轴对称图形教案

时间:2022-04-24 09:55:43 教案 我要投稿

轴对称图形教案

  作为一位不辞辛劳的人民教师,常常需要准备教案,编写教案助于积累教学经验,不断提高教学质量。教案应该怎么写才好呢?以下是小编为大家整理的轴对称图形教案,仅供参考,希望能够帮助到大家。

轴对称图形教案

轴对称图形教案1

  教学目标

  1、初步认识轴对称图形,理解轴对称图形的含义,能找出对称图形的对称轴,并能用自己的方法创造出轴对称图形。

  2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。

  3、引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。

  教学准备

  教师:多媒体教学等。

  学生:白纸、彩纸、剪刀、颜料、钉子板等学习材料一份。

  教学过程

  一、“玩”对称,谈话激趣

  课前交流:从“玩”这一话题引入,结合师生的撕纸作品,自然引入新课学习,激发学生的兴趣。

  (今天有这么多老师来听课,我有点担心。同学们你们知道老师担心什么吗?其实老师是担心我们六(1)班的同学不会“玩”。你们会不会玩?老师这有一张白纸,说一说你会玩什么? 想知道我会怎么玩这张纸呢?先把这张纸对折,然后从折痕的地方任意的撕下一块。虽然任意,但撕得还是挺认真的。你们会不会像老师这样玩呢?每人都有机会,不妨请大家也来玩一玩。)二、“识”对称,体悟特征

  (谁愿意把自己的作品给大家展示一下?

  如果我们把这些看做一个个图形的话,这些图形的大小?形状?但是你们有没有发现这些图形有一个共同的地方?

  板书:轴对称图形

  刚才同学们给这些图形一个名称,关于他们的特点我们还有待于深入的研究。这些图形除了左右两边一样外,试想一下,如果把这些图形的左右两边对折的话会出现什么样的情形呢?我想了解一下你手中的作品有没有这样的特点?请同学们自己试着折一折。

  既然这样的图形对折以后左右两边都重合,那么这样的图形用“轴对称图形”这个名称合适不合适?为什么合适?说说你的理由。1. 结合学生的`撕纸作品,2. 引导学生进行观察、比较、概括,3.抽象出这类平面图形的特点。

  在此基础上,引导学生结合图形的特征(对折后,折痕两侧完全重叠),师生共同揭示轴对称图形的概念。

  4. 从“轴”字出发,5. 引导学生认识轴对称图形的对称轴,6. 并通过说一说、指7. 一指8. 、画一画,9.深入认识对称轴,10. 体会“对称轴是折痕所在的直线”这一内涵,11. 并再次感受轴对称图形的特征。

  (折痕所在的这条直线就是对称轴。对称轴通常用点画线来表示。在自己的作品上也画上一条对称轴。对折以后,折痕的两边能完全重合的图形,就叫做轴对称图形。你们能不能很快的说出哪些是轴对称图形)

  12. 结合轴对称图形的特征,13. 判断下列图形是否为轴对称图形。

  学生根据经验大胆猜想。

  结合手中的学具,小组合作,共同验证猜想。

  大组进行交流,着重引导学生说清判断的依据。

  引导学生理解一般三角形的“非对称性”及等腰(边)三角形的“对称性”,并由此类推到梯形、平行四边形等。

  根据活动经验,判断如下三个图形的对称轴的条数。

  4.判断国旗中的图案是否是轴对称的。

  交流时,引导学生说说判断的依据。

  5.判断交通标志中的图案是否是轴对称的。

  写下正确的图案标志的序号。

  交流:剩下的图案为什么不是轴对称的。

  6.想象:根据给出的轴对称图形的左半边,想象它的另一半,并判断给出的是什么图案。

  三、“做”对称,深化体验

  引导学生结合轴对称图形的特点,利用师生共同准备的一些素材,自己想办法创造一个轴对称图形。

  交流时,着重引导学生说清创作过程,并给予激励性评价。

  教师相机进行相关资源的分享。

  四、“赏”对称,提升认识

  由轴对称图形,进而拓展到现实生活中的轴对称现象。引导学生通过赏析,感受大自然的美妙与神奇,并进一步拓宽学生的视野,受到美的洗礼。

  轴对称图形

  张齐华出一张纸。

  如果是你的话,怎么玩?

  生:我们折飞机

  生:我会折青蛙,

  生:我们折出星星

  生:我会把这张纸剪成窗花。

  师:先把纸对折,然后从折痕的地方,撕下一块。会玩吗?大家玩一玩。

  学生撕纸

  在黑板上展示学生的作品

  师:如果我们这些纸看作一个个图形的话?大家看一看这些图形大小?(不一样),你们有没有发现共同的地方?

  生:左右两边都相同。

  生:我认为它们轴对称图形的

  师:你是怎么知道的这个词儿的?

  生:我是从书上看到的。

  板书课题。

  师:在深入的观察,左右大小就是一样的吗?

  生:我认为形状也是一样的

  生:我认为面积也是一样的。

  生:我认为把它叠在一起的,会重合。

  师:你手中的作品有没有这样的特点。

  学生动手试一试。

  师:现在

轴对称图形教案2

  优秀教案片段:

  (师利用多媒体课件出示一些轴对称图形)

  师:小朋友们,这些图形美吗?仔细观察这些图形,它们有 哪些特点?

  生:这些图形的两边都一样。

  生:这些图形都是对称的。

  师:你们想自身动手做一个漂亮的对称图形吗?

  生:想。

  师:那就抓紧时间拿出你们准备的彩纸和剪刀,开始行动吧!不会做的小朋友可以请老师和同学帮助。

  设计说明:课前我已了解到三年级同学在美术课时已学过制作对称图形。所以,我就先让同学自由创作,并充沛尊重同学的个性差别,对个别动手能力较差的同学适时给予协助引导,对于一些动手能力较强的同学,和时给予鼓励肯定。

  (剪图形活动结束)

  师:现在请小朋友们举起你剪好的图形,让老师看一看,大声说出它的名字。

  生:(苹果、松树、小房子、小花、蝴蝶、飞机、心形、图形……)

  师:请一位小朋友说一说你做的是什么图形?你是怎么做的?

  生:我做的是一个圆形,我先把一张纸对折,然后用量角器在上面画出半个圆形,再剪下来,打开,就成了一个完整的圆形了。

  师:你知道利用工具来做,真不简单,还有谁愿意说?

  生:我做的是一棵松树,我也是把一张纸对折,先在上面画出一棵松树的一半,然后剪下来,打开,就成了一棵完整的松树了。

  师:为什么要先把一张纸对折?

  生:因为假如不对折,剪出的图形两边就不一样大了。

  (仍有同学手高高举起)

  师:还有人想说呀?下面就请你们把剪好的图形在小组内交流展示,互相说一说自身是怎么做的?

  设计说明:展示作品时,同学学习兴趣高涨,通过相互之间的交流,使同学在做数学的过程中初步感知轴对称图形的特征。

  师:(出示蝴蝶图形做示范)请小朋友们把你们剪好的图形像老师这样对折,看一看、比一比对折后两边的图形,你发现了什么?

  生:对折后,两边的图形重合了。

  师:(出示一片不对称的枫叶图形)老师这儿还有一个图形,现在我把它也对折,老师手中的图形对折后的情况和你手中的图形对折后的情况一样吗?

  生:不一样。

  师:哪些地方不一样?

  生:(指着老师手中的枫叶图形)

  这个图形对折后两边的图形不一样大,一边大,一边小。

  老师手中的'图形对折后,两边的图形没有重合完,下边还多出来一局部。

  师:(趁机问)你们手中的图形对折后,是怎样重合的?

  生:全部重合完了。

  师:有没有多出来的局部?

  生:没有。

  师:有没有缺少的局部?

  生:没有。

  师:(指着同学的图形)这种重合就叫做完全重合。

  师:(利用蝴蝶图形再次演示)像这种,对折后两边能够完全重合的图形,我们就把它叫做轴对称图形。

  设计说明:我让同学充沛利用自身剪出的图形作为学具,指导同学亲自动手折一折,看一看,比一比,观察比较出两种图形对折后的不同情况,让每一位同学都主动参与,动手操作,亲身经历知识形成的过程,发现轴对称图形"对折后,两边完全重合"的特征。

  师:现在,请小朋友们打开你的轴对称图形,仔细观察图形的中间,你又发现了什么?

  生:(中间有1条线)

  师:这条线是怎么得来的?

  生:刚才我们对折的时候留下来的折痕。

  师:刚才我们对折的时候就是沿着这条折痕所在的直线怎么样的?

  生:对折的。

  师:假如我们不沿着这条直线对折会怎么样?

  生:两边的图形就不能完全重合了。

  师:这说明这条线怎么样?

  生:很重要。

  师:你能给这条线取个名字吗?

  生:中间线。

  师:为什么把它叫做中间线?说说你的理由好吗?

  生:因为这条线在这个图形的正中间,所以我把它叫做中间线。

  师:还有谁想说?

  生:对折线,因为这条线是我们对折后留下来的。

  生:重合线,因为沿着这条线对折两边的图形就完全重合了。

  师:小朋友们给这条线取的名字都非常有创意,想听数学小博士是怎么说的吗?

  (课件演示:一个图形沿一条直线对折后,两边的图形能够完全重合,这个图形就是轴对称图形,折痕所在的这条直线叫对称轴。)

  设计说明:在这一教学环节中,我再次引导同学亲身经历探索、发现知识的过程,体现同学的主体性,让同学根据自身的理解,给"这条线"取名字,培养同学的创新思维和空间想象能力,加深对"对称轴"的理解。在让同学通过动手操作,初步感知的基础上,配合课件动态出示"轴对称图形"的概念,使同学的认知结构逐步得到完善,由感性认识上升到理性认识。

轴对称图形教案3

  一、教学目标:

  1、学生通过观察、操作,初步感知轴对称现象。

  2、让学生能在方格纸上画出简单的轴对称图形。

  3、通过观察操作活动,发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美,增强学生学习的兴趣。

  二、教学重点:

  观察操作,初步感知轴对称现象。

  三、教学难点:

  结合实例感知轴对称现象。

  四、教具准备:

  实体标本:美丽的蝴蝶、黄绿色的蜻蜓、红艳艳的枫叶及京剧脸谱等图形

  五、学具准备:

  图画纸、彩色纸、剪刀、实体标本、树叶若干片、胶水若干瓶、图形、画有等距离点子的方格纸。

  六、教学过程:

  观察激情:

  教师出示实物标本:美丽的蝴蝶、黄绿色的蜻蜓、红艳艳的枫叶及京剧脸谱等图形。这些昆虫标本、树叶及图形好看吗?学生被这些鲜艳的色彩、美丽的图案吸引住了,异口同声地说:“很美,很漂亮”。“他们有什么特征?”生:“两边的形状是一样的”。“你在日常生活中还见过类似特征的东西吗?”同学们纷纷举手抢答,教师根据学生的回答(如飞机、剪刀、花瓶、黑板、镜子等)把这些图形贴或画在黑板上,接着说:“今天我们一起来认识、研究这类图形有什么共同的特征,通过你们自己动手、动脑学会一种新本领,并运用你学到的新本领设计出许多更多、更美的东西和图案,使我们的生活变的更丰富,美丽。”

  操作明理:

  剪剪、折折、发现特征。

  (1)指导学生把图画纸对折,如左图画出小树图。用剪刀沿图案剪下来,打开观察。

  (2)自己在用一张彩色指对折,在折好的一侧画出自己想画图形的一半,在剪下来打开(有的是一朵花、有的是一片树叶或各种装饰图案等)教师问:“这些图形虽各不相同,但它们有一个共同的.特征,你能找出来吗?”(两半图形完全相同,大小一样)。

  (3)请学生把打开的两半、再沿折痕对折,你又发现了什么?(两半完全重合)

  (4)教师把印有下列图案的工作纸、分别发给每个小组,要求照刚才的方法对折观察,讨论总结这些图形也有什么特征。

  师生共同概括出:如果把一个图形沿着一条直线对折过来,在直线两边的图形完全重合,这种图形就是轴对称图形,折痕所在的这条直线是这个图形的对称轴。

  强化新知

  (1)研究讨论刚才同学们举例说出的图形(飞机、剪刀......等)是不是轴对称图形?为什么?

  (2)教师出示下列图形,引导学生思考:

  那些图是轴对称图形?如何标准地找出它的对称轴。

  (把图形对折,如果两边能完全重合,便是轴对称图形,折痕就是这个图形的对称轴)

  引导发现,拓开思路。

  学生说一说生活中的那些东西是对称图形?你能找出蜻蜓、树叶、蝴蝶、北京脸谱的对称轴吗?使学生了解对称在生活中的应用性。

  运用提高、发展思维。

  (1)比一比谁用树叶拼成的轴对称图形最多、变化多。

  (2)下列图形是轴对称图形吗?是轴对称图形的请画出对称轴?

  (课本68页的做一做)

  (3)小猴不小心,把小花猫漂亮的照片污损了一部分,你能想办法帮帮小猴把污损的部分恢复原样吗?

  (4)比一比,谁在方格纸上设计的轴对称图形最美,(选佳作贴在黑板上,及时反馈、评价、欣赏)。

  课堂总结

  什么是轴对称图形,怎样准确地找出它的对称轴,这就是我们今天学到的新本领。轴对称图形真的很美丽,因此被广泛应用于服装、家具、交通工具、建筑等各方面的设计中。希望大家能运用今天所学的知识把我们的环境装扮得更美丽。

  反思

轴对称图形教案4

  教学目标:

  1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念

  2、探索并了解角的平分线、线段垂直平分线的有关性质.

  教学重点:

  1、角、线段是轴对称图形

  2、角的平分线、线段垂直平分线的有关性质

  教学难点:角的平分线、线段垂直平分线的有关性质

  准备活动:准备一个三角形、一张画好一条线段的纸张

  教学过程:

  先复习轴对称图形的知识,提问:角是不是轴对称图形呢?如果是,它的对称轴在哪里?引起学生思考并通过动手操作,寻找答案.

  一、探索活动

  教师示范:(按以下步骤折纸)

  1、在准备好的三角形的每个顶点上标好字母;A、B、C.把角A对折,使得这个角的两边重合.

  2、在折痕(即平分线)上任意找一点C,

  3、过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足.

  4、将纸打开,新的折痕与OB边交点为E.

  教师要引导学生思考:我们现在观察到的只是角的一部分.注意角的.概念.

  学生通过思考应该大部分都能明白角是轴对称图形这个结论.

  问题2:在上述的操作过程中,你发现了哪些相等的线段?说明你的理由,在角平分线上在另找一点试一试.是否也有同样的发现?

  学生应该很快就找到相等的线段.

  下面用我们学过的知识证明发现:

  如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC.求证:OE=OD.

  巩固练习:在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么?

  (1)如图,OC是∠AOB的平分线,点P在OC上,PO⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm,则PE=__________cm.

  (2)如图,在△ABC中,,∠C=90°,AD平分∠BAC交BC于D,点D到AB的距离为5cm,则CD=_____cm.

  内容二:线段是轴对称图形吗?

  做一做:按下面步骤做:

  1、用准备的线段AB,对折AB,使得点A、B重合,折痕与AB的交点为O.

  2、在折痕上任取一点C,沿CA将纸折叠;

  3、把纸展开,得到折痕CA和CB.

  观察自己手中的图形,回答下列问题:

  (1)CO与AB有什么样的位置关系?

  (2)AO与OB相等吗?CA与CB呢?能说明你的理由吗?

  在折痕上另取一点,再试一试,你又有什么发现?

  学生会得到下面的结论:

  (1)线段是轴对称图形.

  (2)它的对称轴垂直于这条线段并且平分它.

  (3)对称轴上的点到这条线段的距离相等.

  应用:

  (1)如图,AB是△ABC的一条边,,DE是AB的垂直平分线,垂足为E,并交BC于点D,已知AB=8cm,BD=6cm,那么EA=________,DA=____.

  (2)如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么△BCD的周长是_______cm.

  小结:

  (1)角是轴对称图形.

  (2)角平分线上的点到这个角的两边的距离相等.

  (3)线段是轴对称图形.

  (4)垂直并且平分线段的直线叫做这条线段的垂直平分线.简称中垂线.

  (5)线段垂直平分线上的点到这条线段的两个端点距离相等.

  作业:课本P193习题7.2:1、2、3.

  教学后记:

  学生对这节课的内容比较难掌握,特别是对于“角平分线上的点到这个角的两边距离相等”这个性质,一时难于理解.的部分原因是学生忘记了点但直线的距离是什么一回事.而对于中垂线的理解较好.基本上能找到当中相等的线段,并且用学过的知识予以证明.内容较多,容量较大.课后还要加强理解和练习.

轴对称图形教案5

  15.1轴对称图形教案

  【教学目标】

  知识与技能

  1、能理解平面直角坐标系中,与已知点关于x轴或轴对称的点的坐标的规律。

  2、能作出与一个图形关于x轴或轴对称的图形。

  过程与方法

  1、通过作图提高学生的实践能力。

  2、通过现实情境的创设,使学生体验到数学就在我们身边,从而培养审美情趣。

  情感、态度与价值观

  1、通过贴近生活的素材和问题情境,激发学生学习数学的热情和兴趣,培养学生勇于创新,多方位审视问题的创造技巧。

  2、在作图过程中使学生体验数形结合思想,体验学习的乐趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神。

  【重点难点】

  重点:用坐标表示点关于坐标轴对称的点的坐标。

  难点:找对称点的坐标之间的关系、规律。

  【自主学习】

  一、复习:

  1、如果一个平面沿着一条直线折叠,直线两旁的部分能够_____,那么这个图形叫轴对称图形,这条直线叫____。

  2、经过线段的___并且___于这条线段的直线叫做线段的垂直平分线,又叫做线段的中垂线。一条__的中垂线是它的对称轴。

  3、如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的_____;反过来,如果两个图形各对对应点的连线被同一条直线____,那么这两个图形关于这条直线对称。【 : 】

  4、在平面直角坐标系中,点 P(1,-1)关于 x 轴对称的点的坐标是___;点 P1(1,2) 关于 轴对称的点的坐标是____。【 】

  二、思考:

  分别写出下列各点关于 x 轴、 轴对称的点的坐标:

  一般地,已知点 P (a,b):

  ⑴ 点 P 关于x 轴对称的点的坐标为P1(__,__),

  ⑵ 点 P 关于 轴对称的点的坐标为 P2(__,__)。

  关于 x 轴对称的点,横坐标_______,纵坐标_______,关于 轴对称的点,横坐标_______,纵坐标_______。

  四、例题:

  ⑴ 如上图,写出四边形 ABCD 的 4 个顶点的坐标;

  ⑵ 画出四边形 ABCD 关于 轴的对称图形 A1B1C1D1;

  ⑶ 写出点 A1,B1,C1,D1 的坐标。

  五、巩固练习:

  1、分别写出下列各点关于 x 轴、 轴对称的'点的坐标:

  A(-2,4) , B(3,-2) ,

  C(-1,-2) , D(4,0) 。

  2、作出图中多边形 ABCD 关于 x 轴、 轴的对称图形。 (上图“五-2”图)

  3、已知长方形 ABCD 的顶点坐标为 A(2,4),B(6,4),C(6,2),D(2,2) 。

  ⑴ 在图⑴中画出长方形 ABCD 向下平移 6 个单位得到的长方形 A1B1C1D1,写出点 A1,B1,C1,D1 的坐标;【 】

  ⑵ 在图⑵中画出长方形 ABCD 关于 x 轴对称的长方形 A2B2C2D2,写出 A2,B2,C2,D2 的坐标;

  ⑶ 你认为上述两题变换所得的结果是否一样?为什么?

  4、△ ABC 在平面直角坐标系中的位置如图所示。

  ⑴ 作出△ABC 关于 轴对称的△A1B1C1,并写出点 A1,B1,C1,的坐标;

  ⑵ 将△ABC 向右平移 6 个单位,作出平移后的△A2B2C2,写出点 A2,B2,C2,的坐标;

  ⑶ 观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴。

  六、习题:

  1、若点 P 在第三象限,则点 P 关于 轴的对称点在第__象限,点 P 关于 x 轴的对称点在第__象限。

  2、点 P (-2,3) 关于 x 轴的对称点坐标是______。

  3、已知点 P (3,-1) 关于 轴的对称点 Q 的坐标是 ( a+b,1-b ) ,则 ab=__。

  4、已知点 A (2,a) 关于 x 轴的对称点是 B ( b,-3 ) ,则 ab=__。

  5、若点 (10-a,5+b) 与点 (2,-5) 关于 轴对称,则 a+b=___。

  6、在平面直角坐标系中,若点P(3,a) 和点Q(b,-4) 关于x轴对称,则a+b=__。

轴对称图形教案6

  教学内容:

  轴对称图形

  教学目标:

  1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。

  2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。

  3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。

  教学重点:

  认识对称现象和轴对称图形的特点。

  教学难点:

  掌握识别轴对称图形的方法。

  教具准备:

  多媒体课件、实物图片等。

  教学过程:

  一、谈话引入,激发兴趣

  1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。

  2、从蝴蝶形状的风筝引出对称

  二、合作探究,学习新知

  1、观察图形,认识对称

  (1)观察几幅对称图形,引导学生感悟对称。

  (2)说一说生活中的对称现象

  2、动手操作,认识轴对称图形

  (1)猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。

  (2)动手操作,剪出轴对称图形

  师示范剪一件上衣的过程:折一折、画一画、剪一剪。

  生动手剪出自己喜欢的`轴对称图形。

  交流展示学生的作品

  (3)认识对称轴

  看一看,摸一摸,说一说

  画一画:师示范画出对称轴,然后学生自己画,再交流。

  3、初步理解轴对称图形

  (1)说一说轴对称图形的特点,初步理解轴对称图形。

  (2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。

  (3)举一举身边的轴对称图形的例子。

  三、巩固练习,拓展延伸

  1、判一判:哪些是轴对称图形。

  2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。

  3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。

  四、课堂总结

  通过这节课的学习,你有什么收获?

  五、欣赏轴对称图形的美丽

轴对称图形教案7

  知识目标:

  (1)使学生理解轴对称的概念;

  (2)了解轴对称的性质及其应用;

  (3)知道轴对称图形与轴对称的区别.

  能力目标:

  (1)通过轴对称和轴对称图形的学习,提高学生的观察辨析图形的能力和画图能力;

  (2)通过实际问题的练习,提高学生解决实际问题的能力.

  情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过轴对称图形的学习,体现数学中的美,感受数学中的美.

  教学重点

  轴对称和轴对称图形的概念,轴对称的性质及判定

  教学难点

  区分轴对称和轴对称图形的概念

  教学用具:直尺,微机

  教学方法:观察实验

  教学过程

  1、概念:(阅读教材,回答问题)

  (1)对称轴

  (2)轴对称

  (3)轴对称图形

  学生动手实验,说明上述概念.最后总结轴对称及轴对称图形这两个概念的区别:

  轴对称涉及两个图形,是两个图形的位置关系.轴对称图形只是针对一个图形而言.

  轴对称和轴对称图形都有对称轴,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线对称.

  2、定理的获得

  (投影):观察轴对称的两个图形是否为全等形

  定理1:关于某条直线对称的两个图形是全等形

  由此得出:

  定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线.

  启发学生,写出此定理的逆命题,并判断是否为真命题?由此得到:

  逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.

  学生继续观察得到

  定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.

  说明:上述定理2可以看成是轴对称图形的性质定理,逆定理则是判定定理.

  上述问题的获得,都是由定理1引发、变换、延伸得到的.教师应充分抓住这次机会,培养学生变式问题的研究.

  2、常见的轴对称图形

  图形

  对称轴

  点A

  过点A的任意直线

  直线m

  直线m,m的垂线

  线段AB

  直线AB,线段AB的中垂线

  角

  角平分线所在的直线

  等腰三角形

  底边上的'中线

  3、应用

  例1如图,已知:△ABC,直线MN,求作△A1B1C1,使△A1B1C1与△ABC关于MN对称.

  分析:按照轴对称的概念,只要分别过A、B、C向直线MN作垂线,并将垂线段延长一倍即可得到点A、B、C关于直线MN的对称点,连结所得到的这三个点.

  作法:(1)作AD⊥MN于D,延长AD至A1使A1D=AD,

  得点A的对称点A1

  (2)同法作点B、C关于MN的对称点B1、、C1

  (3)顺次连结A1、B1、C1

  ∴△A1B1C1即为所求

  例2如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC、BD,

  且AC=BD,若A到河岸CD的中点的距离为500cm.问:

  (1)牧童从A处牧牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?

  (2)最短路程是多少?

  解:问题可转化为已知直线CD和CD同侧两点A、B,

  在CD上作一点M,使AM+BM最小,

  先作点A关于CD的对称点A1,

  再连结A1B,交CD于点M,

  则点M为所求的点.

  证明:(1)在CD上任取一点M1,连结A1 M1、A M1

  B M1、AM

  ∵直线CD是A、A1的对称轴,M、M1在CD上

  ∴AM=A1M,AM1=A1M1

  ∴AM+BM=AM1+BM=A1B

  在△A1 M1B中

  ∵A1 M1+BM1>AM+BN即AM+BM最小

  (2)由(1)可得AM=AM1,A1C=AC=BD

  ∴△A1CM≌△BDM

  ∴A1M=BM,CM=DM

  即M为CD中点,且A1B=2AM

  ∵AM=500m

  ∴最简路程A1B=AM+BM=2AM=1000m

  例3已知:如图,△ABC是等边三角形,延长BC至D,延长BA到E,使AE=BD,连结CE、DE

  求证:CE=DE

  证明:延长BD至F,使DF=BC,连结EF

  ∵AE=BD,△ABC为等边三角形

  ∴BF=BE,∠B=

  ∴△BEF为等边三角形

  ∴△BEC≌△FED

  ∴CE=DE

  5、课堂小结:

  (1)轴对称和轴对称图形的区别和联系

  区别:轴对称是说两个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;轴对称涉及两个图形,轴对称图形只对一个图形而言

  联系:这两个定义中都涉及一条直线,都沿其折叠而能够重合;二者都具有相对性:即若把轴对称图形沿轴一分为二,则这两个图形就关于原轴成轴对称,反之,把两个成轴对称的图形全二为一,则它就是一个轴对称图形.

  (2)解题方法:一是如何画关于某条直线的对称图形(找对称点)

  二是关于实际应用问题“求最短路程”.

  6、布置作业:

  书面作业P120#6、8、9

  板书设计

  探究活动

  两个全等的三角板,可以拼出各种不同的图形,如图已画出其中一个三角形,请你分别补出另一个与其全等的三角形,使每个图形分成不同的轴对称图形(所画三角形可与原三角形有重叠部分)

  解:

轴对称图形教案8

  1.教学目标

  知识与技能:

  通过观察、实物操作,初步认识轴对称现象。能判断出哪些东西是对称的,并能找出它们的对称轴,学会画对称轴。

  过程与方法:

  培养学生自主探究,观察,比较和概括的能力,以及小组合作意识,引导学生在合作中交流,学习,互动。

  情感态度与价值观:

  通过情境画面的引入,渗透爱国教育和审美教育,激发学生学习的兴趣;也让学生感受到对称的美,学会欣赏数学美。

  2.教学重点/难点

  教学重点:认识轴对称图形的基本特征,准确判断生活中哪些物体是轴对称图形。 教学难点:能够找出轴对称图形的对称轴。

  3.教学用具

  课件

  4.标签

  教学过程

  1.谈话导入

  (1)同学们,生活中有很多有趣的现象,只要你有一双善于发现的眼睛,就能发现许多的知识。请同学们仔细观察这幅图(课件),你能从图中发现哪些有趣现象?

  (2)谁愿意来把你们组的发现说给大家庭?(学生在汇报时,教师尽量鼓励学生用自己的语言来表达,对学生一些不准确的表达无须过分强求,不必可以纠正。)

  (3)教学“对称”

  是啊,在游乐场里,空中飞舞着的蜻蜓风筝、蝴蝶风筝多漂亮呀,仔细观察可以发现,它们的左右两边是完全相同的,这里面就蕴含着这节课我们要学习的知识——对称。这节课我们就一起来探索跟对称有关的知识。

  2.探索新知

  (1)观察图形,发现特点。

  观察课本29页这些图形有什么共同特点?

  师:这些都是对称现象,说一说生活中还有哪些对称现象?

  引导学生从形状、花纹、大小、图案上观察。

  学生汇报交流自己的发现:图形两边都是一样的。

  (2)教师小结。

  这些图形的左右两边的形状和大小完全相同,也就是说如果沿图形中间的一条直线对折后,这些图形的左右两边能够完全重合。

  (3)列举生活中的.对称现象。

  师:生活中的对称现象还有很多,你能举例说说。

  学生自己说一说生活中的对称现象。

  (4)动手操作,认识轴对称图形。

  a、出示例1。

  引导学生明确剪对称图形的方法。

  要剪出一个对称图形,可以先把纸张进行对折再剪,最后沿对折的地方打开,这就形成了一个对称图形。

  教师小结:像这样剪出来的图形都是对称的,它们都是轴对称图形。

  动手操作,剪一件上衣请同学们拿出自己准备的一张白纸,你们能运用对称的知识用这张纸剪一件衣服吗?请大家跟老师一起来完成,好吗?

  折一折:把一张长方形的纸对折。

  画一画:在对折的纸上画线。

  剪一剪:沿着刚才画的线剪一剪,会剪出一件上衣的图案。

  b、剪其他图形。松树、桃心、葫芦。

  现在请同学们自己动手剪一剪,选择松树、桃心、葫芦三种图形中的一种,看谁既会动脑又会动手。

  教师引导:我们剪轴对称图形时,先要对折,那就是说,把你手上的图形对折,如果能完全重合,就是轴对称图形。

  学生操作,判断。指名上台演示,说说判断的理由。(展示时,教师注意让学生从不同的方向,横着、竖着、斜着的方向对折,感受不同角度进行判断。)

  (5)认识轴对称图形和对称轴。

  像上面这样剪出来的图形都是对称的,它们都是轴对称图形。图形中间的那条折痕所在的直线就是图形的对称轴。请看屏幕。我们在画对称轴时要画成一条虚线(课件演示)。

  (6)小结

  把一个图形对折后,如果两部分能够完全重合,我们就把这样的图形叫做轴对称图形,那条折痕所在的直线就叫做对称轴。

  3、课堂练习

  (1)下面这些图形中,哪些是轴对称图形?

  (2)下面的哪些图形是轴对称图形?

  (3)下面这些图形中,哪些是轴对称图形?试着画出它们的对称轴。

  4、拓展提升

  (1)下面的数字图案,哪些是轴对称的?

  (2)字母也可以写成轴对称图形

  (3)汉字也可以写成轴对称图形,举出

  (4)猜一猜:下面的字只出现一半,你能猜出它是什么字吗?

  (5)下面的图形分别是从哪张对折后的纸上剪下来的?连一连。

轴对称图形教案9

  教学内容:

  人教版小学数学二年级下册第29页例1及相关内容。

  教学目标:

  1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。

  2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。

  3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。

  教学重点:

  认识对称现象和轴对称图形的特点。

  教学难点:

  掌握识别轴对称图形的方法。

  教具准备:

  多媒体课件、实物图片等。

  教学过程:

  一、谈话引入,激发兴趣

  1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。

  2、从蝴蝶形状的风筝引出“对称”

  二、合作探究,学习新知

  (一)观察图形,认识对称

  1、观察几幅对称图形,引导学生感悟对称。

  2、说一说生活中的'对称现象

  (二)动手操作,认识轴对称图形

  1、猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。

  2、动手操作,剪出轴对称图形

  (1)师示范剪一件上衣的过程:折一折、画一画、剪一剪。

  (2)生动手剪出自己喜欢的轴对称图形。

  (3)交流展示学生的作品

  3、认识对称轴

  (1)看一看,摸一摸,说一说

  (2)画一画:师示范画出对称轴,然后学生自己画,再交流。

  4、初步理解轴对称图形

  (1)说一说轴对称图形的特点,初步理解轴对称图形。

  (2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。

  (3)举一举身边的轴对称图形的例子。

  三、巩固练习,拓展延伸

  1、判一判:哪些是轴对称图形。

  2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。

  3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。

  四、课堂总结

  通过这节课的学习,你有什么收获?

  五、欣赏轴对称图形的美丽

轴对称图形教案10

  教学内容

  义务教育课程标准实验教材数学第六册56—61页内容

  教学资源分析:

  本教材从学生熟悉的生活入手,结合实例,通过观察、操作等形式多样的活动,让学生初步感知生活中的对称现象,认识简单的轴对称图形,为今后进一步探索简单图形的轴对称特性,把握简单图形之间的轴对称关系,以及利用轴对称方法进行变换或设计图案打好基础。

  教材第一道例题首先出示了一组实物图片,要求学生观察并说说它们的共同特征,初步感知 “这些物体都是对称的”,并要求学生结合自己的生活经验再找出一些具有对称特征的物体,在小组里交流。教材这样安排的主要目的是帮助学生感受生活中的对称现象。接下来,教材把上面的实物图形进一步抽象为平面图行,引导学生通过对折发现轴对称图形的基本特征,并初步描述轴对称图形的概念。第二道例题则让学生利用已有的对轴对称图形的初步认识,用不同材料、不同方法“做出”轴对称图形。以活动来帮助学生进一步积累感性认识,丰富对轴对称图形的体验,锻炼学生的实践能力。“想想做做”安排了形式多样、内容丰富的训练帮助学生加深对轴对称图形的认识,体会数学与生活的广泛联系。

  教学目标:

  1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。

  2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。

  3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。激发对数学学习的积极情感。

  教学重点

  使学生初步认识轴对称图形的一些基本特征,能识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。

  教学难点:

  引导学生在自己的操作活动中发现和认识轴对称图形的一些基本特征。

  教学准备

  多媒体课件一套,每组有不同的图形一套,想想做做2所要求的字母一套,小剪刀,彩纸,水彩画颜料,钉子板等等

  一、 猜一猜——激趣导入

  师:今天,老师带来了一些有趣的物体,不过只有一部分,请你猜一猜,它们分别是什么?

  (多媒体出示:枫叶、蜻蜓、天平等物体的一半,让学生猜一猜,猜中就出示物体的全幅图)

  师:是啊,这些物体可真有趣,你知道它们有趣在哪里吗?

  (让学生自由说)

  小结:是的,它们可以分为两个完全相同的部分。

  设计意图:有趣的“猜一猜”游戏,不但激发了学生的好奇,而且让学生初步感受到:有些物体可以分为两个完全相同的部分,同时也为学生感知轴对称图形的特征作了铺垫。

  二、 观察、操作——探究特征

  1、观察,初步感知

  师:老师还带来了一组物体的图片,请小朋友仔细观察这三个物体,你能发现它们共同特征的吗?

  (多媒体出示天安门、飞机、奖杯,让学生自由说一说)

  师:(小结)是的,这些物体都是对称的。

  师:在生活中你还见过那些物体也具有对称的特征吗?

  (自由说,全班交流)

  2、操作,体会特征

  师:如果把上面的物体画下来,我们可以得到下面的图形。

  (多媒体出示按天安门、飞机、奖杯的实物画下来的图形)

  我们小朋友手中也有一些这样的图形,请小朋友选一个,对折,然后跟同学说一说,你发现了什么?

  (选三人在实物投影上交流)

  师:这三个图形有什么共同的特征吗?(指名说)

  小结:是啊,它们对折后,折痕两边的部分完全重合。像这样的图形,我们叫它轴对称图形!你能跟同桌说说什么是轴对称图形吗?(学生自由说后,多媒体出示轴对称图形的概念,齐读)

  3、识别,加深体验

  师:我们认识的一些图形娃娃今天也来到这里,请你仔细观察这些图形,找一找,它们中哪些也是轴对称图形呢?

  (请小组长拿出预先准备好的图形,组织大家讨论,不确定的可以动手折一折,然后全班交流。)

  师:请小组长把轴对称图形图形整理出来,分工让每一个小朋友动手折一折,这些轴对称图形有几种对折的方法?

  (指名一组在实物投影上交流)

  小结:要使对折后折痕两边的部分完全重合,等腰三角形、等腰梯形只有一种对折的方法。长方形有两种对折的方法,正方形有4种对折的方法,这个特殊的五边形有五种对折的方法,而圆有无数种对折的方法呢!不管是一种还是很多种对折方法,只要对折后折痕两边的部分能够完全重合,这图形就是轴对称图形。

  设计意图:在认识轴对称图形的特征时,教者安排了三个层次的教学环节:第一层次,让学生在丰富的实例中进行感知,第二层次让学生在充分的操作中感知,第三层次放手让学生进行独立的选择和判断。层层深入,有利于学生更好地认识轴对称图形。

  4、训练,巩固特征

  (1) 完成想想做做1,实物投影出示图形

  师:这是我们生活中常看到的一些图形,你能判断出它们中哪些是轴对称图形吗?

  (先独立判断,如果你认为是轴对称图形的,在下面打勾,并且用尺子画出一条虚线来表示你准备怎样对折,全部完成了,由小组长组织大家讨论,全班交流)

  (2) 完成想想做做2,实物投影出示图形

  师:看来,小朋友已经能根据轴对称图形的特征识别出生活中的许多轴对称图形了。你们知道吗,我们学的英文字母,许多也是轴对称图形呢!你能找出这些字母中的轴对称图形吗?

  (先独立判断,如果你认为是轴对称图形的,在下面打勾,如果不确定,可以拿出相应的字母折一折,完成了跟同桌交流,全班交流)

  (3) 完成想想做做5,实物投影出示图形

  师:轴对称图形真是随处可见,你们看,这些是什么?对,国旗是一个国家的.象征。观察下面的国旗,你能找出哪些国家的国旗是轴对称图形吗?

  (先独立判断,如果你认为是轴对称图形的,在下面打勾,完成了小组长组织大家讨论,全班交流)

  (4) 完成想想做做3,实物投影出示图形

  师:我们认识了那么多的轴对称图形,你能自己画出一个轴对称图形吗?

  请小朋友画出下面每一个图形的另一半,使它成为一个轴对称图形!画的时候要动脑筋想一想,怎样画又快又好!

  (独立练习,全班交流)

  三、 做一做——内化新知

  师:刚才我们看了、找了、画了轴对称图形,现在,让我们来做一个轴对称图形好吗?你可以用老师提供给你们的工具做,也可以自己想法做,比一比,哪一组的方法多,做出的图形美!

  (小组活动,完成后,请一组到实物投影上展示,相机点评)

  设计意图:放手让学生自己“做”轴对称图形,让学生展示自己的“作品”,不但可以让学生共享彼此的经验,而且可以使学生进一步积累感性认识,丰富学生对轴对称图形的体验。

  四、 看一看——拓展延伸

  师:轴对称图形以其特有的对称美,给人们带来了一种和谐的美感,蝴蝶、蜻蜓等因为有了对称的翅膀,才能自由的飞翔;我们的服装因为对称显得大方、典雅;古今中外,有许多著名的建筑也是对称的,让我们来看一看这些对称的建筑,感受它们的奇妙和美丽!

  (多媒体播放)

  师:生活中的对称现象还有很多很多,如果有兴趣,电脑课时,可以上网查阅。

  设计意图:数学因为其与生活的密切的联系,才能体现其生活的价值。让学生了解自然界、生活中的对称现象,可以进一步拓宽学生的知识视野,帮助学生体会“对称”的科学与美学价值!

  五、 说一说——总结评价

  师:今天,我们学习了轴对称图形,你有什么收获吗?

  六、 作业

  1、完成想想做做4、6

  2、 收集一些轴对称图形的图片,最好是同一系列的,如:都是建筑的,或者都是交通标志的,在同学之间交流。

轴对称图形教案11

  第1课时

  轴对称

  教学内容:

  教材P82图形运动(二) 轴对称(例1、例2)

  教学目标:

  1、知识与技能:进一步认识图形的对称轴,并能在方格纸上画出一个图形的轴对称图形。

  2、过程与方法:通过观察,确定对称点的位置,探索图形成轴对称的特征和性质,

  3、情感、态度、价值观:让学生感受生活中轴对称的美感,知道大自然中,处处有数学。

  教学重点:

  认识图形的对称轴,并能画出轴对称图形。

  教学难点:

  确定对称点的位置

  教学准备:

  多媒体课件

  教学方法:

  观察法、讲解法,合作交流法、探究法。

  教学过程:

  一、创设情境

  出示轴对称图片

  师:这些图片好看吗?为什么好看?在我们生活中有许多因为对称而让人觉得美的物体,今天我们就一起来研究这些美丽的对称图形。(板书:轴对称图形)

  二、复习旧知

  1、你还见过哪些轴对称图形?

  2、什么样的.图形是轴对称图形?

  3、看书中图片,画出对称轴。

  三、探究新知

  1、出示例1 看一看,数一数,你发现了什么?(引导学生观察)

  (1)合作探究

  ①这幅图对称吗?

  ②中间这一条直线表示什么?

  ③点A和点A在这幅图中是两个对应点,它们到对称轴的距离都是( )个小格。

  ④点B和点( )是对应点,它们到对称轴的距离都是( )个小格。

  ⑤点C和点( )是对应点,它们到对称轴的距离都是( )个小格。

  ⑥我发现:在轴对称图形中,对称轴两侧相对的点到对称轴的距离( )。

  (2)汇报交流

  ①在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等。

  ②我们可以用这个性质来判断一个图形是否是对称图形。或者画对称图形。

  2、出示例2

  (1)引导学生思考

  A、怎样画?先画什么?再画什么?

  B、每条线段都应该画多长?

  (2) 在思考的基础上,用铅笔试画。

  (3)小结

  ①找出所给图形的关键点。

  ②数出或量出图形关键点到对称轴的距离。

  ③在对称轴的另一侧找出关键点的对称点。

  ④按照所给图形,顺次连结各点,就画出所给图形的轴对称图形。

  四、课堂练习

  P84做一做第2题

  五、课堂小结

  这节课你有什么收获?

  1、在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等。

  2、我们可以用这个性质来判断一个图形是否是对称图形。或者画对称图形。

  板书设计:

  图形运动 (二) 轴对称(1)

  方格纸上画已知图形的轴对称图形的方法

  1.找出所给图形的关键点。

  2.数出或量出图形关键点到对称轴的距离。

  3.在对称轴的另一侧找出关键点的对称点。

  4.按照所给图形,顺次连结各点,就画出所给图形的轴对称图形。

  教学反思:

  本节课先从具有轴对称特征的图形入手,认识轴对称图形,引导学生总结出轴对称图形的定义,然后通过作松树图形来找出轴对称图形的特点和性质,让学生自己亲身经历其过程,加深对轴对称图形的理解。

轴对称图形教案12

  教学设计理念

  1、新课标指出:“数学课程不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……”新课标的这一理念强调了数学与生活紧密联系,在教学中,我注意联系学生的生活实际,寻找生活中轴对称图形的踪影,让他们感受到数学与生活的密切联系,学会用数学的眼光看待周围事物,从中体验数学的价值。

  2、为了将课堂还给学生,让课堂散发活力,使他们成为课堂教学过程中的参与者和创造者。本着这样的思想,在本节课中,我主要采用让学生自主探究、合作交流、动手实践的策略,并恰当运用多媒体辅助教学,以期达到课堂教学的高效。通过教师适时的“引”来激发学生主动的“探”,通过教师恰如其分的“放”来指导学生独立自主的“学”,使师生双边产生共鸣和谐发展。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

  教学对象分析

  鉴于学生模仿能力强,思维信赖于具体直观形象的特点,我选用的是引导发现教学法,充分运用教具、学具,在实验、演示、操作、观察、练习等师生的共同活动中引导学生,让每个学生都动手、动口、动脑积极思维,进行“创造性”的学习,另外,在教学中我还注意运用投影仪提高教学效率,动态演出直观生动的教学图片,激发学生的学习兴趣,培养应用意识。

  教学内容分析

  《轴对称图形》是人教版数学八年级上册第二单元的内容。本章是《新课程标准》中规定的图形与变换中重要的内容。这节课是在学生学习了三角形及全等三角形等平面图形的基础上来探索、研究、认识轴对称图形的,学生能够通过欣赏、探索生活中的轴对称,培养学生的审美观,提高归纳总结的能力,激发学生学数学的兴趣。通过本节课的学习应能完成上述的教学目标。

  知识与技能目标

  1、理解轴对称图形,两个图形关于某直线对称的概念。

  2、了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点。

  3、了解轴对称图形与两个图形关于某直线对称的区别和联系。

  过程与方法目标

  (1)通过认真观察,学会用自己的语言概况轴对称的共同特征。

  (2)鼓励学生从自己的生活经验出发举出符合轴对称特征的物体。

  (3)学生通过亲自实验、探索发现,“创造性”的学习数学。

  情感与态度目标

  (1)欣赏现实生活中的轴对称图形,体会轴对称图形在现实生活中的广泛应用和它的丰富文化价值。

  (2)欣赏生活中的对称美,增强美感。

  教学重点:轴对称图形和两个图形关于某直线对称的概念。

  教学难点:轴对称图形和两个图形关于某直线对称的.区别和联系。

  教学策略

  1、提供图片,激发兴趣。通过欣赏奥运会图片,给学生初步认识轴对称图形的表象,同时激发学生的研究兴趣。

  2、合作探究,共同进步。以小组为单位,对问题展开探究活动,总结出结论。给学生创造互相交流、互相帮助的机会,提高学生的合作交流意识与技能。

  教学媒体:

  各种图片、多媒体、练习纸、小剪刀等。

  教学过程:

  一、创设情境,引入新课

  1、回顾雅典奥运会

  (1)欣赏图片:学生边听教师的简要介绍边欣赏雅典奥运会图片(CAI)

  (2)提出问题:从展示图中选出奥运会开幕式上水中燃烧着的五环、火炬和文艺表演中水面上的纸船这三幅图片,抽象其形状(CAI),提出问题:这三个物体的形状有什么特点?

  2、欣赏北京奥运会中几个国家的国旗:

  分别出示中国国旗、加拿大国旗、美国国旗、肯尼亚国旗、韩国国旗、瑞典国旗的图片(CAI),让学生说说,这些国旗哪些是对称的?哪些不是对称的?

  【学生在小学已初步认识对称,在这里,我通过奥运会图片,让学生感知对称、欣赏对称美,激发求知欲,从而揭示课题—本节课学习轴对称图形】

  二、动手操作,合作交流

  1、剪一剪。

  教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这张对折纸,让学生欣赏,然后学生自己动手按上述方法剪一剪。

  2、想一想。

  (1)小组交流剪纸的方法。能说一说你们是怎样剪的吗?

  (2)展示作品,比较各种剪法。

  (3)教师进一步用辅助,演示剪纸方法。

  【教师演示剪纸的过程起一个示范作用,学生动手剪纸是让学生参与到活动之中,发展学生的动手操作能力。充分发挥多媒体的优势,直观操作、形象感受对称图形的基本特征,同时也增强学生的合作精神,发挥交流、合作的实效。】

  3、议一议。

  学生观察,互相交流,尝试表述这些图形的共同特征。教师归纳学生的表述,引导得出轴对称图形及对称轴的概念,并板书概念。

  【在前面的操作活动中,学生已有了形象的感知。在这基础上,让学生议一议,说出先折后剪的方法能剪出对称图形,使学生对这一概念的认识直观、自然。从而水到渠成地总结出轴对称图形的特征。这种自然的、用学生自己的话总结出来的特征,让学生更容易理解、更印象深刻。】

  4、举一举。

  (1)联系实际,你能举出一个轴对称图形的实例吗?

  (2)说说你所熟悉的图形是否是轴对称图形?与同学讨论、交流,同小组互相补充。

  5、练一练。

  你能正确地完成书本第30页的练习吗?

  【通过举例、练习,进一步认识轴对称图形的本质。】

  三、观察对比,获取新知

  1、看一看展示的图形,每对图形有什么共同特征?(学生观察,讨论交流后,代表汇报)教师进一步用动漫演示,,教师引导得出两个图形关于某直线对称及对称轴、对称点的概念,并板书概念。

  【通过学生观察、主动思考,认识两个图形关于某直线对称的本质特征,鼓励学生善于观察、勇于发现,培养合作意识。】

  2、联系实际,你能举出一些生活中两个图形成轴对称的例子吗?你能正确地完成教科书第31页的练习吗?

  【通过学生举例,独自练习,进一步认识两个图形成轴对称的本质。】

  3、出示彩图:通过动漫演示,让学生观察,自主讨论,小组交流总结,得出轴对称图形和两个图形成轴对称的区别与联系。

  【给学生充分思考、交流的时间,鼓励学生畅所欲言,通过学生自主探究、合作交流进一步理解新知并应用新知。】

  4、讨论总结:成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?学生独立思考后,再展开讨论,教师参与学生讨论,及时指导。教师提出问题,学生独立完成。学生回忆归纳,教师指导。

  【通过思考成对称的两个图形与全等之间的关系,培养学生思维品质。】

  四、发挥想象,创造设计

  请同学们发挥想象,以给定的图形“ =、△△ 、〇〇”(两条平行线、两个圆、两个三角形)为构件,构思出独特且有意义的轴对称图形。请画出与众不同的图形,并写一两句贴切、诙谐的解说词。

  【使学生所学知识得以升华,生活处处离不开数学,从而体现学习数学的价值,激发其强烈的学习情感。】

  五、归纳小结,效果评价

  通过回答问题的方式进行

  ①通过本节课的学习,你学会了什么?

  ②本节课中你学会了哪些学习方法,对你有什么启发?

  【通过小结,使知识成为“体系”,帮助学生全面地理解,掌握所学知识。】

  六、布置作业,巩固提高

  布置作业:教科书习题12.1第2、3题

  板书设计:12·1轴对称

  1、轴对称图形:①一个图形能沿某一直线折叠。

  ②直线两旁的部分完全重合。

  2、轴对称:①两个图形能沿某一直线折叠。

  ②直线两旁的部分完全重合。

  3、区别与联系:

  教学反思:《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”结合新课标的精神,笔者认为学生对于这方面的知识不是一个简单的接受过程,而是一个发现、创新的过程。学生只有通过自己的实践,比较、思索、发现,才能真正对学习内容产生兴趣,进而领悟,内化为自己所有。回顾本节课的教学,笔者认为有以下几点可取之处:

  第一,这本身是一节很枯燥的概念课,但我能够灵活运用先进的电教媒体,把它讲透了、讲活了,学生兴趣很浓,学得也很愉快;第二,充分体现了新的教学理念,让学生懂得数学于生活又应用于生活。通过剪一剪、想一想、议一议、举一举、练一练等一系列观察、操作、体验活动让学生自主探究,既培养了它们观察问题、分析问题和总结问题的能力,又培养了它们勇于探索的精神,真正让学生体会到成功的喜悦和探索的快乐。第三,重视联系生活实际,为学生搭建欣赏对称美的平台。体验数学蕴含的“美”和无穷魅力,培养学生的审美情趣,同时让学生感悟到数学知识就在我们身边,数学广泛应用在我们的生活之中,进一步使学生感受到数学学习的乐趣和应用价值。

  当然,本节课也存在一些值得商榷和不足之处,主要表现在以下几个方面:一是小组没有分好,导致有些小组讨论不够积极;二是在教学过程中,对于轴对称图形和两个图形成轴对称的区别与联系没有做过多地解释,所以学生在做作业时,出现了较多的失误。所以在订正时我又进行了较详细地讲解。

轴对称图形教案13

  第四单元

  第五课时:轴对称图形

  教学内容:轴对称图形、对称轴、对称性质;课本第100~101页,完成相应的“做一做”题目和练习二十六的第1~7题。

  教学目的:使学生初步认识轴对称图形与对称轴;会找出对称图形的对称轴;并知道对称轴两侧相对的点到对称轴的距离相等。

  教具、学具:剪刀、复写纸、白纸。

  教学过程:

  一、复习。

  说一说你是如何用对折的方法找出一个圆的圆心的。

  二、新授。

  1.导入。

  在日常生活中,我们会看到一些物体或图形很特别,把它们像圆一样沿着一条线对折,两边就完全重合;如枫树叶、蝴蝶(出示图形)等这些图有对称美;那么,到底什么样的图形才是轴对称图形,这就是我们今天要学的内容。

  板书课题:轴对称图形。

  2.轴对称图形与对称轴。

  教师把一张白纸对折,中间夹上双面复写纸,在纸上面画半个花瓶,然后把纸展开,得到以折痕为对称轴的整个花瓶。

  从图中不难发现折痕两侧物体形状与图形的大小完全一样。

  师生一起打开课本第121页,看上半页的三个图(树叶、蜻蜓、天平)由学生说一说他们的特点。(他们以树叶的主干、蜻蜓的身躯、天平的`指针为轴左右两侧形状、大小一样。)

  做课本上的实验,把一张纸对折并按书中的图样画好,再用剪刀剪下,把纸打开可看到它是以树干这直线为轴,两侧的图形能够完全重合。

  小结:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形(指着树叶等)就是轴对称图形。折痕所在的这条直线叫做对称轴。

  回答课本第121页下面的“做一做”。

  3.画(找对称轴)。

  对称轴的轴法是一横一点一横点穿过图形,如“—·—·—”。先要求学生判断下面图形是否轴对称图形?然后要求学生判断下面图形是否轴对称图形?

  学生画出对称轴。

  最后要求学生在课本上量一量对称轴两侧相对的点到对称轴的距离是否相等。通过多处的测量可概括出:在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等。

  三、巩固练习。

  1.课本100页“做一做”第1题。

  1

  第四单元

  2.课本第101页“做一做”第2题。先找出对称轴然后再量一量对称轴两侧

  相对的点距离是否相等。

  3.练习二十六第1~6题。

  课后小结:

  2

轴对称图形教案14

  《数学课程标准》指出:有效的学习活动不能单纯地依赖模仿与记忆。动手实践、自主探究与合作交流是学生学习数学的重要方式。自主学习是时代赋予数学教学活动的要求。所以教师必须为学生创造自主学习、自主活动、自主发展的条件,让学生积极主动地参与数学教学的全过程,使每个学生都在原有的基础上得到发展,获得成功的体验。树立学好数学的自信心。《轴对称图形的初步认识》本节课重点让学生认识轴对称图形,了解轴对称图形的含义,能够找出轴对称图形的对称轴。难点是能根据轴对称图形的概念进行判断轴对称图形,并画出对称轴。本节课通过折一折、辨一辨、试一试、议一议、比一比等操作,实现对轴对称图形的理解,突破难点、突出重点,激发爱学、善学、乐学的习惯。

  一、激发自主学习的动机 动机是激励学生学习的内部动力。自主学习需要一种内在激励的力量。在导入新知识时,直观、巧妙、激趣、贴近生活。如,上课伊始、教师拿一个用纸剪的圆,让学生动手折一折找圆的方法渗透图形的对称美,引发学生浓厚的学习兴趣,使其产生强烈的探究原望,变被动学习为主动求知。

  二、创设自主学习的条件 苏霍姆林斯基认为:“教师是思考力的培育者,不足知识的注入者。”教师在课堂上应把“玩”的权利还给学生,把“创”的.使命交给学生,使课堂教学民主化,让学生在课堂上乐于学数学、做数学、用数学。例如,理解对称轴的概念,利用学生手中的一张纸对折在折好的一个侧面,任意画上你喜欢的圆,用剪刀剪下来,在结合教科书,让学生自主学习、自主发现,突破本

  本节课的难点。这种尊重学生的学习方式,使学生自主地获得了数学知识。

  三、重视自主学习的过程 教师要尝试让学生自主学习的过程,优化课堂教学中的反馈与评价。通过评价,可以激发学生的求知欲,坚定学生学习的自信心,交流师生的感情。

  总之,先进的教学理念,精心的教学设计,充分的课前准备、优质的课堂教学,使这节课顺利完成,学生的能力在本节课有了提高和发展,教学效果很好。

轴对称图形教案15

  课 题:

  复习圆、轴对称图形,数学教案-复习圆、轴对称图形。

  教 学目标:

  1、使学生进一步掌握相关图形的特征及运算。

  2、使学生的空间观念和想象能力得到培养。

  教学重点:公式及计算。

  教学难点:技能技巧。

  教具准备:小黑板 幻灯机

  教学过程

  一、基本训练:

  1、口算:

  在听算本上听算《口算卡片》(38 )。

  (1) 统计3分钟以内做完的同学加以表扬,然后指名报答案。

  (2)全班统一核对,老师选重点点拨,集体订正。

  2、口答:

  指名回答上一节课所学知识。解答百分数应用题应该注意什么?

  二、进行新课:

  1、复习圆的概念。设计如下问题:

  (1)圆的圆心是如何确定的?

  (2)什么是半径、直径,同一个圆的`半径和直径有什么关系?

  (3)不同的圆有不同的圆周率吗?

  (4)什么是圆的周长?什么是圆的面积?

  2、复习圆的周长和面积的计算:

  (1)做143页的第11题。

  (2)集体讲评,让学生说一说圆周长的计算公式及面积的计算公式。

  (3)教师和学生一起回忆公式推导过程,小学数学教案《数学教案-复习圆、轴对称图形》。

  (4)在小黑板上出示如下问题:让学生口答。

  A、填空:圆周长是其直径的( )倍。

  大圆的半径是小圆的3倍,大圆的圆周长是小圆的( )倍。

  B、判断:圆周率等于3。14 ( )

  圆的面积大小只与半径的长短有关。 ( )

  集体讲评。

  3、复习轴对称图形。做练习三十五的第二十六题。然后集体讲评。

  三、巩固练习:

  1、做练习 三十五 的第23 题:

  (1)全班座练,指名板演。教师巡视,指导补偿生。

  (2)统一讲评,集体订正。重点讲清:图形的特点。

  2、做练习三十五 的第24 题:

  (1)全班座练,指名板演。教师巡视,指导补偿生。

  (2)统一讲评,集体订正。重点讲清:运用的公式。

  四、当堂检测:(当堂效果验收,是课堂作业)

  在A本上做练习 三十五 的第30 题。

  五、当天检测: (当天效果验收 ,是家庭作业)

  在B本上做练习三十九 的第28、29 题

  教后感:

  数学教案-复习圆、轴对称图形

【轴对称图形教案】相关文章:

《轴对称图形》教案02-16

《轴对称图形的认识》教案09-03

《轴对称图形》教案15篇04-02

《轴对称图形》教学反思08-16

轴对称图形教学反思03-02

《轴对称图形》教学反思10-20

《轴对称图形》数学教学反思03-09

数学《轴对称图形》教学反思03-18

《轴对称图形》教学反思通用10-19