小学圆的教案

时间:2024-11-08 07:09:10 教案 我要投稿

小学圆的教案

  作为一位杰出的教职工,时常会需要准备好教案,借助教案可以有效提升自己的教学能力。那么应当如何写教案呢?以下是小编为大家整理的小学圆的教案,欢迎大家分享。

小学圆的教案

小学圆的教案1

  教学目标:

  1、使学生学会两圆内公切线长的求法

  2、使学生会求出公切线与连心线的夹角或公切线的夹角.

  2、使学生在学会求两圆内公切线长的过程中,探索规律,培养学生的总结、归纳能力.

  3、培养学生会根据图形分析问题,培养学生的数形结合能力.

  教学重点:

  使学生进一步掌握两圆公切线等有关概念,会求两圆内公切线长及切线夹角.

  教学难点:

  两圆内公切线和内公切线长容易搞混.

  教学过程:

  一、新课引入:

  上一节我们学会了求两圆的外公切线长,这一节我们将学习两圆内公切线长的求法及两圆公切线夹角的求法.

  实际上,我们首先要清楚,什么样的两圆的'位置关系存在两圆内公切线?有几条?什么样的两圆位置关系有内公切线长?请同学们打开练习本,动手画一画,结合图形,考虑上面的问题.

  学生动手画图,教师巡视,当所有学生都画完图后,教师打开计算机或幻灯作演示,演示过程由学生回答上述三个问题,并认定只有两圆外离时,存在内公切线长.

  二、新课讲解:

  有了上一节求两圆外公切线长的基础,学生不难想到求两圆的内公切线长也要在一个直角三角形中完成,只要稍加提示,学生便会作出直角三角形,同时教师要提醒学生注意两种公切线长的求法中,三角形的边有所不同.

  例2如图7-106,P.142已知⊙O1、⊙O2的半径分别为4cm和2cm,圆心距为10cm,AB是⊙O1、⊙O2的内公切线,切点分别为A、B.

  求:公切线的长AB.

  分析:仿照上节的辅助线方法作辅助线,我们会发现,不论从O1或O2向另一条半径作垂线,垂足都落在半径的延长线上,因此O2C是两圆半径之和.

  例题解法参照教材P.142例2.

  结论:由于圆是轴对称图形,1.两圆的两条外公切线长相等,两条内公切线长相等.2.如果两圆有两条外(或内)公切线,并且它们相交,那么交点一定在连心线上.

  练习一,如图7-107,已知⊙O1、⊙O2的半径分别为1.5cm和2.5cm,O1O2=6cm.

  求内公切线的长.

  此题分析类同于例题.

  解:连结O2A、O1B,过点O2作O2C⊥O1B交O1B的延长线于C.

  在Rt△O2CO1中:

  ∵O1O2=6,O1C=O1B+BC=4,结论:在由公切线长、圆心距、两圆半径的和或差构成的Rt△中,已知任意两量,都可以求出第三量来,同时,我们也可以求出所需角来.

  例3P.143要做一个如图7-108.那样的V形架,将两个钢管托起,已知钢管的外径分别为20mm和80mm,求V形角α的度数.

  分析:首先指导学生将实际问题转化为两圆外公切线问题,V形角α实际上就是求两圆公切线的夹角.由矩形、外公切线的基本图形知,矩形ABO2C的边O2C∥AB,则Rt△O1CO2中的锐角∠CO2O1=∠

  解:设两圆管的圆心分别为O1、O2,它们与V形架切于点A、B,AB与O1O2交于点P,连结O1A,O2B,过点O2作O2C⊥O1A,垂足为C.

  ∴∠CO2O1=25°23′.

  ∴∠α=50°46′

  练习二,P.145中1.如图7-109,⊙A、⊙B外切于点C,它们的半径分别为5cm,2cm,直线l与⊙A、⊙B都相切.求直线AB与l所成的角.

  分析:这是两圆外公切线与两圆连心线夹角问题,属于两圆外公切线的基本图形,只要在Rt△ADB中求出∠ABD的度数即可.

  解:设l与⊙A、⊙B分别切于点M、N,连结AM、BN,过点B作BD⊥AM,垂足为D.

  ∴∠ABD=25°23′.

  ∴∠1=25°23′.

  答:直线AB与l所成的角为25°23′.

  三、课堂小结:

  为培养学生阅读教材的习惯,让学生看教材P.142—P.145,从中总结出本课主要内容:

  1.求两圆的内公切线,仍然归结为解直角三角形问题,注意基本图形中的直角三角形,圆心距仍然为斜边,内公切线长、两半径之和作直角边,三个量中已知任何两个量,都可以求出第三个量来.

  2.如果两圆有两条外(或内)公切线,并且它们相交,那么交点一定在两圆的连心线上.

  3.求两圆两外(或内)公切线的夹角.要根据基本图形,归结为求Rt△中的锐角.从而根据平行线的同位角相等,进而求出两公切线的夹角.

  四、布置作业

  教材P.153中12、13、14.

小学圆的教案2

  教学内容:

  课本第57-58页。

  教学要求:

  1、 使学生认识圆,掌握圆的特征,了解圆各部分的名称,理解同一个圆内直径长度与半径的关系。

  2、 掌握用圆规画圆的步骤和方法,学会画图。

  3、 通过直观操作,进一步发展学生的空间观念,进行辩证唯物主义观念的启蒙教育。

  4、 培养学生观察、分析、综合、概括及动手操作能力。

  5、 通过生活实例、工艺设计感受数学之美,了解数学文化,提高学习兴趣。

  教学重点:

  感知并了解圆的基本特征,认识圆的各部分名称。

  教学难点:

  理解直径与半径的关系,熟练掌握画圆的方法。

  教学方法:

  1、利用多媒体创设情境,让学生感受数学来源于生活,服务于生活。

  2、课堂上坚持以生为本,创造师生互动、生生互动,民主平等,情感交融的课堂氛围。

  3、创设步步递进的课堂环节。充分调动学生已有的知识与技能,使其自觉地思考,培养学生观察、分析、综合、概括及动手操作能力。

  教学过程:

  一、 从生活中引入圆

  1、 出示生活中圆形物体的图片,让学生找“圆”。

  2、 除了刚才这些图形,你还能举出哪些圆形的物体?

  3、 师:圆在日常生活和工农业生产中应用非常广泛,小到手表里面的零件,大到宇宙飞船的制造都要用到圆的知识,我国古代数学家祖冲之对圆的研究就有伟大的成就,因此我们学习圆的有关知识是非常重要而又必要的。

  (感受数学之美,板书“圆的认识”)

  二、在画圆过程中认识圆

  1、 你会画圆吗?你能借助哪些工具来画圆?

  (圆规、硬币、有圆孔的三角板、瓶盖)

  2、 说说各种画法的不同特点。

  3、 介绍圆规,用圆规画圆。

  展示学生作品,分析失败案例,请成功同学介绍经验,教师总结。

  4、 教师示范画一个圆。请学生上台画一个和老师一样的圆(同一地方、同样大小)。

  5、 师:你是怎么做到的?揭示圆心、半径。

  6、 认识圆的特征和圆各部分的名称,师生一起操作进行。

  (1) 认识圆心

  取出圆纸片,先对折,打开,换方向后再对折,再打开,反复折几次,折过若干次后。

  问:像这样折可以折多少次?(无数次)

  问:这些折痕意在圆的什么地方相交?(这些折痕意是在圆中心这一点相交)

  老师指出,我们把圆中心的这一点叫做圆心。圆心一般用字母O表示。指导学生在自备圆中心标出圆心,用字母O表示

  (2) 认识半径

  指导学生从圆心到圆上任意一点用直尺连一条线段,老师讲解并板书,连接圆心到圆上任意一点的线段叫做半径,一般用字母r表示

  问:从圆心到圆上任意一点的线段,在同一个圆里可以画多少条?

  问:量一量,半径长几厘米?同一个圆里所有的半径长度都相等吗?

  (3) 认识直径

  指导学生把圆形再对折然后打开,让学生把这条折痕用直尺画出来,看看每条折痕都从圆的什么地方通过?两端都在圆的什么地方?

  口答后教师指出同时板书,通过圆心,并且两端都在圆上的线段叫做直径,用字母d表示。

  问:在同一个圆里,可以画多少条直径?

  问:量一量,直径长几厘米?在同一个圆里所有直径的长度都相等吗?

  (4) 同一个圆里直径的`长度与半径的关系

  问:刚才我们量了同一个圆里半径和直径的长度,谁能说出同一个圆里直径长度与半径的关系?

  三、巩固练习

  (1) 做课本第58页上面的“做一做”中的题。

  (2) 判断题

  (1) 通过圆心的线段,叫做半径。 ( )

  (2) 所有圆的半径都相等。 ( )

  (3) 在同一个圆里,半径是直径的1/2。 ( )

  (4) 在同一个圆里,所有的直径都相等。 ( )

  四、小结

  今天学了哪些知识?

  圆的各部分的名称各是什么?

  圆的特征是什么?

  怎样画圆?

  五、布置作业

  作业本P42

小学圆的教案3

  【本课内容在教材中的地位和作用】

  学生以前已经学过直线图形,上节课又学习了“圆的认识”,这些知识为本课教学打下了扎实的基础。教材通过一系列问题情境、实践操作,让学生在观察、分析、归纳中理解圆的周长的含义以及圆周长与直径的关系。通过圆周率的形成过程,圆周长公式的推导、应用,让学生掌握圆周长的计算。从而为下节课学习利用圆的周长公式,反求圆的直径或半径,作好了理论上的准备。应该说,这堂课起承前启后作用。

  【教学目标】

  1.学生通过动手绕一绕、滚一滚,找出圆的周长与直径的倍数关系。知道什么是圆的周长、什么是圆周率。掌握圆的周长公式,并会运用公式进行简单的计算。

  2. 通过对圆周率π值的探求,培养学生科学的和实事求是的探索精神及数学的概括能力和逻辑思维能力,增强学生的动手操作能力。

  3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  【教学重点】

  理解和掌握圆的周长的计算公式。

  【教学难点】

  对圆周率的认识。

  【教学准备】

  1、学生准备直径为5厘米、10厘米、15厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

  2、教师准备课件、带绳小球,圆规,尺子,保温杯。

  【教学过程】

  (一)复习旧知、创设情境、引出新知

  1、复习:圆心、半径、直径、直径与半径的关系(略去)

  2、课件出示问题情境:龟兔赛跑

  师评价:你们对圆的认识很到位,下面我要问同学们一个问题,你听说过龟兔赛跑的故事吗?哪个同学愿意说说故事的大概意思?(学生说)

  师:兔子因骄傲自大输了比赛,过后很不服气,于是想出一个办法,进行第二次比赛(课件出示),你们猜,这次谁会输?

  提问引导:

  (1).沿着正方形路线跑实际就是求正方形的什么?(正方形的周长)

  (2).正方形的周长怎么求?用字母怎样表示?

  (3).正方形的周长与谁有关?有什么关系?

  生:正方形的周长与边长有关。周长是边长的4倍。

  (4).兔子沿着圆形的路线跑实际上就是求圆的什么?(圆的周长)

  3引出课题:

  那到底什么是圆的周长,怎样求圆的周长?圆的周长和正方形的周长到底哪个长?这节课我们就一起来研究圆的周长。上完这节课后,我相信同学们都会解答这个问题了。(板书:圆的周长)

  [设计意图:设置问题情景,引发求知欲望,引出新课,同时为后面圆的周长与直径的关系教学做好铺垫。]

  (二)教学新课

  1.认识圆的周长。

  (1)请同学们拿出学具中最大的圆用手摸一摸哪个是圆的周长?指一名到前面摸一摸。注意起点、终点。

  (2)同桌互相说一说:什么是圆的周长?

  生:围成圆的曲线的长叫做圆的周长。

  (3)电脑出示圆的周长概念 ,读一遍。

  [设计意图:让学生动手摸,动画看,动嘴说,引出圆周长概念。]

  2.化曲为直,引发求知欲。

  (1)我们想知道你课桌的周长怎么办?

  生:用直尺量出课桌的长和宽。

  (2) 实物演示:老师这有一个杯子,用它喝水有时烫手,我想编一个隔热套, 用直尺测量它的周长方便吗?

  生:不方便,因为直尺是直的,而圆的周长是曲线围成的。

  (3)用什么办法化曲为直测量出圆的周长呢?(学生讨论)。谁来说一说?

  ①用围的方法。指名演示。(板书:围)

  问:要注意什么?

  生:先拉直后,只能量围的一周的长度。

  ②用滚的方法。指名演示。(板书:滚)

  问:要注意什么?

  生:在圆上先作了记号,沿直尺滚动一周。

  师:你们棒极了。用围和滚的办法可以把圆的周长转化为直线来测量。是不是所有圆的周长都可以用这两种方法测量呢?

  (4)谁能用围的方法量一量黑板上圆的周长?

  两名学生量。说一说自己的感觉。

  (5)老师拿一条绳子,在绳的一端拴上一个小球,甩动绳子使小球转动起来。

  问:小球转动时走过的路线成什么图形?这个圆的周长能用围、滚的办法测量吗?这说明不是什么样的圆都可以用围、滚的办法测量。因此我们需要探讨出一种计算圆的周长的方法。(比如像正方形)

  [设计意图:通过一系列操作,如:量桌面周长,测量保温杯隔热带,如何测量黑板圆的周长,如何测量带绳小球绕成的圆等,将问题一步步引向深入,在教给学生围、滚的方法同时,引起学生思维冲突吗,激发求知欲。]

  3寻找关系,创设情景,测量圆的周长

  (1)出示探究:a:正方形的周长和谁有关?有什么关系?

  (板书:c=4a)

  b、那圆的周长与谁有关呢?有怎样的关系?(课件出示验证)

  c、根据学生回答,教师板书:圆的周长 直径

  (2) 问题情景:是不是圆的周长与直径之间也像正方形的周长与边长之间那样存在着固定不变的倍数关系呢?同学们今天也当一次数学家,看看我们能不能发现什么规律,下面我们进行一组实验,看看圆的周长与直径之间到底又怎样的关系。

  (3)小组合作,测量数据。

  ①拿出你们的学具圆,汇报一下,直径分别是几厘米?(5cm、10cm、15cm)

  ②下面以小组为单位用围或滚的方法量一量圆的周长,并算一算,周长与直径有怎样的'关系?请小组长负责分工,看哪一组量得准,算得快。结果填在表格中。

  (4)比较验证,揭示规律:

  ①汇报交流:通过测量和计算,你发现什么规律?

  生:直径不同,周长也不同,但周长总是直径的三倍多一些。

  ②问:是不是所有圆的周长都是直径的3倍多一些呢?

  电脑演示围、滚的过程和结果,让学生看看圆的周长是直径的几倍。

  [设计意图:通过学生探究圆的周长与直径的关系、小组实验操作与计算、电脑演示验证等,让学生发现圆周长与直径的关系。]

  4.介绍圆周率,推导公式,探求新知(重点和难点)。

  (1)引导得出圆周率概念:

  师:看来圆不论大小,圆的周长总是它直径的3倍多一些。这是个固定不变的倍数关系。(师质疑:为什么我们测量和计算的结果会不一样?解释:测量误差)。数学上我们把圆的周长和直径这个固定不变的比值叫做圆周率,用字母π表示。用式子表示是:

  补充板书:圆的周长÷直径=圆周率π(固定)

  教师讲解:π=3.141592653 ‥‥(无限不循环小数)

  π≈3.14

  (2)引导自学圆周率小资料:其实,很早以前,人们就开始研究圆周率这个问题了,关于这方面知识,我们可以在课后自学书上p63表后相关介绍。

  师:现在,我们根据这个规律能否探究出圆的周长公式呢?

  (3)公式推导:

  师指圆周率公式:刚才我们通过自学知道圆周率是圆的周长与直径的比值,用字母表示是:

  板书:C÷d=π

  师:已知圆的直径怎样求圆的周长呢?同桌互相说一说。

  板书:C=πd

  师:已知半径怎么求圆的周长呢?

  板书:C=2πr

  问:知道什么条件就可以计算圆的周长?(强调:d、r)

  师:这样,今后我们要知道圆的周长不但可以用围或滚的测量,现在我们还可以用公式计算了,下面我们就应用这两个公式解决一些实际问题。

  5、应用公式解决实际问题。

  (1)解决龟兔赛跑问题:

  问:学了周长公式,现在你们会解决龟兔赛跑问题了吗?

  ? 学生尝试解答

  ? 指名板演,

  ? 集体订正,问:这位同学是利用什么公式做的?需要什么条件?

  ? 教师课件演示规范步骤。

  (2)实际应用:汽车车轴距离地面0.4米,车轮滚动一周是多少米?如果车轮滚动了1000周,那么汽车行了多少路程?

  [学习知识的目的是为了应用,在应用环节设计了两个例题,一是解决课前的问题,是已知d求c。二是小车轮胎问题,是已知r求c。这是两个学生经常接触的数学问题,具有代表性。]

  (三)课堂小结

  这堂课你有什么收获?(出示填空)

  1、基础练习:(略)

  2、知识延伸:(略)

  3、课后思考:(略)

  [巩固练习设计三个层次:基础题是解决当堂重要知识和易错点;提高题是让学生能综合利用;课后思考是为下节课承前启后.]

  (五)作业:

  1、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

  2、钟面分针长10厘米,求针尖一天走过多少厘米?

  3、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

  (六)板书设计(略)

小学圆的教案4

  设计说明

  圆的周长是在学生认识了圆,了解半径和直径关系的基础上进行教学的,是学生初步研究曲线图形的基本方法的`开始。鉴于本课时的教学属于计算公式的教学,在设计上突出了以下两点:

  1.循序渐进,逐层展开。

  教师是学生学习的组织者、引导者、合作者,根据这一理念,我遵循激、导、探、放的原则,引导学生思考、操作,鼓励学生概括、交流。学生运用知识去大胆尝试,在尝试中培养学生自主探究、合作交流、动手操作的能力。

  2.动手实验,突破关键。

  理解和认识圆周率是推导圆的周长计算公式的关键。教学时用较多的时间组织学生动手实验,探究和认识圆周率,让学生在猜测、实验、验证、计算、交流中发现和认识圆周率,理解周长计算公式的来龙去脉。

  课前准备

  教师准备

  PPT课件

  学生准备

  直尺、圆形硬纸板、圆规

  教学过程

  第1课时

  认识圆的周长

  ⊙创设情境,导入新课

  1.课件出示两辆车,车轮的大小不一样。

  师:明明和刚刚分别骑着自行车和踏板车,如果轮子只滚动一圈,哪个滚得远?

  学生讨论、交流,得出车轮越大,滚一圈就越远。

  2.引入:在课前,我们通过学情检测卡的内容,已经了解了车轮滚一圈的长度就是它的周长。这节课我们一起来探究圆的周长。

小学圆的教案5

  教学目标:

  1、理解切线的判定定理,并学会运用。

  2、知道判定切线常用的方法有两种,初步掌握方法的选择。

  教学重点:切线的判定定理和切线判定的方法。

  教学难点:切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一.

  教学过程:

  一、复习提问

  【教师】问题1.怎样过直线l上一点P作已知直线的垂线?

  问题2.直线和圆有几种位置关系?

  问题3.如何判定直线l是⊙O的切线?

  启发:(1)直线l和⊙O的公共点有几个?

  (2)圆心O到直线L的距离与半径的数量关系如何?

  学生答完后,教师强调(2)是判定直线l是⊙O的切线的常用方法,即:定理:圆心O到直线l的距离OA等于圆的半(如图1,投影显示)

  再启发:若把距离OA理解为OA⊥l,OA=r;把点A理解为半径在圆上的端点,请同学们试将上面定理用新的理解改写成新的命题,此命题就是这节课要学的“切线的判定定理”(板书课题)

  二、引入新课内容

  【学生】命题:经过半径的在圆上的端点且垂直于半径的直线是圆的切线。

  证明定理:启发学生分清命题的题设和结论,写出已知、求证,分析证明思路,阅读课本P60。

  定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

  定理的证明:已知:直线l经过半径OA的外端点A,直线l⊥OA,求证:直线l是⊙O的切线

  证明:略

  定理的符号语言:∵直线l⊥OA,直线l经过半径OA的外端A

  ∴直线l为⊙O的切线。

  是非题:

  (1)垂直于圆的半径的直线一定是这个圆的切线。()

  (2)过圆的半径的外端的直线一定是这个圆的切线。()

  三、例题讲解

  例1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。

  求证:直线AB是⊙O的切线。

  引导学生分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可。

  证明:连结OC.

  ∵OA=OB,CA=CB,∴AB⊥OC

  又∵直线AB经过半径OC的外端C

  ∴直线AB是⊙O的切线。

  练习1、如图,已知⊙O的半径为R,直线AB经过⊙O上的点A,并且AB=R,∠OBA=45°。求证:直线AB是⊙O的切线。

  练习2、如图,已知AB为⊙O的直径,C为⊙O上一点,AD⊥CD于点D,AC平分∠BAD。

  求证:CD是⊙O的切线。

  例2、如图,已知AB是⊙O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使∠ADE=30°。

  求证:DE是⊙O的切线。

  思考题:在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D点为圆心,BD为半径作圆,问⊙D的切线有几条?是哪几条?为什么?

  四、小结

  1.切线的判定定理。

  2.判定一条直线是圆的切线的方法:

  ①定义:直线和圆有唯一公共点。

  ②数量关系:直线到圆心的距离等于该圆半径(即d=r)。

  ③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。

  3.证明一条直线是圆的切线的辅助线和证法规律。

  凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是连结圆心和公共点,证明垂直(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。

  五、布置作业

  《切线的判定》教后体会

  本课例《切线的判定》作为市考试院调研课型兼区级研讨课,我以“教师为引导,学生为主体”的二期课改的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的'理解。本节课切实反映了平时的教学情况,为前来调研和研讨的老师提供了真实的样本。反思本节课,有以下几个成功与不足之处:

  成功之处:

  一、教材的二度设计顺应了学生的认知规律

  这批学生习惯于单一知识点的学习,即得出一个知识点,必须由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的条件和结论,导致错误,久之便会失去学习数学的兴趣和信心。本教时课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时,学生往往会因第一时间得不到及时的巩固,对定理本质的东西不能很好地理解,在运用时抓不住关键,解题仅仅停留在模仿层次上,接受能力薄弱的学生更是因知识点多不知所措,在云里雾里。二度设计将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个循序渐进、温过知新的过程。从学生的反馈情况判断,教学效果较为理想。

  二、重视学生数感的培养呼应了课改的理念

  数感类似与语感、乐感、美感,拥有了感觉,知识便会融会贯通,学习就会轻松。拥有数感,不仅会对数学知识反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由教师诱导,学生发现完成的,而三个习题则完全放手让学生去思考完成,不乏有不会做和做得复杂的学生,但在展示和交流中,撞击出思维的火花,难以忘怀。让学生尝试总结规律,也是对学生能力的培养,在本节课中,辅助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达能力。通过思考得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。

  不足之处:

  一、这节课没有“高潮”,没有让学生特别兴奋激起求知欲的情境,整个教学过程是在一个平静、和谐的氛围中完成的。

  二、课的引入太直截了当,脱离不了应试教学的味道。

  三、教学风格的定势使所授知识不能很合理地与生活实际相联系,一定程度上阻碍了学生解决实际问题能力的发展。

  通过本节课的教学,我深刻感悟到在教学实践中,教师要不断地充实自己,拓宽知识面,努力突破已有的教学形状,适应现代教育,适应现代学生。课堂教学中,敢于实验,舍得放手,尽量培养学生主体意识,问题让学生自己去揭示,方法让学生自己去探索,规律让学生自己去发现,知识让学生自己去获得,教师只提供给学生现实情境、充足的思考时间和活动空间,给学生表现自我的机会和成功的体验,培养学生的自我意识,发挥学生的主体作用,来真正实现《数学课程标准》中提出的“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”这一教学理念。

小学圆的教案6

  教学目标:

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

  2、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,能解决一些有关实际生活的问题。

  教学重点,难点:

  掌握圆柱侧面积和表面积的计算方法。

  运用所学的知识解决简单的实际问题。

  教学过程:

  一、引入新课:

  前一节课我们已经认识了一个新朋友——圆柱,谁能说说这位新朋友长什么样子以及有什么特征吗?

  1.圆柱是由平面和曲面围成的立体图形。

  2.圆柱各部分的名称(两个底面,侧面,高)。

  3.把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的.高。

  同学们对圆柱已经知道得这么多了,还想对它作进一步的了解吗?今天我们就一起来研究怎样求圆柱的表面积。

  二、探究新知:

  以前我们学过正方体、长方体的表面积,观察一个长方体,我们是怎么求这个长方体的表面积的呢?(六个面的面积和就是它的表面积)

  同学们想一想我们要求圆柱的表面积,那么圆柱的表面积指的是什么?

  教师引导,学生讨论结果:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。

  板书:(圆柱的表面积=圆柱的侧面积+两个底面的面积)

  1.圆柱的侧面积

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

  2.侧面积练习:练习二第5题

  学生审题,回答下面的问题:

  这两道题分别已知什么,求什么?

  小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  3.理解圆柱表面积的含义.

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

  4.尝试练习。

  (1)求下面各圆柱的侧面积。

  ①底面周长2.5分米,高0.6分米。

  ②底面直径8厘米,高12厘米。

  (2)求下面各圆柱的表面积。

  ①底面积是40平方厘米,侧面积是25平方厘米。

  ②底面半径是2分米,高是5分米。

  5.小结:

  在计算圆柱形的表面积时,要根据给定的数据计算各部分的面积。(如:有时候给出的是底面半径,有时是底面直径。)

  三、巩固练习。

  1.做第14页“做一做”。(求表面积包括哪些部分?)

  2.练习二第6,7题。

  四、课后思考。

  同学们想一想是不是所有的圆柱在计算表面积时都可以用

  公式:圆柱的表面积=圆柱的侧面积+底面积×2来计算呢?

小学圆的教案7

  一、教材分析

  1、教材所处的地位和作用

  切线的判定是九年制义务教育课本数学九年级第二学期第三十五章“圆”中的内容之一,是在学完直线和圆三种位置关系概念的基础上进一步研究直线和圆相切的特性,是“圆”这一章的重点之一,是学习圆的切线长和切线长定理等知识的基础。

  2、教学内容

  “切线的判定和性质”共两个课时,课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时。为了突出本节课的重点、突破难点,我没有采用教材安排的顺序,而是依据初三学生认知特点,将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,让教学呈现一个循序渐进、温过知新的过程。

  本节课主要有三部分内容:(1)切线的判定定理(2)切线的判定定理的应用(3)切线的两种判定方法。教学重点是切线的判定定理及其应用。教学难点是切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一。

  二、教学对象分析

  在学习本节内容之前学生已经掌握了圆的切线的定义,直线和圆的三种位置关系和一种直线与圆相切的判定方法(用d=r)。在学习用d=r来判定直线与圆相切的内容时曾为本节内容打过伏笔,设置过悬念,所以学生对本节内容的学习充满期待的。

  三、教案设计思路

  为了实现教学目标,本节课我主要突出抓好以下五个环节:

  1.复习提问——打好基础,为新课作铺垫。

  问题1是例2的基础,问题2则起着复旧孕新、引入新课的作用。

  2.发现、证明、理解定理——学好基础知识。

  根据初三学生有一定创造、自学能力的特点,在教学中,教师通过启发和指导学生阅读教材,教会学生通过自己观察,发现结论,再设法证明结论的学习方法,同时也强化了学生的阅读、自学能力。

  3.应用定理——培养基本技能。

  定理是基础,应用是目的。本环节首先给出两道判断题,目的是为了让学生更好地明确此定理的使用条件,然后在此基础上讲解例1。讲解时,我抓住教材本身的.特点,用两头凑的办法揭示证题思路,显示证题的书写程序,较好地解决了本课的难点。之后,做两个练习加以巩固,最后由师生共同完成例2,总结出判定切线常用的两种添辅助线的方法。

  4.小结与拓展

  通过小结,进一步帮助学生明确本节课的重点内容。拓展题是本节内容的提升,不是很难,但有助于培养学生的数学思想以及良好的思维习惯,激发学习的积极性。

  5.布置作业——充分发挥家庭作业的巩固知识、形成技能的作用。作业的分层布置,使每一位学生都有难度适宜的作业,不但能培养优生,而且可以照顾到后进生,充分体现了因材施教的教学原则。

小学圆的教案8

  教学目标:

  1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

  2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

  3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

  教学重难点:

  圆周率意义的理解和圆周长公式的推导。

  教学设想:

  新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

  接着,就是要让学生参与什么,怎样参与的`问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]

  教学具准备:

  多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。

  教学过程:

  一、创设情境,提出问题

  1、创设情境。

  这节课,老师要和同学一起探讨一个有趣的数学问题。

  媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。

  2、迁移类推。

  引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。

  (1)要求唐老鸭所跑的路程实际就是求什么?

  (2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)

  (3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)

  3、提出问题。

  看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。

  梳理筛选形成学习目标:①什么叫做圆的周长?②怎样测量圆的周长?③圆的周长与什么有关系,有什么关系?④圆的周长怎样计算?⑤圆的周长计算有什么用处?

  [设想:通过创设情境,引发学生参与形成学习目标,既培养了学生的问题意识,又为学生创造了自主学习的氛围,指明了探究方向,避免盲目性。]

  二、自主参与,探究新知。

  1、实际感知圆的周长。

  让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。

  2、明确圆周长的意义。

  引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)

  (1)圆的周长是一条什么线?

  (2)这条曲线的长就是什么的长?

  (3)什么叫做圆的周长?

  学生讨论互补,概括出围成圆的曲线的长叫做圆的周长(显示字幕)

  [设想:让学生动手摸一摸圆的周长,初步感知周长是一周的长度,再动口说一说培养学生把思维过程转化为外部语言更增强对圆周长的感性认识。在学生对圆周长有了较强的感性认识后,体验及形象理解圆周长的意义。]

小学圆的教案9

  教学目标

  1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径和直径的关系

  2、进一步理解轴对称图形的特征,体会圆的对称性。

  3、在折纸找圆心验证圆是轴对称图形等活动,发展空间观念。

  教材分析

  重点

  理解同一个圆的半径都相等,同一个圆里半径和直径的关系,并体会圆的对称性。

  难点

  在折纸的过程中体会圆的特征

  教具

  教学圆规

  电化教具

  课件

  一、 创设情境:

  亮亮借助光盘画了一个圆,剪出了一个圆纸片,这个圆的圆心在哪里呢?他很快找出来了。你有办法找出来吗?

  二、探索活动:

  1、引导学生开展折纸活动,找到圆心。

  (1)自己动手找到圆心。

  (2)汇报交流找圆心的过程,并说出这样做的想法。

  2、通过折纸你发现了什么?理解圆的对称性。

  (1)欣赏美丽的轴对称图形。

  (2)再折纸,体会圆的轴对称性,画出圆的对称轴。

  (3)圆有无数条对称轴。对称轴是直径所在的直线。

  3、通过折纸你还发现了什么?理解同一个圆里直径和半径的关系。

  (1)边折纸边观察思考同一个圆里的半径有什么特点?

  (2)边折纸边观察思考,同一圆里的直径与半径有什么关系?

  (3)引导学生用字母表示一个圆的直径与半径的关系。

  三、课堂练习。

  1、让学生独立完成试一试做完后交流汇报。

  2、完成练一练进一步巩固圆的半径与直径的关系。

  3、完成填一填

  让学生独立观察思考并试着填一填,有困难的向老师或同桌请教。

  汇报交流,说答题根据。

  4、完成书后第3题。

  四、课堂小结。

  引导学生小结本节内容。

  学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。

  欣赏美丽的对称图形引导学生对以学过的轴对称图形进行整理,进一步理解轴对称图形的'特征,在对比中发现这些轴对称图形的不同特点,从而突出圆具有很好的轴对称性。

  多次折纸的过程中探索,发现,验证。操作中体会交流,体会圆的特征,发展空间观念。

  个别学生做试一试的题目会有困难,注意个别指导。

  板书设计

  圆的认识(二)

  我们的发现

  同一个圆里所有的半径都相等

  同一个圆里d=2r或r=1/2d

  圆有无数条对称轴,对称轴是直径所在的直线

  学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。教学中通过折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。

小学圆的教案10

  教学目标:

  1.知识目标:掌握圆各部分名称以及圆的特征;会用圆规画圆。

  2.能力目标:借助动手操作活动,培养学生运用所学知识解决实际问题的能力。

  3.情感目标:渗透知识来源于实践、学习的目的在于应用的思想。

  教学方法:

  导练法、迁移法、例证法

  教学准备:

  多媒体课件、圆规、直尺等

  教学过程:

  一、结合实际、谈话引入新课。

  谈话引入:今天非常高兴能和同学们一起来学习、

  研究一个数学问题。我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗?

  师:看来大家平时非留心观察。课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗?

  师:把它们举起来,大家互相看一看。回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)

  师:同学们观察得真仔细。圆的边是弯曲的,跟以

  前学的长方形、正方形的边是不同的。今天我们就来研究这种平面上的曲线图形。(板书课题)

  生举例

  师强调——指物品的表面

  圆是没有棱角的,边是弯的;圆的边是一条曲线。

  二、引导探究新知。

  1.导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。最后看看谁的收获多。(1分钟)

  2.师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。

  3.展示探究结果。结合多媒体课件辅助,完整认识圆的特征(8分钟)

  谁来告诉老师,你有哪些新发现?

  那是什么原因呢?

  你怎样发现的?

  结合学生交流、汇报探究结果,及时引导梳理。主要从圆的圆心、半径、直径、等方面来认识。这里特别要注意通过板书帮助学生进行新知的有目的的`整理。

  4.学习画圆(5分钟)。

  你是如何画圆的?

  课件展示如何画圆。然后学生动手练习,并强调画圆时应该注意些什么。——揭示圆大小

  位置的确定

  学校要修建一个直径是20米的花坛,你能帮学校画出这个圆吗?生演示操作

  三、应用拓展。

  1.基本练习(4分钟)。

  〈1〉投影出示

  找出下列圆的半径、直径。

  〈2〉半径、直径的相关计算。

  〈3〉概念的判断和识别。

  2.应用练习。(10分钟)

  〈1〉车轮为什么做成圆形的,车轴应安装在哪?

  如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?结合课件演示

  〈2〉你能用今天学习的圆的知识去解释一些生活现象吗

  (举行篝火晚会时,人们总是不知不觉会围成一个圆形,为什么?

  平静的湖面扔一小石子,会有什么变化?为什么?

  月饼为一般都做成圆形的,为什么?)

  看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。

  〈3〉同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个谜语。有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。(利用电脑配上画面)

  师:羊吃草的情况与今天学的知识有关吗?我们来看一看羊吃草的范围有多大好吗?

  用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的范围是一个圆,拴羊的绳子与这个圆有什么关系吗?

  (是这个圆的半径)钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心)如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大)如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置),这说明圆的半径与圆心与圆有什么关系呢?

  圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。

  四、总结全课(3分钟)

  1.质疑

  (篮球是圆形吗?表示圆心、半径和直径的字母可以随意改变吗?)

  2.这节课你都学会了什么?

  不管怎么说,老师觉得同学们的学习表现是不错的,所以我提议:我们一起伸出手划上一个圆满的句号。(句号是圆形的)

  延伸

  1.用圆作画。

  2.谈谈我眼中的圆。

  板书设计:

  圆的认识——平面曲线图形

  圆心(o)圆中心一点,确定圆的位置

  半径(r)线段

  连接圆心到圆上任意一点,确定圆的大小,长度都相等〈在同一个圆里〉

  直径(d)线段,通过圆心,两端都在圆上,长度都相等。〈在同一个圆里〉

  半径和直径的关系d=2r

  教学反思:

  要让学生明白只有在同圆或等圆内,所有的半径才相等;所有的直径才相等;半径才是直径的一半,直径才是半径的2倍。

小学圆的教案11

  教学目标:

  1、使学生理解两圆公切线在解决有关两圆相切的问题中的作用;

  2、掌握辅助线规律,并能熟练应用.

  3、通过两圆公切线在证明题中的应用,培养学生的分析问题和解决问题的能力.

  教学重点:

  使学生学会在证明两圆相切问题时,辅助线的引法规律,并能熟练应用于几何题证明中.

  教学难点:

  在证明中学生引出辅助线后,新旧知识结合得不好,难以打开证题思路.

  教学过程:

  一、新课引入:

  我们已经学习了圆的切线在几何证明中的重要作用,这节课,我们来学习两圆公切线在证明中的作用.

  实际上两圆的公切线,对两圆起着一个桥梁的作用,首先,对于每一个圆,公切线都会产生切线的性质.另外公切线和过切点的两圆的弦,会产生弦切角定理运用的前提,从而把两个圆中的圆周角建立相等关系,我们有下面的例子.

  二、新课讲解:

  例4教材P.144如图7-110,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B、C为切点.

  求证:AB⊥AC.

  分析:题目中已知⊙O1和⊙2外切于点A.这是一个非常特殊的点,过点A我们引两圆的内公切线,产生了三种可能:①运用弦切角定理.②切线的性质定理.③切线长定理.在一道关于两圆相切的问题中,作出公切线后,还要针对已知条件,选择之,本例中已知两圆的外公切线BC,所以过点A的内公切线与之相交,必然产生切线长定理运用的前提,使问题得证.

  证明:过点A作⊙O1和⊙O2的内公切线交BC于点O.

  练习一,P.145中2如图7-111,⊙O1和⊙O2相切于点T,直线AB、CD经过点T,交⊙O1于点A、C,交⊙O2于点B、D,求证:AC∥BD.

  分析:欲证AC∥BD,须证∠A=∠B,图(1)中∠A和∠B是内错角,图(2)中∠A和∠B是同位角.而∠A和∠B从图形中的位置看是两个圆中的圆周角,必须存在第三个角,使∠A和∠B都与之相等,从而∠A和∠B相等.

  证明:过点T作两圆的内公切线TE.

  练习二,P.153中14已知:⊙O和⊙O′外切于点A,经过点A作直线BC和DE,BC交⊙O于点B,交⊙O′于点C,DE交⊙O于点D,交⊙O′于E,∠BAD=40°,∠ABD=70°,求∠AEC的度数.

  分析:已知⊙O中的圆周角求⊙O′中的圆周角,而两圆外切,作内公切线即可.

  解:过点A作⊙O和⊙O′的.内公切线AF.

  练习三,P.153中15.经过相内切的两圆的切点A作大圆的弦AD、AE,设AD、AE分别和小圆相交于B、C.

  求证:P.153中AB∶AC=AD∶AE.

  分析:证比例线段,一是三角形相似,二是平行线.由题设两圆相切,可作出切线,证平行线所成比例线段.

  证明:连结BC、DE.过点A作两圆的公切线AF.

  三、课堂小结:

  学习了两圆的公切线,应该掌握以下几个方面;(让学生自己总结,并全班交流).

  1.由圆的轴对称性,两圆外(或内)公切线的交点(如果存在)在连心线上.

  2.公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形.

  3.常用的辅助线:

  (1)两圆在各种情况下常考虑添连心线;

  (2)两圆外切时,常添内公切线;

  (3)两圆内切时,常添外公切线;

  (4)计算公切线长时,常平移公切线,使它过其中一个圆的圆心.

  四、布置作业

  1.教材P.154中B组2.

  切线的判定

小学圆的教案12

  教学目标

  1.使学生认识圆,知道圆的各部分名称.

  2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系.

  3.初步学会用圆规画圆,培养学生的作图能力.

  4.培养学生观察、分析、抽象、概括等思维能力.

  教学重点

  理解和掌握圆的特征,学会用圆规画圆的方法.

  教学难点

  理解圆上的概念,归纳圆的特征.

  教学过程

  一、复习旧知

  (一)教师提问:我们已经学过哪些平面几何图形?

  长方形、正方形、平行四边形、三角形和梯形

  (二)谈话引入:今天我们继续学习一个新的几何图形.

  二、教学新课

  (一)圆的形成过程

  1.教师叙述:体育课上,教师和明明做游戏,老师固定在操场中间不动,为了保持与老师之间的距离不变,明明拉紧一条绳子开始走动,形成这样一个图形,这是什么图形?

  2.教师提问

  (1)明明拉着绳子围着教师走动,他的位置发生了变化,但是有一点是没有变的,你知道吗?(明明和教师的距离没有变化)

  (2)老师的位置在哪里?(引出圆心)

  (二)联系实际

  生活中的圆形物体处处可见,你能举一些例子吗?

  (三)画圆

  1.介绍圆规的历史.

  2.教师介绍画圆步骤

  (1)把圆规的两脚分开,定好两脚间的距离;

  (2)把有针尖的一只脚定在一点上;这个点就是圆心,用字母O来表示.

  (3)把装有铅笔尖的一只脚旋转一周.

  3.教师强调

  (1)圆规两脚距离不能变;

  (2)重心放在针尖一脚上;

  (3)起点和终点要重合.

  4.学生练习

  (1)学生在教师的带领下画圆

  (2)学生自己练习画圆

  (3)学生按要求画圆(两脚间距离为3厘米)

  (四)认识半径、直径和两者间的.关系.

  1.认识半径:教师在圆内画一条线段,线段的一个端点在圆心,另一个端点在圆上.

  (1)教师说明:这样的线段叫圆的半径,用字母r表示

  (2)比赛:我给同学们10秒钟时间,请你们在自己的圆中画半径,看谁画的多?同时还要说明半径的长度.

  (3)学生反馈:你画了几条?长度呢?如果还有时间你还能画多少条?

  (4)教师小结并板书:所有的半径都相等.

  教师追问:你圆中的半径和老师黑板上画的圆的半径为什么不相等呢?

  (5)补充板书:在同圆或等圆中,所有的半径都相等.

  2.认识直径:教师示范画直径

  (1)观察:什么叫直径?直径有多少条?长度呢?

  (2)教师小结并板书:在同圆或等圆中,所有的直径都相等,直径用字母d表示.

  3.用彩色笔标出下面各圆的半径和直径.(出示图片:练习)

  4.半径与直径的关系

  教师提问:在同圆或等圆中,半径和直径有什么关系?

小学圆的教案13

  1、使学生在复习巩固圆面积、扇形面积的计算的基础上,会计算弓形面积;

  2、会计算一些简单的组合图形的面积.

  3、通过弓形面积的计算培养学生观察、理解能力,综合运用知识分析问题和解决问题的能力;

  4、通过运用弓形面积的计算解决实际问题,培养学生把实际问题抽象成数学问题的能力;

  5、通过学生对弓形及简单组合图形面积的计算,培养学生正确迅速的运算能力.

  教学重点:

  弓形面积的计算.

  教学难点:

  (1)简单组合图形的分解.

  (2)从实际问题中抽象出数学模型.

  教学过程:

  一、新课引入:

  上一节我们复习了圆的面积,在它的基础上我们学习了扇形的面积,本节课就要在前一课的基础上学习弓形面积的计算.

  弓形是一个最简单的组合图形之一,由于有圆的面积、扇形面积、三角形面积做基础,很容易计算弓形的面积.

  由于计算弓形的面积不像圆面积和扇形面积那样有公式,当弓形的弧小于半圆时,弓形的面积等于扇形面积与三角形面积的差;当弓形的弧大于半圆时,它的面积等于扇形面积与三角的面积的和;当弓形弧是半圆时,它的面积是圆面积的一半.也就是说要计算弓形的面积首先要观察这个弓形是怎么组合而成的,从而得到启发;一些组合图形的面积总要分解为几个规则图形的和与差来解决的方法.所谓规则图形指的是有计算公式的图形.因此弓形面积的计算以及受它启发的分解组合图形求面积的方法就是本节课的重点.本节拟就三部分组成:1.师生共同观察分解弓形,然后作有关的练习.2.运用弓形面积的计算解决实际问题.3.受分解弓形的启发分解一些简单的图形.

  二、新课讲解:

  (复习提问):1.请回答圆的面积公式.2.请回答扇形的面积公

  (以上三问应安排中下生回答)4.请同学看图7-163,弦AB把圆分成两部分,这两部分都是弓形,哪位同学记得弓形的定义?(安排中下生回答:由弦及其所对的弧组成的图形叫做弓形.)

  所组的弓形.它的面积能不能跟扇形面积联系上呢?(安排中上生回答:能,连结OA、OB).大家再观察图形,这个弓形的面积如何通过扇形

  也就是说组成弓形的弧如果是劣弧,那么它的面积应该等于以此劣弧与半径组成的扇形面积减去这两半径与弦组成的三角形的面积.

  和半径OA、OB组成的图形是扇形吗?为什么?(安排中上生回答:是,因为它符合扇形的定义.)

  如果弦AB是⊙O的直径,那么以AB为弦,半圆为弧的弓形的面积又是多少?(安排中下生回答:圆面积的一半.)

  于是我们得出结论:如果组成弓形的弧是半圆,则此弓形面积是圆面积的一半;如果组成弓形的弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积;如果组成弓形的弧是优弧,则它的面积等于以此优弧为弧的扇形面积加上三角形的面积.也就是说:要计算弓形的面积,首先观察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确.

  哪位同学知道要对这种题进行计算,首先要作什么工作?(安排中下

  三角形AOB的面积怎么求?(安排中上生回答:过O作OD⊥AB,垂

  以只要解此△AOD即可求出OD、AD的长,则S△AOB可求.)

  请同学们把这题计算出来.(安排一学生上黑板做,其余在练习本上

  请同学们讨论研究第2题,并计算出它的结果.(安排中上生上黑板

  (幻灯提供例题:)水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m.求截面上有水的弓形的面积.(精确到0.01m2)

  “水平放着的圆柱形排水管的截面半径是0.6m”为你提供了什么数学信息?(安排中上生回答:⊙O的半径是0.6m.)“其中水面高是0.3m”.又为你提供了什么信息?(安排中上生回答:弓形高CD是0.3m.)“求截面上有水的'弓形的面积为你提供什么信息?(安排中等生回答:

  长,看看已知条件,你打算怎么办?(安排中上学生回答:因弓形高CD已知,半径已知,所以弦心距OD可求,根据垂径定理,Rt△AOD可解,即∠AOD的度数可求,所以∠AOB的度数可求.n既然可求当然

  请问△AOB的面积又该如何求?(安排中等学生回答:通过解此△AOD可求出AD的长,再据垂径定理可求AB的长,OD已求,所以S△AOB可求.)

  请同学们完成这道应用题.(安排一位中上学生到黑板做,其余学生在练习本上完成).

  弓形面积虽然没有计算公式,但可以选用图形分解法,将它转化为扇形与三角形的和或差来解决,那么其它一些组合图形,不也可以用图形分解法来求其面积吗?

  幻灯示题:如图7-166,已知正△ABC的边长为a,分别以A、B、

  图形面积S.

  显然图形中阴影部分的面积无计算公式,因此必须将它转化为有公式图形的和或差来解决.想想看,你打算如何求S阴?(安排中等生回答:S阴=S正△ABC-3S扇)

  正三角形的边长为a,显然S正△ABC可求.由于正△ABC,所以∠

  请同学们完成此题.(安排一中上学生上黑板,其余在练习本上完成).

  幻灯示题:已知:⊙O的半径为R,直径AB⊥CD,以B为圆心,大家观察,图(7-167)中的阴影部分面积应当如何求?(安排中下生回

  我的看法对还是不对?为什么?(安排举手的学生回答:图形BCAD不是扇形,因为扇形的定义是在同一个圆中,一条弧和过弧端点的两条半径

  的半径.因此将阴影面积看成两扇形的差是错误的.)

  请同学们按照正确思路完成此题.(安排一中等学生上黑板,其余学生在练习本上做)

  三、课堂小结:

  哪位同学能为本节课作总结?(安排中上学生回答:1.弓形面积的计算:首先看弓形弧是半圆、优弧还是劣弧,从而选择分解方案.2.应用弓形面积解决实际问题.3.分解简单组合图形为规则圆形的和与差.)

  四、布置作业

  教材P.183练习1、2;P.188中12.

小学圆的教案14

  一、教材说明;

  九年义务教育六年制小学数学[人教版]第十一册《圆的认识》

  二、教学目标;

  1、使学生认识圆,掌握圆的特征;了解圆的各部分名称。

  2、会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。

  3、能正确熟练地掌握用圆规画圆的操作步骤。

  4、培养学生动手操作、主动探究、自主发现、交流合作的能力。

  三、教学流程;

  1、导入新课

  (1)学生活动(边玩边观察)。

  ①球、球相碰玩具表演。②线系小球旋转玩具表演。

  [教师要求学生将观察到的形状告诉大家,学生异口同声回答:圆形。这里,教师采用学生感兴趣的玩具表演活动,既直观形象,又易于发现,进而抽象出“圆”。学生从“玩”入手,不知不觉进入学习状态。学习兴趣浓厚,乐于参与,利于学习。]

  (2)师生对话(学生可相互讨论后回答)。

  教师:日常生活中或周围的物体上哪里有圆?

  学生:在钟面、圆桌、人民币硬币上……都有圆。

  教师:请同学们用手摸一摸,体会一下有什么感觉?

  学生用眼看一看、用手摸一摸,感觉:……闭封的、弯曲的。

  教师(多媒体演示:圆形物体→圆):这(指圆)和我们以前学过的.平面图形,有什么不同呢?

  学生:以前我们学过的平面图形如长方形、正方形、三角形、平行四边形和梯形的共同特征,都是由线段围成的直线图形。而我们现在看到的(指圆)这种图形是由曲线围成的图形。

  教师(鼓励表扬学生):对,这个图形就是圆,你能说说什么是圆吗?

  学生讨论后回答:圆是平面上的一种曲线图形。(这时,教师请同学们把眼睛闭上,在脑子里想圆的形状,睁开眼睛再看一看,再闭上眼睛想一想,能否记住它。)

  教师在此基础上揭示课题,并请学生回答:你还想认识圆的什么?学生说:还想认识圆的圆心、直径、半径……

  [这里通过生生交流、师生互动,形象感知、抽象概括,帮助学生正确建立“圆”的概念。]

  2、探索新知。

  (1)探究——圆心

  ① 徒手画圆。

  教师请两个学生一同在黑板上徒手画圆,然后请同学们评一评(3个人)谁画的圆好呢?……师生认为用工具画圆才能画得好。[师生共同表演、平等相待、大家评说、其乐融融。]

  ②用工具画圆。

  教师请同学们用自己喜欢的工具画圆。学生画圆:a.用圆规画圆;b.用圆形物体画圆。[画圆方法任学生自选,既体现因人而宜、因材施教,又体现尊重学生(个性)、教学民主。]

  ③找圆心。

  学生动手剪一剪、折一折,再议一议、找一找……自我探索发现圆的“圆心”。[教师放手让学生在动手操作中探索,在探索中发现新知,培养探究能力。]

  教师引导学生归纳小结:圆中心的一点叫做圆心,圆心用字母“O”表示。(学生在圆形纸片上点出圆心,标出字母。)

  ④游戏趣味题。

  在操场上,体育老师在地上画了一个大圆,给同学们做游戏。老师说,不管你站在什么位置,都会派上用场。你喜欢站在什么位置呢?请你点出来。

  [教师请学生边点边说明这点与圆的位置关系,同时给予评说。如学生点到“圆心”,师评说:“你很有雄心,喜欢别人围着你转,将来必成大器。”如学生点到“圆内”,师评说:“你比较守规矩,喜欢在一定的范围内活动,将来不容易犯错误。”如学生点到“圆上”,师评说:“你做事很有规律,能够遵循原则,同时与‘上司’相处喜欢保持一定距离。”如学生点到“圆外”,师评说:“你很了不起,思维活跃,思路开阔,做事不愿受条条框框的束缚,喜欢创新,有开拓精神,将来定会大有作为。”……这样教学,生动有趣,其乐无穷,激励性强,学生乐学,学得轻松愉快、积极主动。学生对圆、圆心、圆内、圆上、圆外等基本概念能够有深刻的理解。]

  (2)探究——圆的直径、半径及其关系。

  教师:你还想知道什么?

  学生:还想知道圆的直径、半径,直径与半径之间有什么关系?……

小学圆的教案15

  教学内容:

  教科书P 92-93例4、例5,试一试、练一练和练习十四第1-4题

  教学目标:

  1.使学生认识圆的周长,认识圆周率,理解和掌握圆的周长计算公式。应用圆的周长公式计算周长,解决周长计算的简单实际问题。

  2.使学生经历观察、操作、测量、计算和交流、归纳等活动过程,推导圆的周长计算公式,积累推导计算公式的学习过程,发展分析、综合和归纳、概括等思维能力。

  3.使学生进一步体验图形与生活的联系,感受平面图形的学习价值,积累参与实验探究,培养实事求是的科学态度,感受探索计算公式的成功,树立学习数学的自信心。

  教学重点:

  理解并掌握圆的'周长的计算公式

  教学难点:

  推导圆的周长公式

  教学过程:

  一、教学例4。

  1.谈话:同学们,我们经常听人们说:我买了一个28的自行车。我买了一个24英寸的彩电。这里的28和24英寸都是表示物体规格的数字。

  2.课件出示例4题目及图示,全班交流:你从图中了解哪些信息?

  3.小组交流:从你课前滚动大小不同的圆片的过程中,你有什么发现?

  4.课件演示车轮滚动,验证学生的发现。

  5.全班交流

  你觉得圆的周长和圆的什么关系?(直径越大,圆也就越大,所以周长也越长。因为直径是半径的2倍,所以说圆的周长跟半径也有关。)

  二、教学例5。

  1.课件出示例5,全班交流:这样的实验你们课前做了吗?

  2.拿出课前探究圆周长与圆的直径关系实验单,小组交流并演示自己的探究过程和结果。

  周长/cm 直径/cm 周长除以直径的商

  (保留两位小数)

  3.指名汇报,全班交流。

  ⑴ 各小组派一名同学展示实验记录单,介绍实验过程。

  ⑵ 纵观各组的实验结果,你们有什么发现?

  圆的周长总是直径的3倍多一些。

  4.学生自学课本93页,了解圆周率及我国古代数学家的杰出研究成果。

  5.概括圆周长公式。

  ⑴ 圆周率用字母表示,如果圆周长用字母C表示,直径用字母d表示,谁来说一说、C、d之间有什么关系?

  学生先在小组内交流再全班交流。

  (板书:Cd=,C=d ,C=d)

  ⑵ 求圆的周长用哪个公式?(C=d或C=2r)

  三、巩固拓展

  1.完成试一试

  ⑴ 学生独立计算。⑵ 全班展示交流。

  2.完成练一练。

  3.完成练习十四第1题。

  学生独立计算,再全班交流。

  4.完成练习十四第2题。

  ⑴ 学生独立计算。

  ⑵ 全班展示交流。

  ⑶ 学生订正。

  5.完成练习十四第3题。

  指名口头列式,学生集体计算。

  交流:为什么求是车轮的周长?

  6.完成练习十四第4题。

  学生独立计算后再汇报交流。

  四、总结延伸

  本节课,你有哪些收获?还有什么疑问?

【小学圆的教案】相关文章:

小学数学圆的面积教案03-13

小学数学教案圆的认识11-17

圆认识教案03-17

圆的面积教案03-12

《圆的方程》教案11-02

圆的认识教案03-30

圆的认识教案(经典)09-22

圆的面积教案07-31

《圆的复习》教案07-07