分数乘法教案

时间:2022-02-27 05:25:50 教案 我要投稿

分数乘法教案汇总六篇

  在教学工作者实际的教学活动中,就有可能用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么你有了解过教案吗?下面是小编精心整理的分数乘法教案6篇,欢迎阅读,希望大家能够喜欢。

分数乘法教案汇总六篇

分数乘法教案 篇1

  教学目标

  1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。

  2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。

  3.培养学生分析、解决问题的能力,以及知识迁移的能力。

  4.培养学生良好的审题习惯。

  教学重点和难点

  1.会分析数量关系,掌握解题思路,正确解答。

  2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。

  教学过程

  导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)

  (一)复习铺垫

  1.说图意填空。(投影)

  问:谁是单位1?

  2.说图意回答问题。(投影)

  问:①谁和谁比,谁是单位1?

  3.准备题:

  (做在练习本上,画图列式计算,一个学生到黑板板演。)

  教师订正讲评。

  提问:①谁是单位1?

  ③要求用去多少吨就是求什么?

  少。)

  ④根据什么用乘法计算?

  (根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)

  师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)

  (二)学习新课

  1.学习例4。

  (1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)

  (2)分析数量关系。(同桌互相说。)

  提问:单位1变了吗?单位1是谁?

  请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。

  学生汇报结果,让学生说解题思路,老师一边把图补充完整。

  =2500-1500

  =1000(吨)

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。

  师追问:求用去多少吨你是怎么想的?

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求

  (3)引导学生比较:这两种解法在思路上有什么相同点和不同点?

  相同点:两种解法都是经过两步计算。

  不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。

  第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。

  (4)练习做一做(1):

  昆虫标本有多少件?

  (做完让学生说解题思路、投影订正。)

  2.学习例5。

  六月份捕鱼多少吨?

  (1)读题找出条件、问题。

  (2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)

  问:①谁和谁比,谁是单位1?

  (3)列式解答。

  师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。

  学生汇报结果。(老师板书列式)

  答:六月份捕鱼3000吨。

  师追问:你是怎么想的?

  生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。

  师再追问:怎样求六月份比五月份多捕的吨数?

  捕的`吨数。

  答:六月份捕鱼3000吨。

  师追问:怎么想的?

  生:把五月份的吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。

  师问:这两种解法有什么联系和区别?

  (联系:两种解法都利用了分数乘法的意义求已知数的几分之几。区别:解题思路不同。)

  (4)练习做一做(2)。

  答。

  (三)巩固练习

  1.补充问题并列式解答。(复合投影片)

  ________?

  2.选择正确答案的序号填在( )里。

  包?列式是

  [ ]

  [ ]

  A.乙队修了多少米?

  B.乙队比甲队多修多少米?

  C.甲队比乙队多修多少米?

  D.乙队比甲队少修多少米?

  (3)根据条件和问题列出算式。

  已知一袋大米重40千克。

  (四)课堂总结

  今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?

  (复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)

  课堂教学设计说明

  (1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。

  (2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。

  (3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。

分数乘法教案 篇2

  教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

  教学目标:

  1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

  2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

  3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

  教学重点:掌握分数乘整数的计算方法。

  教学难点:理解分数乘整数和一个数乘分数的意义。

  教学准备:课件。

  教学过程:

  一、情境创设,探求新知

  (一)探索分数乘整数的意义

  1.教学例1(课件出示情景图) 师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

  师:想一想,你还能找出不一样的方法验证你的计算结果吗?

  2.小组交流,汇报结果 预设:(1)(个);(2)(个);(3)(个);(4)3个就是6个就是,再约分得到(个)。(根据学生发言依次板书)

  3.比较分析 师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?

  预设: 生1:每个人吃个,3个人就是3个相加。

  生2:3个个相加也可以用乘法表示为。

  提出质疑:3个相加的和可以用乘法计算吗?为什么?

  预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

  引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

  师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

  引导说出:这两个式子都可以表示“求3个相加是多少”。

  师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

  4.归纳小结

  通过刚才的学习,我们知道了这三个算式解决的`是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。(二)分数乘整数的计算方法

  1.不同方法呈现和比较 师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,的计算过程用式子该如何表示?

  预设: 生1:按照加法计算=(个)。 生2:(个)。

  师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。

  2.归纳算法 师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢? 引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

  3.先约分再计算的教学

  师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

  预设:一种算法是先计算再约分,另一种是先约分再计算。

  师:比较一下,你认为哪一种方法更简单?为什么? 小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

  二、巩固练习,强化新知

  1.例1“做一做”第1题 师:说出你的思考过程。

  2.例1“做一做”第2题 师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。

  三、探索一个数乘分数的意义

  教学例2(课件出示情景图)

  (1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

  预设1:求3桶共有多少升?就是求3个12 L的和是多少。 预设2:还可以说成求12 L的3倍是多少。

  预设3:单位量×数量=总量,所以12×3=36(L)。 (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。) 交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的是多少。” (3)出示第2小题学生自练。引导说出:“12×表示求12 L的是多少。”在这里都是把12 L看作单位“1”。

  (4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。) 归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

  四、课堂练习,深化理解

  1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的,吃了多少千克? 师:你能说说这个算式表示的意义吗?“求3千克的是多少。”

  2.比较两种意义 出示:一袋面包重千克,3袋重多少千克?

  师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

  预设1:一个是分数乘整数,另一个是整数乘分数。

  预设2:它们表示的意义相同但有所区别。 引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。 师:那么,它们有什么是相同的呢?(计算方法和结果)

  五、联系实际,灵活运用 1.算式可以列成 × ,表示 ;或者表示 ;

  也可以列成 × ,表示 。

  师:选择一个算式进行计算,想一想,计算时要注意什么?

  2.比较练习

  (1)一堆煤有5吨,用去了,用去了多少吨?

  (2)一堆煤有吨,5堆这样的煤有多少吨?

  3.拓展练习

  1只树袋熊一天大约吃 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

  六、课堂小结,拓展延伸

  1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

分数乘法教案 篇3

  教学目标

  1.进一步理解分数乘整数的意义。

  2.掌握分数乘整数的计算法则。

  3.能够熟练准确地计算分数乘整数的计算题。

  教学重点

  分数乘整数的计算方法,能正确计算。

  教学难点

  理解先约分再计算能使计算简便。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、复习分数乘整数的意义及计算法则

  二、出示例题

  1.出示3/4×6

  教师引导学生能不能先约分再计算。

  学生得出结论后教师讲解先约分后计算的'格式。

  你会填吗?

  1/6+1/6+1/6+1/6=1/6×()

  3/4+3/4+3/4+3/4+3/4

  =3/4×()

  2/25+2/25+2/25

  =2/25×()

  在计算分数乘整数时,用分数的分子(),分母()。

  学生先用计算法则进行计算后进行约分。

  学生进行计算并比较两种方法那种方法简单。

  复习巩固分数乘整数的计算方法。

  进一步应用分数乘整数的计算方法,体验先约分再计算。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  2.练习

  完成课本第3页的做一做

  三、综合练习

  1.练一练第1题

  2.教师指导完成练一练第2题

  学生完成后还可以估一估一个月、一年能滴多少水。

  四、布置作业

  完成练一练第3、4、5题

  学生独立完成做一做

  学生通过涂一涂,可以得到结果为10/15,再约分得到2/3。学生也可以先约分再计算。

  学生根据老师的指导进行计算,并解释结果的实际意义。

  借助图形语言,加深学生对分数乘整数的意义的理解。

  巩固分数乘整数的计算方法,培养学生的节约意识。

  板书设计:

  分数乘整数

  复习题:出示例题3/4×6

分数乘法教案 篇4

  教学目标:

  1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

  2、发展学生思维,侧重培养学生分析问题的能力。

  教学重点:理解数量关系。

  教学难点:根据多几分之几或少几分之几找出所求量的对应分率。

  教学过程:

  一、复习

  1、口答:把什么看作单位1的量,谁是几分之几相对应的量?

  (1)一块布做衣服用去。(2)用去一部分钱后,还剩下。

  (3)一条路,已修了。(4)水结成冰,体积膨胀。

  (5)甲数比乙数少。

  2、口头列式:

  (1)32的是多少?(2)120页的是多少?

  (3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?

  (4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?

  3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

  4、根据学生回答,出示例4,并指出:这就是我们今天要学习的稍复杂的分数乘法应

  用题。

  二、新授

  1、教学例2

  (1)运用线段图帮助学生分析题意,寻找解题方法。

  (2)让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位1的量?让后把线段图表示完整。

  (3)四人小组讨论,根据线段图提出解决办法,并列式计算。

  解法一:80-80=80-10=70(分贝)

  (4)鼓励学生根据题意、结合线段图,想出第二种解答方法。

  解法二:80(1-)=80=70(分贝)

  (5)学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的方法求出这个部分量。

  2、巩固练习:P20做一做

  3、教学例3

  (1)读题理解题意后,提出婴儿每分钟心跳的次数比青少年多表示什么意思?(组织学生讨论,说说自己的理解)

  (2)引导学生将句子转化为婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的。着重让学生说说谁与谁比,把谁看作单位1。

  (3)出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。

  解法一:75+75=75+60=135(次)

  解法二:75(1+)=75=135(次)

  4、巩固练习:P21做一做(列式后让学生说说算式各部分表示什么)

  三、练习

  1、练习五第2、3题:引导学生抓住题目中关键句子分析,找到谁与谁比,谁是表示单位1的量。

  2、练习五第3、4题:学生依据例题引导的解题方法,独立完成3、4题。

  四、布置作业

  练习五第7、8、9、10题。

  教学追记:

  例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的`思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位1,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。

分数乘法教案 篇5

  教学内容:课本练习四的第6~10题。

  教学目的:

  1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。

  2.培养分析能力,发展学生思维。

  教学重点:正确分析数量关系,找准单位1

  教学难点:依题意正确画图教学过程:

  一、复习。

  1.先说出下列各算式表示的意义,再口算出得数。

  2.指出下面每组中的两个量,应把谁看作单位1。

  (1)梨的筐数是苹果的。

  (2)梨的筐数的和苹果的筐数相等。

  (3)白羊只数的等于黑羊的只数。

  (4)白羊的只数相当于黑羊的。

  3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

  (1)有40筐苹果,梨的筐数是苹果的。()?

  (2)梨的筐数是和苹果的筐数相等,有40筐。()?

  (3)有40只白羊,白羊的只数的等于黑羊的只数。()?

  (4)白羊的只数相当于黑羊的,有40只黑羊。()?

  二、新授。

  1.出示例3。

  小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?

  (1)指名读题,说也已知条件和问题。

  (2)怎样用线段图表示已知条件和问题。

  先画一条线段,表示谁储蓄的钱数?为什么?

  学生回答后,教师画线段图。

  再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

  根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

  然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

  根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

  教师画:

  (2)分析数量关系。

  引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的`应用题。

  (3)确定每一步的算法,列式计算。

  ①求小华储蓄的钱数怎样想?

  引导学生回答:根据小华储蓄的钱数是小亮的

  把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

  (元)

  ②求小新储蓄的钱数怎样想?

  引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

  (元)

  把上面的分上步算式列成综合算式,该怎样列?

  (元)

  (4)检验,写答语。答:小新储蓄了10元。

  2.做一做。

  让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

  3.小结。

  从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

  学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

  三.巩固练习。

  完成练习四的第6、7题。

  四、全课小结。

  这节课我们共同研究了什么?

  解答这类分数乘法两步应用题关键是什么?

  五、布置作业。

  完成练习四的第8~10题。

  教学反馈:

分数乘法教案 篇6

  教学目标

  1.理解和掌握“求一个数的几分之几是多少”的分数应用题的结构和解题方法.

  2.渗透对应思想.

  教学重点

  理解应用题中的单位“1”和问题的关系.

  教学难点

  1.理解“求一个数的几分之几是多少”的应用题的解题方法.

  2.正确灵活的判断单位“1”.

  教学过程

  一、复习、质疑、引新

  1.说出 、 、 米 的意义.

  2.列式计算

  20的 是多少?6的 是多少?

  学生完成后,可请同学说一说这两个题为什么用乘法计算?

  3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算.这是乘

  法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(出示课题:分数应用题)

  二、探索、质疑、悟理

  (一)教学例1(也可以结合学生的`实际自编)

  学校买来100千克白菜,吃了 ,吃了多少千克?

  1.读题.理解题意,知道题中已知条件和所求问题;搞清数量间的关系.

  2.分析.

  教师提问:重点分析哪句话呢?“吃了 ”这句话是分率句.是什么意思呢?

  (就是把100千克白菜平均分成5份,吃了这样的4份).

  3.画图.(演示课件:分数乘法应用题1)

  画图说明:a.量在下,率在上,先画单位“1”

  b.十份以里分份,十份以上画示意图.

  c.画图用尺子,用铅笔.

  4.尝试解答.

  解法一:用自己学过的整数乘法做

  (千克)

  解法二:

  5.小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答.

  (二)巩固练习

  六年级一班有学生44人,参加合唱队的占全班学生的 ,参加合唱队有多少人?

  1.把哪个数量看作单位“1”?

  2.为什么用乘法计算?

  (三)教学例2

  例2.小林身高 米,小强身高是小林的 ,小强身高多少米?

  1.演示课件:分数乘法应用题2

  2.求参加合唱队有多少人实际上就是求 米的 是多少,数学教案-分数乘法应用题,小学数学教案《数学教案-分数乘法应用题》。

  3.列式: (米)

  答:小强身高 米.

  (四)变式练习

  小强身高 米,小林身高是小强的 倍,小林身高多少米?

  三、归纳、总结

  1.今天所学题目为什么用乘法计算

  2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?

  共同点:都是已知单位“1”和分率,求单位“1”的几分之几是多少。

  从分率可入手分析

  四、训练、深化

  (一)先分析数量关系,再列式解答

  1.一只鸭重 千克,一只鸡的重量是鸭的 ,这只鸡重多少千克?

  2.一个排球定价36元,一个篮球的价格是一个排球的 ,一个蓝球多少元?

  (二)提高题

  1.一桶油400千克,用去 ,用去多少千克?还剩多少千克?

  2.一桶油400千克,用去 吨,用去多少千克?还剩多少千克?

  五、课后作业

  (一)修路队计划修路4千米,已经修了 。修了多少千米?

  (二)一头鲸长7米,头部长占 。这头鲸的头部长多少米?

  (三)成昆铁路全长1100千米,桥梁和隧道约占全长的 。桥梁和隧道约长多少千米?

  六、板书设计

  数学教案-分数乘法应用题

【分数乘法教案】相关文章:

分数乘法教案02-02

分数乘法教案优秀10-29

精选分数乘法教案四篇06-15

分数乘法教案15篇02-10

分数乘法教案合集五篇01-18

分数乘法数学教案02-13

分数乘法说课稿01-15

有关分数乘法教案汇总八篇03-13

精选分数乘法教案汇总七篇07-09