《用三种方式表示二次函数》教案

时间:2022-08-27 01:06:14 教案 我要投稿
  • 相关推荐

《用三种方式表示二次函数》教案

  作为一位无私奉献的人民教师,就有可能用到教案,教案是教学活动的总的组织纲领和行动方案。那么你有了解过教案吗?下面是小编为大家收集的《用三种方式表示二次函数》教案,欢迎大家分享。

《用三种方式表示二次函数》教案

《用三种方式表示二次函数》教案1

  学习目标:

  1、能够分析和表示变量间的二次函数关系,并解决用二次函数所表示的问题。

  2、用三种方式表示变量间二次函数关系,从不同侧面对函数性质进行研究。

  3、通过解决用二次函数所表示的问题,培养学生的运用能力

  学习重点:

  能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。

  能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究。

  学习难点:

  能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。

  学习过程:

  一、学前准备

  函数的三种表示方式,即表格、表达式、图象法,我们都不陌生,比如在商店的广告牌上这样写着:一种豆子的售价与购买数量之间的关系如下:

  x(千克) 0 0。5 1 1。5 2 2。5 3

  y(元) 0 1 2 3 4 5 6

  这是售货员为了便于计价,常常制作这种表示售价与数量关系的表,即用表格表示函数。用表达式和图象法来表示函数的情形我们更熟悉。这节课我们不仅要掌握三种表示方式,而且要体会三种方式之间的联系与各自不同的特点,在什么情况下用哪一种方式更好?

  二、探究活动

  (一)合作探究:

  矩形的周长是20cm,设它一边长为 ,面积为 cm2。 变化的规律是什么?你能分别用函数表达式、表格和图象表示出来吗?

  交流完成:

  (1)一边长为x cm,则另一边长为 cm,所以面积为: 用函数表达式表示: =________________________________。

  (2) 表格表示:

  1 2 3 4 5 6 7 8 9

  10—

  (3)画出图象

  讨论:函数的图象在第一象限,可是我们知道开口向下的`抛物线可以到达第四象限和第三象限,思考原因

  (二)议一议

  (1)在上述问题中,自变量x的取值范围是什么?

  (2)当x取何值时,长方形的面积最大?它的最大面积是多少?你是怎样得到的?请你描述一下y随x的变化而变化的情况。

  点拨:自变量x的取值范围即是使函数有意义的自变量的取值范围。请大家互相交流。

  (1)因为x是边长,所以x应取 数,即x 0,又另一边长(10—x)也应大于 ,即10—x 0,所以x 10,这两个条件应该同时满足,所以x的取值范围是 。

  (2)当x取何值时,长方形的面积最大,就是求自变量取何值时,函数有最大值,所以要把二次函数y=—x2+10x化成顶点式。当x=— 时,函数y有最大值y最大= 。当x= 时,长方形的面积最大,最大面积是25cm2。

  可以通过观察图象得知。也可以代入顶点坐标公式中求得。。

  (三)做一做:学生独立思考完成P62,P63的函数表达式,表格,图象问题

  (1)用函数表达式表示:y=________。

  (2)用表格表示:

  (3)用图象表示:

  三、学习体会

  本节课你有哪些收获?你还有哪些疑问?

  四、自我测试

  1、把长1。6米的铁丝围成长方形ABCD,设宽为x(m),面积为y(m2)。则当最大时,所取的值是( )

  A 0。5 B 0。4 C 0。3 D 0。6

  2、两个数的和为6,这两个数的积最大可能达到多少?利用图象描述乘积与因数之间的关系。

  3、把一根长120cm的铁丝分为两部分,每一部分均弯曲成一个正方形,它们的面积和是多少?它们的面积和的最小值是多少?

  (选作题)边长为12的正方形铁片,中间剪去一个边长为x(cm)的小正方形铁片,剩下的四方框铁片的面积y(cm2)与x(cm)之间的函数表达式为

《用三种方式表示二次函数》教案2

  教学目标

  1、经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点

  2、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题

  3、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究

  教学重点和难点

  重点:用三种方式表示变量之间二次函数关系

  难点:根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究

  教学过程设计

  一、从学生原有的认知结构提出问题

  这节课,我们来学习二次函数的三种表达方式。

  二、师生共同研究形成概念

  1、用函数表达式表示

  ☆做一做书本P56矩形的周长与边长、面积的关系

  鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的'关系。

  比较全面、完整、简单地表示出变量之间的关系

  2、用表格表示

  ☆做一做书本P56填表

  由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。

  表格表示可以清楚、直接地表示出变量之间的数值对应关系

  3、用图象表示

  ☆议一议书本P56议一议

  关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。

  可以直观地表示出函数的变化过程和变化趋势

  ☆做一做书本P57

  4、三种方法对比

  ☆议一议书本P58议一议

  函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。

  在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。

【《用三种方式表示二次函数》教案】相关文章:

二次函数教案07-28

二次函数教案15篇02-20

二次函数教学反思04-16

二次函数说课稿05-18

初三二次函数教学反思04-08

数学二次函数教学反思04-22

数学二次函数教学反思04-22

正弦函数、余弦函数图像教案02-25

数学二次函数教学反思(精选18篇)05-12