圆的周长教案

时间:2022-03-29 14:57:17 教案 我要投稿

【精品】圆的周长教案3篇

  作为一位杰出的教职工,常常要写一份优秀的教案,借助教案可以提高教学质量,收到预期的教学效果。写教案需要注意哪些格式呢?以下是小编整理的圆的周长教案3篇,欢迎阅读与收藏。

【精品】圆的周长教案3篇

圆的周长教案 篇1

  【教学内容】

  义务教育课程标准北师大版试验教材六年级上册第一单元第1112页圆的周长。

  【教学目标】

  1、认识圆的周长,能用滚动、线绕等方法测量圆的周长。

  2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义用圆周长的计算方法。

  3、能正确地计算圆的周长,能运用圆的周长解决一些简单的实际问题。

  【教学重、难点】

  1、探索发现圆的周长与直径的关系;

  2、运用圆周长的知识解决一些简单的实际问题。

  【教具、学具准备】

  1、每小组一根小绳、一个米尺、三个大小不同的圆片、计算器。

  2、课件1:阿凡提与国王比赛A、B

  课件2:圆的周长与直径的商的关系

  课件3:祖冲之有关资料

  【教学设计】

  【教学过程 】

  一、创设情境

  师:同学们喜欢童话故事吗?今天,老师带来了一个阿凡提的故事。 国王多次受到阿凡提的捉弄,非常恼火。有一天,他又想出了一个新招,想为难阿凡提。国王从全国精选出了一头身强力壮的小花驴要和阿凡提的小黑驴赛跑,并且规定小花驴沿着圆形路线跑,小黑驴沿着正方形路线跑。(课件出示小花驴和小黑驴赛跑)

  50米

  师:同学们看,比赛开始了 紧张的比赛结束了。今天的比赛谁获胜了?

  生:国王的小花驴获得了胜利

  师:可是,对于这场比赛小黑驴觉得很委屈,阿凡提也大喊比赛不公平。同学们你们觉得这样的比赛公平吗?

  师:说说你是怎么想的?

  生:他们的小毛驴跑的`路程不是一样长。

  师:那到底他们的路程是不是一样长呢?你们有什么好办法来判断一下呢?

  生:量一量就知道了,

  师:谁能说说正方形的周长和什么有关系,有怎样的关系?

  生:正方形的周长和边长有关系,周长是边长的4倍,

  师:也就是说只要测出正方形的一条边长就可以 知道正方形的周长,是吗?那小花驴围着圆形路线跑一圈的长度又是圆的什么呢 ?

  师:有的同学反映可真快,对!这就是圆的周长,这也是我们这节课要研究的内容。(板书课题)谁能说一说什么叫圆的周长?同桌可以交流一下。

  得出:围成圆的曲线的长叫圆的周长。

  二 自主合作,探究新知

  (1)发现测量圆的周长的不同方法

  师:下面请同学们把准备的圆拿出来,那圆的周长指的是哪一部分的长,同桌互相比画一下。

  师:好,想一想圆的周长怎样测量?(给学生独立思考的时间)

  师:把你的好方法在小组内交流一下。

  (上台交流测量的方法)

  生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长,

  生:我们小组觉得直接用米尺绕圆一周就可以读出圆的周长。

  生:我们把圆沿着尺子滚动一周,这一周的距离就是圆的周长,

  生:我们小组还有不同的方法,我们是用线量出圆周长的一半在乘以2,就可以求出圆的周长。

  师板:线绕、滚动、拉直 化曲为直

  (2)探究发现圆周率和圆的计算公式

  师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出圆形跑道的周长是多少?

  生:不行,圆太大了,测量不出来!

  师:哦,太大了不容易测量。那大家看,老师画一个小圆,你能不能帮老师测量出来它的周长?

  生:有些圆的周长没办法用绕线和滚动的方法测量出来

  师: 那咱们能找到一种更简便、更科学的办法来解决这个问题吗?

  师:我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?

  生:圆的周长和圆的直径有关系,直径越长圆越大,所以周长也就越大,

  师:有道理!那大家来猜一猜,周长和直径有怎样的关系?

  生:周长是直径的2倍, 生:他们一样长, 生:我觉得这个圆的周长是直径的3倍,(4倍)(3.5倍)

  师:大家猜得可真起劲呀!那到底圆的周长和直径有什么关系呢?怎么才能知道?

  生:动手量一量,算一算,

  师:说的真好,这可是解决问题的好办法动手做来验证一下。同学们想试试吗?每组拿出大小不同的三个圆,你们可以用自己喜欢的方法去测量。听好要求:1、小组同学作好分工,选好测量员、记录员、汇报员。2、记录员要及时地把测量员测量的数据记录在书上的表格里。3、可以用科学计算器帮忙算一算周长和直径的商。

  3、可以用科学计算器帮忙算一算周长和直径的商。

  师:好,现在我们来交流一下你们的实验结果。

  生:实物展台交流。

  师:大家仔细观察分析,看能发现什么?

  (厘米) 圆的直径

  (厘米) 周长与直径的商

  (保留两位小数)

  生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的商都是三点几。

  生:所有圆的周长都是直径的3倍多一些,

  师:看来大家的发现都一样,那我们再来看看电脑小博士是不是也发现了这样的规律?(课件直观展示三倍多一点)

  生:圆不论大小,它的周长都是直径的三倍多一些。

  师:说得真好。圆不论大小,它的周长都是直径的三倍多一些。这是个固定不变的数,!你们的这个发现和许多大数学家的发现不谋而合,

  师:人们通常把圆的周长和直径的这个比值叫做圆周率,用字母表示。(板书:圆的周长直径=圆周率)

  师:关于圆周率,大家都知道什么?你说,

  生:我知道我国古代有个数学家较祖冲之好象和圆周率有关系,

  师:老师也收集了一些有关的资料,大家想看吗?

  看屏幕,这就是祖冲之,(课件介绍祖冲之 )

  师:我们通过圆的周长除以直径得到了也就是圆周率(板书:Cd=)你能通过圆的直径求它的周长吗?用字母表示出来。通过半径能求圆的周长吗?

  生回答、师板书:Cd= C= C=d

  d=2r C=2 C2=r

圆的周长教案 篇2

  一、指导思想与理论依据:

  《新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

  根据这一理念,在本节课的设计上,我突出两点,一是让学生主动经历数学结论的猜想动手操作,实践验证以及表述的过程;二是对学生放手,还学生自主的空间,自主探究,合作交流的学习方式贯穿课堂的始终。

  二、教材及学情分析:

  教材是在学生掌握了长方形和正方形周长,并初步认识了圆的基础上学习的。它是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。学情分析:学生虽然有计算直线图形周长的基础,但第一次接触曲线图形,概念比较抽象不容易理解,推导圆周长的计算方法、理解圆周率的含义会有一定的困难。

  三、教学目标、重点及难点:

  1、知识和技能:

  使学生直观认识圆的周长,掌握圆的周长的计算方法,理解圆周率的意义,并能正确灵活应用计算公式解决简单的实际问题。

  2、过程与方法:

  (1)通过组织学生观察和实验等活动,引导学生经历“猜想-验证-归纳、概括”的学习过程,认识圆周率。

  (2)经历圆的周长计算公式的发现、探索过程,培养学生分析、抽象、概括,以及发现规律的能力。

  3、情感与态度:

  (1)通过学生动手操作、发现,激发学习兴趣,使学生体验探究问题的乐趣;

  (2)结合圆周率的介绍,使学生受到爱国主义科学精神的教育。

  (3)在解决问题过程中,增强应用意识。

  教学重点:

  让学生利用实验的.手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

  教学难点:

  对圆周率的认识。

  教学准备:

  ⒈圆形物体实物,。

  ⒉每个学生准备三个大小不同的圆片,一根线,一把直尺。

  四、教法:

  1、自主探究法。通过学生动手实践,寻求测量圆周长的方法,培养学生动手操作的能力,激活学生的思维。

  2、合作交流法。合作交流是学生学习数学的主要方式。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。

  五、主要教学环节与设计:

  通过以下环节教学本课:

  一、创设情境,初步感知二、合作交流,探究新知三、实践应用,解决问题四、畅谈收获,课外延伸

  六、教学过程:

  第一个环节:创设情境,初步感知师:

  哪些同学会骑自行车?在骑车时,车轮向前滚动一周,行驶了多长的路程?怎样计算?(出示车轮向前滚动的录像。)

  生:求行驶多长的路程就是求圆形的周长。

  师:今天就来学习怎样计算圆的周长。

  此环节的设计目的:从学生熟悉的自行车入手,让学生感知求车轮滚动一周就是求圆的周长,激发学生学习新知的兴趣。

  第二个环节:合作交流、探究新知

  (一) 直观感知什么圆的周长通过以下活动帮助学生认识什么是圆的周长。

  1、请你指出老师手中圆形物体的周长。准备一些实物有硬币、茶杯垫,让学生用手在圆周上滑摸等方式认识并理解圆的周长。

  2、分析比较长方形、正方形和圆的周长各有什么不同?

  3、指一指、描一描自己手中圆片的周长。

  设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。更增强了对圆周长的感性认识,并形象理解圆周长的意义。

  (二)探究圆周长的计算方法

  圆周长计算公式的推导这一内容,我安排了三个环节:

  1、揭示矛盾,产生探索新知欲望。请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  预设的几种情况:

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绳子缠绕实物圆一周并拉直;

  (3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

  小结:以上的几种方法都是要“化曲为直”。

  出示地球图片。

  如果要计算地球赤道一周的长度,用刚才的绕线法、滚动法显然都无法测量怎么办?我们需要探讨求圆周长的一般方法。

  设计意图:这个过程中让学生明白 “缠绕”、“滚动” 的方法是有局限性的,引发其探索“计算公式”的积极性、必要性,为深入研究圆周长的计算问题作好了“心理”铺垫。这样的矛盾,反而更能激发学生的求知欲。2、操作实验,探究圆周长计算方法在这一内容中,探究圆周率,理解圆周率是本课的难点,因此我设计让学生分小组合作,通过“猜想——实验验证——归纳概括得到结论”来完成。

  (1)猜想,目的是让学生体会周长与直径之间的关系,重点解决“周长与什么有关”的问题。

  师:圆的周长与它的什么有关呢?

  生:圆的周长与它的直径有关。圆直径长,周长就大;直径短,圆周长就小。

  (2)实验验证,目的是让学生发现周长与直径之间固定的倍数关系,重点解决“周长与直径有怎样的实质关系”的问题。

  师:我们知道正方形周长是边长的4倍,那么圆的周长是直径的几倍呢?我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

  请同学们分组做个小实验,请利用手中的学具,用你喜欢的方法验证圆的周长与直径的倍数关系,记录在表格中。请你按照“我们组利用什么方法——过程怎样——结果如何”的顺序汇报实验过程

  小组汇报:

  生:我们测量的第一个圆直径是10厘米,周长是31厘米,周长是直径的3.1倍。第二个圆直径是2厘米,周长是6.5厘米,周长是直径的3.25倍。第三个圆直径是5.5厘米,周长是16.5厘米,周长是直径的3倍。

  师:通过计算你们发现了什么?

  生:每个圆的周长,都是它的直径长度的3倍多一些。

  追问:那么是不是所有的圆周长与它直径都有这种关系呢?

  最后师生共同概括出:任何一个圆的周长总是它的直径长度的3倍多一些。

  师:由于测量时存在误差,导致结果不太一样,这很正常。你们的研究结果已经很接近数学家的结果了。谁知道我们把这个3倍多一些的数叫做什么?

  生:圆周率。

  师:你对圆周率还有哪些了解?

  这个3倍多一些的数经过数学家周密计算发现是一个固定不变的数,我们把这个倍数叫做圆周率。读作π。对圆周率的发现最杰出的贡献者是祖冲之。圆周率是一个无限小数,在科技飞速发展的今天,计算机已经计算到了小数点后上亿位。小学阶段取它的近似值为3.14。板书:π≈3.14(出示相关的资料)

  设计意图:通过同学们在小组中操作、交流、观察等活动,亲历感悟发现知识,达到理解的目的。圆周率有的学生早已知道,圆周率的有关知识是在师生共同补充交流中得到的,体现以学生为主体。祖冲之的事迹是一个非常好的爱国主义教育的典型。使学生感受到中国文化的博大精深,发展学生的情感态度价值观目标。

  (3)得出结论师:你知道圆周长的计算方法了吗?

  生:知道。

  板书公式:C=πd,C=2πr

  设计意图:推导圆周长公式,解决好了圆周率的问题,圆的周长的计算方法只是水到渠成的结果。

  第三个环节:实践应用,解决问题

  这一环节是对我们所探究结果的运用,即运用圆周长的计算公式来解决生活中的实际问题。

  1、解决刚上课时提出的问题:车轮向前滚动一周,行驶了多长的路程?做到首尾呼应。

  2、设计了三道有梯度的练习:①d=5米, C=?②r=5厘米 C=?③C=6.28米d=?3、明辨是非,下面的说法对吗?

  ①π=3.14( )

  ②大圆的圆周率小于小圆的圆周率。( )

  ③圆的周长是它的半径的2π倍。( )

  意图:设计有关圆周率的判断,是帮助学生巩固新概念,加深对圆周率的理解。

  第四个环节:畅谈收获,课外延伸作业:

  赤道就像地球的“腰带”,它的长度大约是4万千米。你知道地球的半径大约是多少吗?

  设计意图:在课堂即将结束时,我设置了与前面相呼应的求赤道周长的课外的拓展。这样的设置,把课堂的教学延伸到课外,提高学生的学习能力。

  你有什么收获?(引导学生总结所学内容,学习方法,获得情感态度等体验。)

  七、板书设计:

  圆的周长

  化曲为直 圆的周长÷直径=圆周率

  C÷d=π 3.14×20=62.8(英寸)

  C= πd 答:车轮向前滚动一周,行驶了62.8英寸。

  C=2πr

圆的周长教案 篇3

  教学内容:

  圆的周长的综合练习

  教学目标:

  通过练习,使学生加深对圆的认识,能正确计算圆的周长,并能根据圆的周长求这个圆的半径或直径。

  教学重点:

  理解圆的半径、直径、周长之间的关系

  教学难点:

  能运用知识解决一些实际问题

  教学过程:

  一、揭示课题

  今天这节课,我们把学习圆的有关知识进行整理一下,并通过一些练习来巩固这方面的知识。

  板书课题:圆的周长

  二、练习指导

  基本练习(口答)

  ⑴在同一个圆内,所有的半径( ),所有的直径( ),直径是半径的( ),半径是直径的'( )。

  ⑵( )决定圆的位置,( )决定圆的大小。

  ⑶什么是半径?什么是圆的直径?

  ⑷圆的周长总是它直径的( )倍,它是一个固定不变的数,用字母( )表示。

  练习指导

  1、求下面各圆的周长

  d=2米 d=1.5厘米 r=6分米

  2、求下面各圆的直径

  C=28.26厘米 C=50.24米

  3、求下面各圆的半径

  C=12.56米 C=314厘米

  以上几题均由学生板演,其余齐练

  全班讲评,订正

  三、解决实际问题

  1、一根绳子长6.28米,在一根圆木上,正好绕了5圈,这根圆木的直径是多少?

  2、一面钟的分针长14厘米,经过一小时,分钟针尖可划过多少厘米?

  3、小明的自行车轮胎的直径是0.6米,小明骑一分钟车轮转动了100圈。

  ①他一分钟可行驶多少米?

  ②他要通过2180米长的大桥,大约需要几分钟?

  四、课终小结

  今天我们练习了什么?你有什么收获?

【圆的周长教案】相关文章:

圆的周长教案01-10

《圆的周长》教案02-06

圆的周长教案15篇02-08

圆的周长教案(15篇)03-13

《圆的周长》说课稿07-14

【推荐】圆的周长教案3篇02-26

关于圆的周长教案4篇03-12

【实用】圆的周长教案3篇02-14

【实用】圆的周长教案4篇02-13