八年级下册数学教案

时间:2024-10-22 16:00:27 教案 我要投稿
  • 相关推荐

八年级下册数学教案

  作为一位杰出的老师,常常要写一份优秀的教案,教案是实施教学的主要依据,有着至关重要的作用。教案要怎么写呢?以下是小编精心整理的八年级下册数学教案,仅供参考,欢迎大家阅读。

八年级下册数学教案

八年级下册数学教案1

  一、教学目标

  1、理解分式的基本性质。

  2、会用分式的基本性质将分式变形。

  二、重点、难点

  1、重点:理解分式的基本性质。

  2、难点:灵活应用分式的基本性质将分式变形。

  3、认知难点与突破方法

  教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

  三、练习题的意图分析

  1、P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

  2、P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

  教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

  3。P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“—”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的`符号,改变其中任何两个,分式的值不变。

  “不改变分式的值,使分式的分子和分母都不含‘—’号”是分式的基本性质的应用之一,所以补充例5。

  四、课堂引入

  1、请同学们考虑:与相等吗?与相等吗?为什么?

  2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?

  3、提问分数的基本性质,让学生类比猜想出分式的基本性质。

  五、例题讲解

  P7例2。填空:

  [分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。

  P11例3。约分:

  [分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。

  P11例4。通分:

  [分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

八年级下册数学教案2

  一、创设情境导入新课

  1、介绍七巧板

  师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?

  一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。

  2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题)

  【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】

  二、尝试探索建立模型

  (一)认一认形成表象

  师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗?

  不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上)

  (二)找一找感知特征

  1、在例题图中找平行四边形

  师:老师这有几幅图,你能在这上面找到平行四边形吗?

  2、寻找生活中的平行四边形

  师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架)

  (三)做一做探究特征

  1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗?

  2、在小组里交流你是怎么做的并选代表在班级里汇报。

  3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)

  4、全班交流,师小结平行四边形的。特征。(两组对边分别平行并且相等;对角相等;内角和是360度。)

  【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】

  (四)练一练巩固表象

  完成想想做做第1、2题

  (五)画一画认识高、底

  1、出示例题,你能量出平行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的?

  2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。

  3、平行四边形的高和底书上是怎么说的呢?(学生看书)

  4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)

  5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)

  6、画高(想想做做第5题)(提醒学生画上直角标记)

  三、动手操作巩固深化

  1、完成想想做做第3、4题

  第3题:拼一拼、移一移,说说怎样移的?

  第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。

  2、完成想想做做第6题(课前做好,课上活动。)

  (1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。

  (2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了?

  (3)得出平行四边形的特性

  师再捏住平行四边形的对角向里推。看你发现了什么?

  师:三角形具有稳定性,通过刚才的'动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形)

  (4)特性的应用

  师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)

  【设计意图:】

  四、畅谈收获拓展延伸

  1、师:今天这节课你有什么收获吗?

  2、用你手中的七巧板拼我们学过的图形。

  3、寻找平行四边形容易变形的特性在生活中的应用。

  【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。整理:

  (1)使方程的右边为0(2)方程的左边按x的降幂排列。我们会得到:

  ① ② ③

  你能发现上面三个方程有什么共同点?

  _____________________叫做一元二次方程。在定义中着重强调了几点?哪几点?如果给你一个方程,让你判定它是否是一元二次方程,你关键看哪几方面?

  学法指导

  学习一元二次方程的概念,让同学们剖析定义,总结判定一个方程是否是一元二次方程的方法。

  4、试一试

  下面方程是一元二次方程吗?为什么?

  ①ax-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y-4y=0

  方法提升:

  由一元二次方程的定义可知,只有同时满足下列三个条件:①整式方程;②只含有一个未知数;③未知数的最高次数是2,这样的方程才是一元二次方程,否则缺少其中任何一个条件的方程都不是一元二次方程。

  口诀生成:

  判断一元二次方程并不难,三个条件要找全:一元,二次,整式判,正确答案就出现。

  5、学一学

  一元二次方程都可以化为ax+bx +c =0(a,b,c为常数,a≠0)的形式,称为一元二次方程的一般形式,其中ax,bx,c分别称为这个方程的二次项,一次项和常数项,a,b分别称为二次项系数,一次项系数。你能指出下列方程的二次项系数,一次项系数,常数项吗?请你用a,b,c表示出来。

八年级下册数学教案3

  教学目的

  1、使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。

  2、熟识等边三角形的性质及判定。

  2、通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。

  教学重点:等腰三角形的性质及其应用。

  教学难点:简洁的逻辑推理。

  教学过程

  一、复习巩固

  1、叙述等腰三角形的性质,它是怎么得到的?

  等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。

  等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的.对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。

  2、若等腰三角形的两边长为3和4,则其周长为多少?

  二、新课

  在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。

  等边三角形具有什么性质呢?

  1、请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。

  2、你能否用已知的知识,通过推理得到你的猜想是正确的?

  等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。

  3、上面的条件和结论如何叙述?

  等边三角形的各角都相等,并且每一个角都等于60°。

  等边三角形是轴对称图形吗?如果是,有几条对称轴?

  等边三角形也称为正三角形。

  例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。

  分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

  问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?

  问题2:求∠1是否还有其它方法?

  三、练习巩固

  1、判断下列命题,对的打“√”,错的打“×”。

  a.等腰三角形的角平分线,中线和高互相重合( )

  b.有一个角是60°的等腰三角形,其它两个内角也为60°( )

  2、如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。

  3.P54练习1、2。

  四、小结

  由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。

  五、作业:1.课本P57第7,9题。

  2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。

八年级下册数学教案4

  一、内容和内容解析

  1.内容

  二次根式的性质。

  2.内容解析

  本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.

  对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.

  二、目标和目标解析

  1.教学目标

  (1)经历探索二次根式的性质的过程,并理解其意义;

  (2)会运用二次根式的性质进行二次根式的化简;

  (3)了解代数式的概念.

  2.目标解析

  (1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;

  (2)学生能灵活运用二次根式的性质进行二次根式的化简;

  (3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.

  三、教学问题诊断分析

  二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.

  本节课的教学难点为:二次根式性质的灵活运用.

  四、教学过程设计

  1.探究性质1

  问题1 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.

  问题2 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.

  问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0).

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.

  例2 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质1,学会灵活运用.

  2.探究性质2

  问题4 你能解释下列式子的含义吗?

  师生活动:教师引导学生说出每一个式子的含义.

  【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.

  问题5 根据算术平方根的意义填空,并说出得到结论的依据.

  师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

  【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.

  问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

  师生活动:引导学生归纳得出二次根式的性质: ( ≥0)

  【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.

  例3 计算

  (1) ;(2) .

  师生活动:学生独立完成,集体订正.

  【设计意图】巩固二次根式的性质2,学会灵活运用.

  3.归纳代数式的概念

  问题7 回顾我们学过的.式子,如, ( ≥0),这些式子有哪些共同特征?

  师生活动:学生概括式子的共同特征,得出代数式的概念.

  【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.

  4.综合运用

  (1)算一算:

  【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.

  (2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?

  【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.

  (3)谈一谈你对 与 的认识.

  【设计意图】加深学生对二次根式性质的理解.

  5.总结反思

  (1)你知道了二次根式的哪些性质?

  (2)运用二次根式性质进行化简需要注意什么?

  (3)请谈谈发现二次根式性质的思考过程?

  (4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.

  6.布置作业:教科书习题16.1第2,4题.

  五、目标检测设计

  1. ; ; .

  【设计意图】考查对二次根式性质的理解.

  2.下列运算正确的是( )

  A. B. C. D.

  【设计意图】考查学生运用二次根式的性质进行化简的能力.

  3.若 ,则 的取值范围是 .

  【设计意图】考查学生对一个数非负数的算术平方根的理解.

  4.计算: .

  【设计意图】考查二次根式性质的灵活运用.

八年级下册数学教案5

  一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

  1、平移

  2、平移的性质:

  ⑴经过平移,对应点所连的线段平行且相等;

  ⑵对应线段平行且相等,对应角相等。

  ⑶平移不改变图形的大小和形状(只改变图形的位置)。

  (4)平移后的图形与原图形全等。

  3、简单的平移作图

  ①确定个图形平移后的位置的条件:

  ⑴需要原图形的位置;

  ⑵需要平移的方向;

  ⑶需要平移的距离或一个对应点的位置。

  ②作平移后的图形的方法:

  ⑴找出关键点;

  ⑵作出这些点平移后的对应点;

  ⑶将所作的对应点按原来方式顺次连接,所得的;

  二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

  1、旋转

  2、旋转的性质

  ⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。

  ⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

  ⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

  ⑷旋转前后的两个图形全等。

  3、简单的旋转作图

  ⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

  ⑵已知原图,旋转中心和一对对应线段,求作旋转后的`图形。

  ⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

  三、分析组合图案的形成

  ①确定组合图案中的“基本图案”

  ②发现该图案各组成部分之间的内在联系

  ③探索该图案的形成过程,类型有:

  ⑴平移变换;

  ⑵旋转变换;

  ⑶轴对称变换;

  ⑷旋转变换与平移变换的组合;

  ⑸旋转变换与轴对称变换的组合;

  ⑹轴对称变换与平移变换的组合。

【八年级下册数学教案】相关文章:

人教版下册数学教案07-23

八年级下册的教学反思05-12

八年级下册地理教案11-09

八年级下册教学反思04-08

八年级数学教案01-08

八年级数学教案03-29

五年级下册数学教案02-08

四年级下册的数学教案11-29

五年级下册数学教案03-26