题

三角形内角和教案7

  [教学目标]

  1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角和的度数和等于180o。

  2、已知三角形的两个角的度数,会求出第三个角的度数。

  [教学重、难点]

  1、探索和发现三角形三个内角和的度数和等于180o。

  2、已知三角形的两个角的度数,会求出第三个角的度数。

  [教学准备]学生、老师准备几个形状不同的三角形、量角器。

  [教学过程]

  一、创设情境,激趣质疑

  教材第30页创设的情境,激发探索的兴趣。

  二、自主探索

  1、提出问题:怎样得到一个三角形的内角和?

  大多数学生会想到测量角度。

  2、小组活动:测量三角形的三个内角的度数,并记录在第30页的表格中。

  3、汇报测量结果和得到的结论。

  发现大小、形状不同的每个三角形,三个内角和的度数和都接近180o。

  4、进一步探索:三角形的三个内角的和是否正好等于180o呢?

  小组活动探索方法。

  5、得出结论。

  三、试一试:

  已知三角形的两个角的.度数,运用三角形的三个角的度数和是180o,求出第3个角的度数。

  四、练一练

  运用三角形内角和等于180o,判断题中的三个三角形说的对吗?

  [板书设计]

  三角形的内角和

  测量三个角的度数求和:结论:

三角形内角和教案8

  教学内容:

  小学数学教材第八册 P145—P146

  教学目的:

  1.通过教学向学生渗透“认识来源于实践,服务于实践”的观点。

  2.使学生通过学习“三角形内角和”能解决一些实际问题。

  3.进一步培养学生动手操作的能力。

  教学重点:

  对三角形内角和知识的实际运用。

  教学难点:通过动手操作验证三角形的内角和是180°

  教 法:实验法,演示法

  教具准备:三种类型的三角形各一个。

  学具准备:三角形纸片若干。

  教学过程:

  一、课前一练

  说说我们学过的有关三角形的知识。

  二、导入

  在新课开始之前,我们先来做一个小游戏,请同学们在练习本上任意画一个三角形,量出它三个角的度数。

  (生画,量)

  现在请你注意报上两角的度数,老师就能迅速的说出第三角的度数,谁想试试?

  (生报,师速答)

  你们想不想知道老师有什么法宝,能这么快说出第三个角的度数?通过这节数学课的学习,你就可以揭开这个奥秘了。(板书“三角形的内角和”)

  看到这个题目,你想知道些什么呢?

  生:三角形的内角和是多少度?

  生:什么叫三角形的内角和?

  生:我们学习三角形的内角和有什么用处?

  通过这节课的学习,我们就要知道,三角形的内角和是多少度以及它在实际生活中的应用。

  三、新授

  我们要学习三角形的内角和,就要首行弄清什么是三角形的内角和。

  生:“内”是里的意思,“内角”就是三角形里面的角。

  生:(边指边说)“内角和”就是将三角形里面的角相加的度数。

  生:我还有补充。三角形的内角和是三个角相加的度数。

  说的真好。我们来看自学提示:

  1.锐角三角形的内角和是多少度?

  2.直角三角形的内角和是多少度?

  3.钝角三角形和内角和是多少度?

  4.你从中能得出什么结论?

  下面打开书P145,自学开始。

  汇报自学成果

  生:我通过度量得到P145的第一个三角形的三个角的度数分别为它们的和是180°

  生:我跟他的结果不一样,我量的三角度数分别为56°50° 74° 它们的和是180°

  生:我度量结果是179°

  我们在进行度量的时候,由于工具的误差以及我们视力的限制,经常会出现一些小误差,有没有什么方法可以避免这种误差呢?

  生:老师,我不是通过度量,我是通过折纸的方法得出结论的。(边说边演示)。我拿一个锐角三角形,把上面的角沿虚线横折,使它的点落到底边上,再将剩下的两个角横折过来,使三个角正好拼在一起,这三个角组成了一个平角,所以我得出结论:锐角三角形的内角和是180°

  生:老师,我也是这样折的。

  师:请你到投影上演示一下。大家看他演示,你们同意他的说法吗?

  生:同意。

  师:好。那么我们可以得出结论:锐角三角形的内角和是180°

  (贴三角形,板180°)

  生:自学直角三角形的内角和,我也采用了拼折的方法,我将直角三角形的两个锐角折向直角,三角顶点重合,我发现两个锐角正好组成了一个直角,再加上直角,它的内角和是180°

  (贴三角形,板180°)

  生:我不是像你那样折的。我在拼折的时候发现两个直角三角形正好可以拼成一个长方形,长方形的四个角都是直角,所心内角和是

  360°。再除以2,就得到直角三角形的'内角和是180°

  生:老师,我觉得他们的方法太麻烦了,我将我手中的钝角三角形的三个角撕下来,再把它们的顶点重合,也组成了一个平角,就可以证明钝角三角形的内角和也是180°了。

  师:你真有创新精神,你们得出的结论和他一样吗?

  生:一样。

  师:好。钝角形的内角和也是180°。那么你从中能得出什么结论呢?

  生:三角形的内角和是180°。

  生:我有补充,三角形按角分可以分为三类,钝角三角形,直角三角形呼锐角三角形。我们已经通过各种各样的方法证明了这三种类型的三角形的内角和都是180°,所以可以得出上面的结论。

  师:说的真好,我们给他鼓掌。(板“三角形内角和是180°)根据这个结论,如果知道了三角形中两个角的度数,就可以求出第三个角的度数。看投影。

  在三角形中,∠1=78°,∠2=44°求∠3的度数

  迅速做出答案

  ∠3=180°-∠1-∠2

  =180°-78°-44°

  =58°

  生:老师,现在我也能根据两角度数迅速判断出第三角的度数了。

  师:看来你已经掌握了老师的法宝了,谁来考考他?

  (生考)

  师:你真聪明,我还要再考考你们。

  (投影出示P146“做一做”)

  生:180°-90°-65°=25°。

  生:老师,我可以用一种方法直接求出得数。90°-65°=25°

  师:你真聪明,现在同学们打开书,认真看一下这节课学习的内容,你还有哪些不明白的地方?

  生:老师,三角形既然有内角,那一定也有外角了,什么是三角形的外角?外角和多少呢?

  将三角形的一边延长,就得到了三角形的外角,三角形的外角是多少度呢?有兴趣的同学可以课后继续研究。

  四巩固练习

  下面我们运用这节课学习的内容做几个小练习。(略)

  (生做,一生到投影上量,上下对照)

  2.抢答:

  已知∠1,∠2,∠3是三角形的三个内角。

  (1)∠1=38° ∠2=49°求∠3

  (2)∠2=65° ∠3=73°求∠1

  已知∠1和∠2是直角三角形中的两个锐角

  (1)∠1=50°求∠2

  (2)∠2=48°求∠1

  3.已知等腰三角形的一个底角是70°,它的顶角是多少度?(一生到投影做,其余在本上做)

  4.思考题

  你能根据书中P149的17题推导出多边形的内角和公式吗?

  (小组讨论)

  五、小结

  本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。

三角形内角和教案9

  (一)教材的地位和作用

  《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义。

  (二)教学目标

  基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

  1。通过"量一量","算一算","拼一拼","折一折"的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

  2。通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想。

  3。通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。

  (三)教学重,难点

  因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。

  二、说教法,学法

  本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。

  因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力"。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的`动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从"猜测――验证"展开学习活动,让学生感受这种重要的数学思维方式。

  三,说教学过程

  我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

  引入

  呈现情境:出示多个已学的平面图形,让学生认识什么是"内角"。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题。

  【设计意图】

  让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的"横空出现"。

  猜测

  提出问题:长方形内角和是360°,那么三角形内角和是多少呢

  【设计意图】

  引导学生提出合理猜测:三角形的内角和是180°。

  (三)验证

  (1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度

  (2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。

  (3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。

  (4)画:根据长方形的内角和来验证三角形内角和是180°。

  一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。

  【设计意图】

  利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。

  深化

  质疑: 大小不同的三角形, 它们的内角和会是一样吗

  观察:(指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。)

  结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。

  实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。

  结论:活动角就是一个平角180°, 另外两个角都是0°。

  【设计意图】

  小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明。

  对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。

  (五)应用

  1。基础练习:书本练习十四的习题9,求出三角形各个角的度数。

  2。变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗

  3。(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少

  (2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少

  4。智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题

  【设计意图】

  习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。

  第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。

  第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。

  第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。

  第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。

三角形内角和教案10

  教学目标:

  1、知识目标:通过测量、拼、折叠等方法探索和发现三角形的内角和等于180°;已知三角形两个角的度数,会求出第三个角的度数。

  2、能力目标:通过讨论争辩、操作、推理等培养学生的思维能力和解决问题的能力;培养学生的空间观念,使学生的创新能力得到发展;使学生初步掌握由特殊到一般的逻辑思辨方法和先猜想后验证的研究问题的方法。

  3、情感目标:培养学生的合作精神和探索精神;培养学生运用数学的意识。

  教学重、难点:

  掌握三角形的内角和是180°。验证三角形的内角和是180°。

  学生分析:

  在上学期学生已经掌握了角的分类及度量问题。在本课之前,学生又研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

  教学流程:

  一、创设情境,激发兴趣

  (课件出示:两个三角形争论,大的对小的说,我的内角和比你大。)

  (学生小声议论着,争论着。)

  师:同学们,你们能不能帮助大三角形和小三角形解决这个问题啊?

  生:可以把这两个三角形的内角比一比。

  生:它们不是一个角在比较,可怎么比呀?

  生:我们先画出一个大三角形,再画一个小三角形。分别量一量这两个三角形三个内角的度数,这样就知道谁的内角和大,谁的内角和小啦。

  师:那好,我们今天就来研究“三角形的内角和”。(板书课题。)

  【设计意图:通过多媒体出示,引起学生兴趣,使学生想探索大、小三角形的内角和到底谁大?】

  二、动手操作,探索新知

  1、初步感知。

  师让学生分别画出不同形状的三角形。学生用量角器测量三角形三个内角的度数,并做着记录,并统一填表格。(表格略。)

  生汇报测量的结果:内角和约等于180°。

  师启发学生发现三角形的内角和180°。(师板书:三角形的内角和是180°。)

  【设计意图:通过这种方法可以得出准确的结论,也容易被学生理解和接受。可能出现问题:用测量的方法得到的结果不是刚好180°。使学生明白是因为测量存在误差的缘故。】

  2、用拼角法验证。

  师:刚才同学们发现,三角形的内角和约等于180°,那么到底是不是这样呢?

  生:我们手里有一些三角形,可以动手拼一拼。

  生:还可以剪一剪。

  师:那同学们就开始吧!

  (学生动手进行拼、剪、折等方法,检验三角形内角和的度数。)

  生:锐角三角形的内角可以拼成一个平角。因为平角是180°,所以锐角三角形的三个内角和是180°。

  生:我把一个直角三角形的三个内角剪下来,拼成了一个平角,所以直角三角形的三个内角和也是180°。

  生:钝角三角形的内角和也是180°。

  (师板书:三角形的内角和是180°。)

  【设计意图:使学生明确,因为全面研究了直角三角形、锐角三角形和钝角三角形这三类三角形的内角和,所以可以得出“三角形的内角和等于180°”这一结论。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。】

  三、巩固新知,拓展应用

  1.出示题目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度数。

  2.已知∠1、∠2、∠3是三角形的三个内角,猜一猜下面的三角形各是什么三角形?(图略,分别是锐角、直角、钝角三角形。)学生猜后,教师抽去遮盖的纸,进行验证。

  通过以上的练习使学生对三角形内角和的应用有个初步认识,并积累解决问题的经验。

  3.师:(出示一个大三角形)它的内角和是多少度?

  生:180 °。

  师:(出示一个很小的三角形)它的内角和是多少度?

  生:180 °。

  师:(把大三角形平均分成两份。指均分后的一个小三角形)它的内角和是多少度?(生有的答90°,有的答180°。)

  师:哪个对?为什么?

  生:180°对,因为它还是一个三角形。

  师:每个小三角形的`度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?(这时学生的答案又出现了180°和360°两种。)师:究竟谁对呢?(学生脸上露出疑问。经过一番激烈的讨论探究后,学生开始举手回答。)

  生:180°。因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。

  生:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。

  师:你真聪明。(课件演示。)

  四、小结

  师:同学们,你们今天学了“三角形的内角和是180°”的新知识,现在能来帮助大、小三角形进行评判了吧?(生答能。)

  师:说一说本节课的收获。这节课你掌握了哪些知识?学会了哪些研究问题的方法?

  五、探究性作业

  求下面几个多边形的内角和。(图形略。)

  【设计意图:通过这样的练习,培养学生思维的灵活性、多样性,使不同层次的学生得到不同的发展,体现教学的层次性。】

  反思:

  1、重视动手操作,让学生在探究中收获知识。《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养空间观念和动手操作能力。

  2、小组合作学习是新课程倡导的学习方式,有利于培养学生的合作意识、探索能力、团队精神。我们要从平时抓起,在平常的课堂中开展小组合作学习,可以是前后四人为一组,深入探究合作学习的方法和途径。这样学生学习方式的转变才能落到实处,才不会变成某些公开课的摆设

三角形内角和教案11

  探索三角形内角和的度数以及已知两个角度数求第三个角度数。

  教学目标:

  1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

  2、已知三角形两个角的度数,会求第三个角的度数。

  3、培养学生动手实践,动脑思考的习惯。

  教学重点:

  了解三角形三个内角的度数。

  教学难点:

  理解三角形三个内角大小的关系。

  教具学具准备:

  课件三角形若干量角器剪刀。

  教材与学生

  教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

  学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

  教学过程:

  一、呈现真实状态。

  师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

  学生各抒己见。

  二、提出问题:

  师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

  (1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

  (2)组内交流。

  (3)全班交流。由小组汇报测出结果(三角形内角和)

  (4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

  三。自主探索、研究问题、归纳总结:

  师引导提问:三角形的内角和会不会就是180呢?

  (一)组内探索:

  (1)以小组为单位探索更好的办法。

  (2)以小组为单位边展示边汇报探索的过程与发现的结果。

  (有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

  (3)把你没有想到的方法动手做一次

  (使学生更直观地理解三角形的内角和是180的证明过程)

  (4)根据学生的反馈情况教师进行操作演示。

  (二)教师演示

  撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示

  2.师:这三个内角放在一起你有什么发现?

  生:发现三个内角拼成一个平角。

  师:平角是多少度呢?说明什么?

  生:180?说明三个内角和刚好等于180。

  师:这种方法是不是适用各种三角形呢?

  3。学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

  进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

  折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

  你们也来试一试好吗?

  在学生完成这一实践后肯定这一发现

  三角形三个内角和等于180?

  :充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

  四。巩固练习,知识升华。

  1.完成课本第28页的“试一试”第三题。

  2.想一想:钝角三角形最多有几个钝角?为什么?

  锐角三角形中的两个内角和能小于90吗?

  3.有一个四边形,你能不用量角器而算出它的四个内角和吗?

  试一试,看谁算得快。

  师:谁来说说自己的计算过程?

  角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?

  生:它们的内角和都是 180 度。

  师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?

  [回答可能有二]:

  (一种全部说是:)

  师:请问,你们是怎么想的,为什么这么认为?

  生: ……

  师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

  (一种有一部分同学说是,有一部分同学说不是:)

  师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

  (二)动手操作,探究新知

  师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

  生:我准备用量的方法。

  师:然后呢?

  生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

  师:说的真不错,还有没有其它的方法?

  生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的行动来验证你的猜想吧!)

  生:……

  (如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)

  师: 好啦, 老师相信咱们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

  开始吧!(学生研究,师巡回指导)预设时间:5 分钟

  师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

  师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

  ( 预设: 如果第一类同学说的是量的.方法)

  师:你是用什么来研究的?

  生:量角器。

  师: 那请你说一下你度量的结果好吗?

  ( 生汇报度量结果)

  师: 刚才有的同学测量的结果是180 度,有的同学测量的结果是179 度,有的同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?

  生:180 度。

  师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?

  生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

  师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。

  (师边讲解边点击 FLASH :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)

  师:好极了,刚才这个小组的同学用拼的方法得到XX 三角形的内角和是180 度,你们还有别的方法吗?

  生:我们还用了折的方法(生介绍方法)

  师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。

  (师边讲解边点击 FLASH :先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)

  生:是个平角。180 度。

  师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?

  师:请这位同学来说给大家听听吧!

  生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。

  师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?

  生 1 :量的不准。

  生 2 :有的量角器有误差。

  师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。

  师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?

  生:三角形的内角和是180 度。(师板书)

  师:把你们伟大的发现读一读吧!

  (三)拓展应用,深化认识

  师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)

  师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

  (生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)

  师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)

  师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

  师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?

  师:好,请看大屏幕!

  (出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。

  生答后,师提问:你是怎样想的?

  生陈述后,师鼓励:说的真好!

  出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

  (出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?

  师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

  (预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?

  师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?

  师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

  师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

  师:好,下课!同学们再见!

三角形内角和教案12

  一、教学目标:

  1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。

  2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。

  3、在探索和发现三角形内角和的过程中获得成功的体验。

  二、教学重、难点:

  重点:探索并发现三角形内角和等于180°。

  难点:运用三角形内角和等于180°的性质解决一些实际问题。

  教具:课件、三角形若干。

  学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。

  三、教学过程

  (一)创设情境,导入新课

  我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?

  教师放课件。

  课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”

  都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。

  (板书课题:三角形内角和)

  (二)自主探究,发现规律

  1、探究三角形内角和的特点。

  (1)检查作业,并提出要求:

  昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。

  小组活动记录表

  小组成员的姓名

  三角形的形状

  每个内角的度数

  三角形内角的和

  (要求:填完表后,请小组成员仔细观察你发现了什么?)

  ②小组合作。

  会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。

  各组长进行汇报。发现了三角形的内角和都是180°左右。

  师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。

  2、验证推测。

  那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。

  通过我们的验证我们可以得出三角形的.内角和是180°。

  板书:(三角形内角和等于180°。)

  3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

  4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)

  出示书28页,试一试第3题,并讲解。

  说明:在直角三角形中一个锐角等于30°,求另一个锐角。

  生独立做,再订正格式、以及强调不要忘记写度。

  小结:同学们有没有不明白的地方?如果没有我们来做练习。

  (三)巩固练习,拓展应用

  1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?

  完成,并填在书上。讲一讲直角三角形还有什么解法。

  2、出示29页第2题。

  说明:一个钝角三角形说:我的两个锐角之和大于90°。

  一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。

  3、画一画:

  出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?

  三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。

  (四)课堂总结

  让学生说说在这节课上的收获!

三角形内角和教案13

  教学内容

  探索与发现:三角形内角和(教材24~26页)。

  教学目标

  1.知识目标:让学生通过“测量、撕拼、折叠、猜想、验证”等方法,探索并发现“三角形内角和等于180°”。

  2.技能目标:能运用三角形内角和的性质解决一些简单的问题。

  3.情感目标:在活动中,让学生体验主动探究数学规律的乐趣,激发学生学习数学的热情。

  重点难点

  教学重点:探索并发现三角形内角和等于180°。

  教学难点:掌握探究方法,学会运用三角形内角和的性质。

  学具准备

  各种 三 角形、剪刀、量角 器、课件。

  教学 过程

  一、创设情境,揭示课题。

  1.播放课件,提问: 这些三角形在争论什么?

  教师:是在争论关于自己内角和的大小。

  2.教师:什么是三角形的内角和?( 板书:内角和)

  讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

  二、自主探究,合作交流。

  (一)提出问题。

  1.你认为谁说得对?你是怎么想的?

  2.你有什么办法可以比较一下这些三角形的内角和呢?

  学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

  (二)探索与发现。

  1.初步探索。

  (1)量一量。

  了解活动要求:

  A.在练习本上画一个三角形,量一量三角形三个内角的`度数并标注。(测量时要认真,力求准确。)

  B.把测量结果记录在表 格中,并计算三角形内角和。

  C.讨论:从刚才的测量和计算结果中,你发现了什么?(引导学生发现每个三角形 的三个内角和都在180°左右。)

  (2)提出猜想。

  刚才我们通过测量和计算发现了三角形内角和都在180°度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?

  2.动手操作,验证猜想。

  教师:这个猜想是否成立呢?我们要想办法来验证一下。

  教师引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

  (1)小组合作,讨论验证方法。

  (2)分组汇报,讨论质疑。

  学生可能会出现的方法:

  ①撕拼的方法。

  把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°。

  教师:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

  ②折一折的方法。

  把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与

  角1的顶点互相重合,证明了各种三角形内角和都等于180°。

  3.课件演示,归纳总结,得出结论。

  (1)引导学生得出结论。

  孩子们,三角形内角和到底等于多少度呢?“

  学生一定会高兴地喊:“180°!”

  (2)总结方法,齐读结论。

  教 师:我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!

  (3)解释测量误差。

  教师:为什么我们刚才通过测量,计算出来的三角形内角和不是正好180°呢?

  那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一的误差。实际上,三角形内角和就等于180°。

  三、探究结果汇报。

  教师:现在你知道这些三角形谁说得对了吗?(都不对!)

  学生:因为三角形内角和等于1 80°。 (齐读)

  教师小结:三角形的形状和大小虽然不同,但 是三角形的内角和都是180度。

  四、课堂应用,巩固加深。

  1.试一试。

  数学课本25页。

  2.练一练。

  (1)数学书25页第一题。(生独立解决。)

  (2)数学书25页第二题。(动手量一量。)

  拼成的四边形的内角和是( )。

  拼成的三角形的内角和是( )。

  五、课堂作业设计。

  教材26页4、5、6题。

三角形内角和教案14

  教学内容:教材第130~131页例1、例2,“练一练”和练习二十五。

  教学要求:

  1.使学生认识和掌握三角形内角和的结论,并能应用结论求三角形里未知角的度数。

  2.培养学生动手操作的能力,并在实践的过程中探索规律。

  教具学具准备:锐角三角形、钝角三角形、直角三角形的纸片各一个;学生每人准备量角器、小剪刀、长方形纸片各一张。

  教学过程:

  一、复习:

  1.请同学们拿出小剪刀、长方形纸片,剪一个直角三角形,个锐角三角形和一个钝角三角形。

  2提问:这三个三角形有什么特点呢?

  二、认识三角形的内角和

  1.计算三角形的内角和。

  现在请同学们看课本第130页,这里有三个三角形。我们把三角形的每一个角叫做它的内角,(板书:内角)大家量一量每个三角形的三个内角,然后分别算一算,每个三角形的三个内角和是多少度。

  提问:第一个是什么三角形?三个内角和是多少度?

  第二个是什么三角形?三个内角和是多少度?

  第三个是什么三角形?三个内角和是多少度?

  锐角三角形、钝角三角形、直角三角形的内角和有什么共同的特点吗?你发现三角形的内角和有什么规律吗?

  指出:刚才这三个三角形的内角度数是自己量的,每个三角形的内角和是自己算的,结果发现,不管什么三角形,内角和都是180。这个规律对不对呢?我们来做一做实验。

  (1)请大家拿出一个直角三角形,跟着老师这样折一折。(演示、操作)

  提问:这两个锐角正好拼成一个什么角?再加原来一个直角是什么角?多少度?

  指出:直角三角形的内角和是180

  (2)再拿一个锐角三角形,大家跟着老师这样折一折。(演示、指出:锐角三角形的内角和也是180。操作)原来的三个内角拼在一起,正好是一个什么角?多少度?

  (3)按照刚才的方法,请同学们自己拿一个钝角三角形折一折,把三个角拼在一起。(老师巡视指导)

  提问:钝角三角形的三个内角也正好拼成了一个什么角?是多少度?

  指出:钝角三角形的'内角和还是180。

  (4)提问:通过刚才把三角形折一折的实验,证明我们发现的规律对吗?你能把这个规律说一遍吗?(板书:三角形的内角和是180)

  2.求三角形的未知角。请同学们根据这个规律,来算一算下面三角形里第三个角形度数。

  (1)出示例1。让学生读题。

  提问:三角形三个内角的度数和是多少?已知/1、/2的度数,你能求/3的度数吗?请大家自己算一算,/3等于多少度?计算后提问:你是怎样算的?/3等于多少度?说明列式格式,板书出算式和结果。

  (2)做“练—练”。指名板演,其余学生做在练习本上。

  集体订正。让板演学生说说是怎样想的。

  (3)出示例2。让学生读题。

  提问:这道题已知什么,求什么?指名学生回答,老师在黑板上画图。

  提问:等腰三角形有什么特点呢?你能求出底角的度数吗?大家做一做。

  集体订正:你是怎样算的?为什么?

  (4)出示想一想:等边三角形的每个角应该是多少度?为什么?

  三、巩固练习

  1.练习二十五第l题。

  指名三人板演,其余学生分三组,每组一题,做在练习本上。

  请大家用量角器量一量你做的那道题里要求的哪个角,看一看与算出的结果是否-样。

  指出:不管是锐角三角形、直角三角形,还是钝角三角形,三个内角的和都是180。

  2.练习二十五第3题。

  让学生口答第(1)、(2)题,并说明理由。指名口答第(3)题,说说是怎样想的。

  指出:直角三角形两个锐角和是90,用90减去已知的锐角的度数,就等于另一个锐角的度数。

  3.练习二十五第6题。让学生读题理解题意。

  提问:等腰三角形有什么特点?知道一个底角的度数,你会求顶角的度数吗?请大家做在练习本上。集体订正。

  四、课堂小结

  这节课学习了三角形的内角和。(板书课题)谁来说一说,你学会了哪些知识?

  五、课堂作业:练习二十五第2、4、5题。

三角形内角和教案15

  教学目标:

  1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。

  2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。

  3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。

  教学重点:

  探索发现三角形内角和等于180并能应用。

  教学难点:

  三角形内角和是180的探索和验证。

  教学过程:

  一、创设情境,提出问题

  师:大家喜欢猜谜语吗?

  生:喜欢。

  师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。

  (打一几何图形))

  生:三角形。

  师:三角形中都有哪些学问?

  生:三角形有三条边,三个角,具有稳定性。

  生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。

  生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。

  生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。

  生:三角形的内有和是180。

  生:(一脸疑惑)

  师:(板书:三角形的内角和是180),你有什么疑惑? 生:什么是内角?

  生:每个三角形的内角和都是180吗?

  (根据学生的问题,在三角形的内角和是180后面加上一个?)

  二、自主探索,实践验证

  1、理解内角 师:什么是内角?

  生:我认为三角形的内角就是指三角形的三个角。

  师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。

  2、理解内角和。

  师:那三角形的内角和又是指什么?

  生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。

  师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。

  3、实践验证

  师:每个三角形的内角和都是180吗?用什么方法来验证呢?

  生:量一量每个角的度数,然后加起来看看是不是180。

  师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)

  师:谁愿意把你的劳动成果和大家分享一下?

  生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。

  师:这位同学量的是一个锐角三角形,并且是比较特殊的三角形等边三角形。

  生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。

  师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。

  生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180 生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。

  师:你发现了什么?

  生:有的三角形的内角和是180,而有的三角形的内角和却不是180。

  师:看来三角形的内角和不一定是180。

  生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。

  生:都接近180就能说一定是180吗?

  师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!

  (学生在小组内进行探索验证。教师巡视,参与到学生的研究中)

  师:请每个小组选择一个代言人,和大家分享一下你们的智慧。

  生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个平角,也就是180,所以我们小组得出三角形的内角和是180。

  师:你折的只是锐角三角形,只能证明锐角三角形的内角和是180,直角三角形,钝角三角形是不是也是这样的?

  生:我们小组也有折的直角三角形,钝角三角形。

  (其它的成员展示不同的三角形)

  师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!

  师:哪个小组和他们的方法不一样?

  生:我们小组把三角形的三个内角都撕了下来,拼在了一起,正好拼成了一个平角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成平角,所以我们小组得出结论,三角形的内角和是180。

  师:这个小组的方法简便,易操作,很好。

  生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的内角和就是360,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180。 师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的角度去思考问题,谢谢你为我们提供了这么好的'方法!

  4、小结

  师:刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出了无论是什么样的三角形的内角和都是1800,你还有什么疑问吗?

  生:没有。

  师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。

  三、巩固应用,加深理解

  1、说一说每个三角形的内角和是多少度

  师:(出示一个大三角形)这个大三角形的内角和是多少度?

  生: 180

  师:(出示一个小三角形)这个小三角形的内角和是多少度?

  生:180

  师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?

  生:180

  师:为什么每个三角形的内角和是1800,而合起来还是180呢?另外那180去哪儿了?

  生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180

  师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?

  生:180

  2、求下面各角的度数

  师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?

  (出)

  生:三角形内角和是180,在第一个三角形中,用180-75-28,A=77

  生:用180-90-35,C =55。

  生:第二个三角形是直角三角形,B是直角,也可以直接用90-35=55。

  生:第三个三角形中,用180-20-45,B=115。

  3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?

  生:等腰三角形的两个底角相等,所以用180-70-70 4、

  师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。

  在设计这座大桥时,如果设计师将斜拉的钢索与桥柱形成的夹角设计成了56,建筑师在造桥时怎样才能确定钢索与桥柱是否形成了这个角度?

  生:用量角器量一量

  师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?

  生:桥面与桥柱形成一个直角,是90,斜拉的钢索与桥柱形成的夹角是56,那么用180-90-56=34,就是斜拉的钢索与桥面的夹角,所以只要让斜拉的钢索与桥面的夹角是34,那么斜拉的钢索与桥柱形成的夹角就是56

  师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。

  四、回顾总结,拓展延伸

  师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?

  生:我知道了三角形的内角和是180。

  生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。

  生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。

  生:我可以用撕、拼、折等方法来验证三角形的内角和是180。

  师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。

  师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?

  生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。

  生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。

  师:我们学习知识,必须知其然并知其所以然。

  师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。

【三角形内角和教案】相关文章:

三角形内角和教案12-12

《三角形的内角和》教案05-17

三角形内角和优秀教案01-15

《三角形内角和》数学教案06-16

三角形内角和教案汇编9篇05-15

三角形内角和教案[精华15篇]10-20

《三角形内角和》说课稿03-10

三角形内角和教案集锦五篇05-16

《三角形的内角和》教学反思07-16

《三角形的内角和》教学反思03-11