- 《椭圆》数学教学反思 推荐度:
- 相关推荐
《椭圆》数学教学反思(通用14篇)
在现在的社会生活中,我们要在教学中快速成长,反思自己,必须要让自己抽身出来看事件或者场景,看一段历程当中的自己。如何把反思做到重点突出呢?以下是小编收集整理的《椭圆》数学教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
《椭圆》数学教学反思 1
本学期学习选修1—1《椭圆及其标准方程》,上完这节课后我认真地进行了反思,具体内容如下:
一、教学过程回顾
1、引入:(师生共同做实验)
手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆。
分析:
(1)轨迹上的点是怎么来的?
(2)在这个运动过程中,什么是不变的?
2、新课:
(1)归纳总结出椭圆的定义。(教师启发引导,学生回答)
(2)推导椭圆标准方程。(推导之前先回顾求轨迹方程的方法)
(3)椭圆标准方程。(教师板演方程,学生记忆方程)
(4)讲解例题。(教师启发引导,板演过程,学生分析,思考)
(5)学生做练习(学生板演,师生共同纠错)
(6)小结。
(7)布置作业。
二、成功之处:
1、教学方法上:结合本节课的具体内容,确立启发探究式教学、互动式教学法进行教学。,体现了认知心理学的基本理论。
2、学习的主体上:课堂不再成为“一言堂”,学生也不再是教师注入知识的“容器”,课堂上为学生的主动参与提供时间和空间,让不同程度的学生勇于发表自己的各种观点(无论对错),真正做到了:凡是学生能够自己观察的、讲的(口头表达)、思考探究的、动手操作的,都尽量让学生自己去做,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的主体。进而完成知识的转化,变书本的知识为自己的知识。
3、学生参与度上:课堂教学真正面向全体学生,让每个学生都享受到发展的权利。在我的启发鼓励下,让学生充分参与进来,进行交流讨论,共同进步。
4、“三维”课程目标的实现上:既关注掌握知识技能的过程与方法,又关注在这过程中学生情感态度价值观形成的情况。
5、学法指导上:采用激发兴趣、主动参与、积极体验、自主探究的讲解讨论相结合,促进学生说、想、做,注重“引、思、探、练”的结合,鼓励学生发现问题,大胆分析问题和解决问题,进行主动探究学习,形成师生互动的教学氛围。
三、不足之处:
1、本节课课堂容量偏大,从而导致学生在课堂上的思考的时间不够,课堂时间比较紧张。因此今后要合理地安排每一节课的课堂容量,给学生更多的.思考时间和空间,提高课堂的效果。同时还要重视探究题的作用,因为班上有一部分同学基础比较扎实,而且对数学也比较感兴趣,出一些比较难的思考题,能够让这部分学有余力的同学能有所提高。
2、学生练习时间不够充分,耽误了小结时间。
3、一部分学生的计算能力还不够熟练,缺乏简化计算的能力,今后还要继续加强对学生这方面能力的培养。
总之,在课堂教学中我“以知识为载体,以思维为主线,以能力为目标,以发展为方向”,展现知识的发生形成过程。采取以学生发展为本,明确本节课的学习目标,以学习任务驱动为方式,以椭圆标准方程的求法为中心。穿插研究性教学尝试,体现了“学生是学习主体,教师是引导者、参与者、组织者、合作者”的新课程理念。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。达到了教学目标,优化了整个教学过程。但是,在教学中还是存在很多不足的,在以后的教学中还要继续努力,不断总结经验教训,提高自身的教学水平。
《椭圆》数学教学反思 2
如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,是一个很重要的课题。
要教好高中数学,首先要对课标和教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。
课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务。
一、要有明确的教学目标
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。
二、要能突出重点、化解难点
每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备例2时,就设置了三个小题,从易到难,便于学生理解接受。
三、要善于应用现代化教学手段
在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显着特点:
一是能有效地增大每一堂课的课容量;
二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;
三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;
四是有利于对整堂课所学内容进行回顾和小结。
在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的`内容,如解析几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。
四、根据具体内容,选择恰当的教学方法
每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。这节课是高二的复习课,我采取了让学生自己回忆讲述椭圆的几何性质,教师补充的方法,改变了传统的教师讲,学生听的模式,调动了学生的积极性。
在例题的解决过程中,我也尽量让学生多动手,多动脑,激发学生的思维。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。
五、关爱学生,及时鼓励
高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
六、切实重视基础知识、基本技能和基本方法
众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。
其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。
如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。
七、渗透教学思想方法,培养综合运用能力
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。
总之,在新课程背景下的数学课堂教学中,要提高学生在课堂45分钟的学习效率,要提高教学质量,我们就应该多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。
《椭圆》数学教学反思 3
经过连续两年的高三教学工作后,我开始投入到高中数学新课程教学中。平时也研读教材,探讨过新环境下的高中数学教学,但是如何将所学理论应用到实践中,如何落实数学课堂教学实效性,调动广大学生学习数学的积极性,成为我平时数学教学中的一个课题。白板技术的应用,为攻克这一问题增添了催化剂,推动数学课堂逐渐走向动态的课堂。也是我对新课程理念下数学课堂教学的一次很好的反思。
一、让学生的手动起来
这节课存在很大的计算量,如果让学生在课堂进行计算,就会减少思维量,减少解题的数量。如果只做分析,不求解又达不到训练的目的,同时也失去了这一部分内容的特点。为了解决这一问题,我将常规、典型的习题留作学生课前预习题。实践表明,学生很重视这次展示,做得非常认真,达到了预期的目的。学生是学习的主体,学生可以自主完成的内容要大胆放手,让学生亲自解决,从而带来问题解决的成功感。
二、让学生的思维动起来
“数学是思维的体操”。思维永远是由问题开始的,设计适当的问题可激发学生的探索欲望,牵引学生的思维处于活跃状态。要提高提问的有效性,有效提问是课堂对话的开端,它能引起学生的思维、兴趣的激发一堂有实效的数学课应让学生的思维得到广度,深度的发展。这节课是直线与椭圆位置关系的复习,但仅停留在这一层面,学生的思维开阔不起来。为了促进学生思维的纵深发展,我设计了让学生类比直线与椭圆位置关系探究直线与双曲线位置关系。学生通过探究即找到了共性的方法又发现了差异的所在。在解决椭圆中点弦问题时,让学生主动去比较曾做过的双曲线的中点弦的问题。只有让学生自己去体验,感受,发现知识的发生,发展的过程,领略数学知识的联系、丰富,且富于变化的一面,才有利于学生掌握数学知识,更有利于激发学生学习数学的热情,为学生树立数学发展过程的数学思想。
三、教师的设计动起来
以往数学教学一根粉笔讲到底,缺少生动性,很难让数学课堂动起来。如今白板技术的应用,能给学生提供数学动态的演示过程。在整合直线与椭圆位置关系时,我应用白板轻松的将直线动起来。让学生切身的体会到位置关系的.变化,充分体现了数形结合思想。教师对问题的设计体现于问题的呈现方式。好的问题呈现方式对问题的求解,学生思维的拓展能起到事半功倍的作用。在探究直线与双曲线位置关系的判定时,我采用了连线题的形式,将直线方程与椭圆方程,直线方程与双曲线方程分别联立后消去y得到关于x的方程,让学生区分哪个是椭圆的,哪个是双曲线的。让学生发现不同,进一步探究产生不同的原因,再去探究直线与双曲线位置关系的判定方法。在探究“点差法”求中点弦问题应注意的事项时,我设计了“找不足”的问题。让学生找错,改错,最后应用几何画板演示轨迹,让学生切身经历发现,分析,解决的过程。学习始于疑问,通过适当的问题情境,引出需要研究的数学问题,然后通过观察,思考,猜想,探究等活动,引导学生发现问题,提出问题,通过亲身实践,主动思维,积极参与,经历不断地从具体到抽象,从特殊到一般的抽象概括活动来理解和掌握数学基础知识,打下坚实的数学基础。
动态的数学课堂教学,给学生创设了的思维、情感发展的空间。但本节课仍存在很多不足之处和需要改进的问题。教学中能关注到学生情感变化,但安慰,鼓励的语言没能跟上,在对学生进行评价时应要丰富自己的语言。应用电子技术的能力有待进一步熟练。在真正解放学生,让学生成为数学课堂的真正的主人上力度还不够。学生能总结的,能发现的,而在教学时无意中又抢了学生的角色。所以今后要进一步提高认识,在平时课堂上尽量多地放手让给学生去做、去活动、去完成,让学生体会到他们是学习的主体。进而完成知识的转化,变书本的知识、老师的知识成为自己的知识。
《椭圆》数学教学反思 4
今日上了一节椭圆及其标准方程的课。同学们基本上按照之前的要求,带来了绳子,这绳子是用来画图用的,即是教学设计中提到的第一步,利用绳子和笔,几个人一起合作画图。内容倒是较为简单,但是大多数学生受到教材的影响,有的自己根本没有画或者是话的时候也不认真,就直接告诉我答案了。虽然说画出来的图形应该有两类,椭圆和线段,但是学生大部分直接说出了椭圆,因为本节内容是椭圆。
很多时候书上的内容是否需要用引子引出来的确是个问题,学生自己不可能不提前看书,而且看的内容还比较多。但是这些内容,学生有的`似懂非懂,老师讲的时候感觉自己深切体会了,其实不然,自己还是不太清楚,只是因为教材那样写了,参考书有那些结论,学生跟着附和,当然也不排除真的懂得。但是滥竽充数的还是有的,甚至有些学生并没有参与到充数中去,而是默默的看着老师,希望老师多给点说明。
教材上的内容如果不提,学生又不可能完全预习过,正是因为如此参差不齐的预习程度,使得教师在上课的时候对于上课内容的把握增加了难度。有的很简单,却花了很多时间去说明,有的是难点,却轻轻带过了。对于这些问题,作为教师还是应当多分析一下学情,走近学生,了解他们的预习状况,同时自己对于教学内容的重点也应当多多思考,要从学生的角度思考问题。
虽然开始设计的让学生亲自动手操作画图,但是课堂中的实际情况确实事与愿违,学生不仅没有真正的认真参与,而且把画图的这点时间用来嬉笑了。虽然现在提倡学生参与的课堂,但是学生的动手能力不是从高中才应该培养的,而应该是从小开始就应该培养的,高中的一节课一个瞬间也许没有多少效果,或者说是在“浪费了”宝贵的课堂时间。因为学生和教师都没有合理运用这里的实操时间,实际操作的效果没有真正达到。
我不反对课堂的学生动手操作,但是实际情况却很难展开,一来教材已经给了相应的操作结果,二来学生动手能力的确很欠缺,再加上学生自制力差,在操作过程中难免会出现说话聊天等与教学活动无关的事情。
学生在课堂上进行操作肯定是多多提倡的,这也是素质教育的体现,只不过我们应该把握好实际动手的时间,并不是没结果都要有大部分时间进行实操,因为数学课毕竟还是一门较为严谨的理论学科,年级越高,数学内容就越抽象。而且也需要每一位老师的一点付出,这样学生的操作能力锻炼的机会才不会在某个地方就没了。
同时实际操作的活动出现不太理想效果的原因还包括教师自身对课程的设计,没有把握好学生应当进行的活动的度,没有选好让学生参与的活动。同时既然选择了让学生自己动手,那就不要担心教学时间被活动耽误了,学生参与了,收获也许是无尽的,在以后的某一天学生还能想起来高中的某一次课上活动。
《椭圆》数学教学反思 5
椭圆是圆锥曲线的重要组成部分,椭圆学好了,有助于以后研究双曲线及抛物线,因为他们的研究方法是一样的。所以初学圆锥曲线一定要先把椭圆的基础给打好了。
在讲椭圆之前,应该先介绍一下研究所有曲线的方法和过程,即先建立曲线方程然后根据方程研究性质,这就是解析几何的特征,用代数方法研究几何问题,先让学生做到心中有数。因此曲线方程的建立是很重要的,而坐标法正是解决这个问题的重要方法。要掌握坐标法的“三步曲”:建系设点,找到关系进行代数运算,运算结果翻译成几何结论。
椭圆定义的形成是非常重要的,可以让学生深刻的记着它的几何特征有助于以后解题。引入部分可以这样设计:大家对椭圆都有一个感性的认识,觉得比圆稍扁一点的就是椭圆,这是不准确的。究竟满足什么条件才是椭圆,你能画出一个椭圆吗?接着画椭圆就是这节课的一个重要环节,要有教具的准备:定长的线,硬纸板和图钉。思考:到一个定点距离等于定长的点的集合是?到两个定点距离等于定长的'点的集合又是什么呢?学生亲自动手操作,体会椭圆的形成过程及满足的条件。
第一个环节完成以后,第二个重要环节就是椭圆标准方程的产生,按照坐标法建系设点,一定让学生自己化简,亲自动手体验的过程不能少,因为解析几何就是考察学生的计算能力的。化简的过程中可以给与学生鼓励,看谁细心认真,尽管过程繁琐,但一定不要放弃,坚持到最后的人肯定能化简出来取得成功。另外教师一定要在学生动手之后,再演示一遍以达到纠错的目的,使学生印象深刻。这样才会收到一个良好的效果。
这堂课学生可以参与到教学的各个环节,学生主体性可以得到充分的发挥,而且还有情感价值观的锻炼,非常有价值。
《椭圆》数学教学反思 6
椭圆的简单几何性质的重点是性质,难点是应用。椭圆的简单几何性质的知识是解析几何中一个重要内容,是训练学生逻辑思维,发展空间想像能力,提高分析和解决问题能力等的又一重要素材。新课开始,先复习椭圆定义和方程,然后结合图形观察分析得出椭圆有性质(范围、对称性、顶点、离心率、准线)。
当然,要真正掌握性质并灵活应用,适当的训练是必不可少的。由于椭圆的简单几何性质安排了六节数学课,还有足够的时间来开展反馈环节。课本后面的练习及习题比较多,其中习题的第5题及9题难度较大。对于比较简单的习题,基本上由学生独立完成,当然学生解题的时间必须要保证。而对于比较难的第5及9题,采取创设问题情境,注重启发艺术,体现“低起点、小步子、及时反馈”的教学原则,让尽可能多的学生思维和积极性得到最大的挑战和提高。当然,教学永远是一门遗憾的艺术,教学境界是无止境的,“启而不发,引而不导”是一个不断完善的操作过程。
对于习题的`教学,如何提升习题的潜在价值,如何让学生得到最大的收获,这是我们每天面对和思考的焦点。在教学过程中几乎花了一节课的时间开展习题教学,由于自己一直担心时间的紧张,学生的主体性没有得到有效体现,进而数学思维及能力缺少了锤炼的机会。这部分的缺陷,将在今后的教学中找时间来给学生补上,不过这是在教学中应注意的,将要要求自己在今后的教学中尽量做到最好。
《椭圆》数学教学反思 7
椭圆是圆锥曲线中的一种重要类型,熟练掌握了椭圆的性质和特点对于后续学习双曲线和抛物线也大有裨益,因为它们之间的研究方法是相似的。因此,在初学圆锥曲线时,必须先打好椭圆的基础。
在讲解椭圆之前,我们需要先介绍一种研究曲线的方法和过程。这种方法被称为解析几何,它利用代数方法来研究几何问题,主要是通过建立曲线方程并根据方程来研究曲线的性质。这样的方法可以帮助学生更好地理解和掌握几何概念。曲线方程的建立是非常重要的,而坐标法是解决这个问题的关键方法之一。学生们应该掌握坐标法的“三步曲”,即建立坐标系并设定点的坐标,然后找到点与坐标的关系,并进行代数运算。最后,将代数运算的结果转化为几何结论。通过以上的方法,学生们能够更好地理解和应用解析几何的概念,从而更有效地研究和分析曲线的性质。
椭圆的定义对于学生深入理解其几何特征以及未来解题非常重要。以下是引入部分的修改建议:大家对椭圆可能有一个直观的'认识,认为比圆略微扁平的形状就是椭圆,但这种观点并不准确。那么,究竟什么样的条件下才可以称之为椭圆呢?你能够画出一条椭圆吗?接下来我们将讨论如何画椭圆,为此需要准备一些教具:固定长度的线段、硬纸板和图钉。思考一下:如果我们到一个固定点的距离等于某个固定长度,那么这些点的集合是什么?再者,如果我们到两个固定点的距离之和等于某个固定长度,又会得到怎样的点的集合呢?通过亲自动手操作,让学生体验椭圆形成的过程,并理解它所满足的条件。
完成第一个步骤后,第二个关键步骤是生成椭圆的标准方程。按照坐标法建立坐标系并设定点,学生应该亲自动手进行化简,以体验解析几何中需要计算能力的过程。在化简的过程中,我们可以给予学生鼓励,看看谁能认真细致地完成,尽管过程可能有些繁琐,但决不能放弃,只有坚持到最后的人才会成功地化简出方程。此外,教师应该在学生动手之后再进行一次演示,以便纠正错误,帮助学生加深印象。只有这样,才能取得良好的效果。
这门课程能够促使学生积极参与到教学的各个环节中,充分发挥学生的主体性,并且提供了情感和价值观培养的机会,具有非常宝贵的意义。
《椭圆》数学教学反思 8
20xx年xx月,我在江苏连云港新海高中上了一节《椭圆的几何性质》公开课。这节课从准备,到与组内老师探讨、交流,并修改、上课,直至最后聆听各位老师和专家的指导,都让我受益匪浅。
本节课是苏教版普通高中课程标准实验教科书《数学》选修1—1第二章第二节的内容,它是在学完椭圆的标准方程的基础上,通过研究椭圆的标准方程来探究椭圆的简单几何性质。利用曲线方程研究曲线的性质,是解析几何的主要任务。通过本节课的学习,既让学生了解了椭圆的几何性质,又让学生初步体会了利用曲线方程来研究其性质的过程,同时也为下一步学习双曲线和抛
物线的性质做好了铺垫。本节课是围绕着探究椭圆的简单几何性质进行的。因此,依教材的地位与作用及教学目标,将之确定为本节课的重点;又因为学生第一次系统地按照椭圆方程来研究椭圆的简单几何性质,学生感到困难,且如何定义离心率,学生感到棘手,所以我将之确定为本节课的难点。
然而,课后的反思过程中我发现了几个问题:第一,在讲解"顶点"定义时,单纯定义为椭圆与坐标轴的交点,没把握住顶点的重要特征,即"顶点是椭圆与其对称轴的交点",如果把握住这一点,在讲解时就应先讲"对称性",再讲"顶点";二是本节课对几何性质的导入,是由学生回顾上节所讲特征三角形的三边与的大小关系开始的,而多数人对特征三角形的记忆是很模糊的,上节课在这个知识点上学生吸收的并不好,如果把它放在本节课"顶点"之后再讲解,会显得更自然一些;三是"对称性"的讲解过于单薄,学生既然很快就观察出了这个性质,何不趁热打铁,再从代数的角度证明一下呢?过于避重就轻的做法不利于对学生数学思维能力的培养。以上的几点不足都提醒我今后要在研究教材上下更多的功夫。
还有在讲解完"对称性"、准备讲"离心率"之前,我穿插了一道"画椭圆的简图"的题目。并提圆相似吗?椭圆呢?引起了同学们注意。这道题起到了较好的承上启下的作用:既巩固了刚学的性质,又引发了一个问题:椭圆的"扁"的程度与哪些要素有关。大多数学生通过所画的两个椭圆长轴相同、短轴不同,从而"扁"的程度不同,很自然地回答这与有关,圆的形状是完全相同的,而椭圆的形状是否完全相同?如何刻画椭圆的“圆扁”度呢?
学生自主探究(预设:可以创造错误认识,a越大越扁?b越大越圆?联想椭圆定义当2a定时,焦点逐渐靠近顶点,椭圆会怎么样?焦点逐渐靠近中心,又会怎么样?)
切入事先准备好的几何画板展示,固定长轴,移动交点,看变化。教师通过多媒体展示椭圆随着离心率逐渐接近0越圆而越接近1而越扁的动画
过程。e越大,椭圆越扁,越小越圆。讲清楚e是一个比值圆扁度用什么刻画?为什么不b用。a此外,在以下几个方面我还需要进一步改进:一是课堂的节奏还要稍微慢一点,比如对焦点在轴时椭圆的几个性质的.给出,都是师提问生齐答,在这个过程中不少反应慢一点的同学没有足够的时间去思考,被忽略掉了,而如果把这个环节换成小组合作学习、讨论交流的方式来进行,放手把主动权交给学生,效果可能会更好,也更符合新课改的理念。二是教学语言还需要不断锤炼,因为数学老师的语言是否准确、精炼,会对学生的逻辑思维产生潜移默化的影响,要力图用清晰优美的语言艺术去感染学生。
比较过去自己曾经历过的刻板、严肃的灌输式教学,现在更提倡多给学生一点爱,让学生积极地参与到课堂活动中来;同时老师要做有效课堂的引导者,不断优化教学策略,教学中要关注学生是否积极地参与到发现问题、分析问题、解决问题的探索过程中去,是否能够达到掌握知识,提高能力的目的是否收到了理想的教学效果。教学过程中要尊重学生的自我发现,多角度的给学生以鼓励和肯定。
我会以此为契机,在平日的教学实践中不断思考和创新,不断成长和进步!
《椭圆》数学教学反思 9
本节借助几何画板的演示功能,使学生通过点的运动,观察到椭圆的轨迹的特征。多媒体创设问题的情境,让探究式教学走进课堂,唤醒学生的主体意识,发展学生的主体能力,让学生在参与中学会学习、学会合作、学会创新。
学生虽然对椭圆图形有所了解,但只限于感性认识,缺少理性的`思考、探索和创新,这与缺乏必要的数学思想和方法密切相关。本节课从实例出发,用多媒体结合本课题设计了一对动点有规律的运动作一些理性的探索和研究。
在教材处理上,大胆创新,根据椭圆定义的特点,结合学生的认识能力和思维习惯在概念的理解上,先突出“和”,在此基础上再完善“常数”取值范围。在标准方程的推导上,并不是直接给出教材中的“建系”方式,而是让学生自主地“建系”,通过所得方程的比较,得到标准方程,从中去体会探索的乐趣和数学中的对称美和简洁美。
在对教材中“令”的处理并不是生硬地过渡,而是通过课件让学生观察在当为椭圆短轴端点时(但这一几何性质并不向学生交待),特征三角形所体现出来的几何关系,再做变换。
《椭圆》数学教学反思 10
任何概念的学习,如有可能,我们当然希望学生在问题情境中,在解决问题的过程中,成为催生新知的主力军.限于椭圆概念的特殊性,我对问题情境的创设,通过两个角度:从形的角度和数的角度来加以引入,实现了由学生催生新知的初衷.
椭圆的定义教学中,画出椭圆轨迹,完全是意外的`惊喜,采用根据定义“先画后展”的处理方式,突显了知识主题,符合学生认知规律,推动了课堂发展,进而通过类比圆的标准方程的推导,给出椭圆的标准方程的推导步骤。椭圆方程的化简,对于学生而言是困难的,但不管怎么困难,教师也不可越俎代庖.为了突破这个难点,我们在曲线与方程的教学过程中,引导学生小组合作进行化简,并进行了实际操作.在课堂上,督促学生运用既有策略进行独立的推导化简,通过巡视,指导仍有困难者,训练学生的代数运算能力.此处的训练对于增强学生的自信和毅力有着重要的意义.
类比学习方法是本节课的主线,而数形结合又是本节课的主调,解析法则是本节课的主要原理方法。
另外,以后的教学中,应该更多的加强学生合作探究的能力,减少教师的讲解,从而能为学生提供更多的合作机会。
《椭圆》数学教学反思 11
本学期学习选修1-1《椭圆及其标准方程》,上完这节课后我认真地进行了反思,具体内容如下:
一、教学过程回顾
1、引入:(师生共同做实验)
使用手工操作来演示椭圆的形成:准备一根定长的细绳,并将它的两端固定在画图板上的两个点上。当绳子的长度超过了这两个点之间的距离时,可以用一支铅笔将绳子拉近,同时让铅笔的尖端缓慢移动在画图板上。通过这样的操作,就能够在画图板上绘制出一个完美的椭圆。
分析:
(1)轨迹上的点是怎么来的?
(2)在这个运动过程中,什么是不变的?
2、新课:
(1)归纳总结出椭圆的定义。(教师启发引导,学生回答)
(2)推导椭圆标准方程。(推导之前先回顾求轨迹方程的方法)
(3)椭圆标准方程。(教师板演方程,学生记忆方程)
(4)讲解例题。(教师启发引导,板演过程,学生分析,思考)
(5)学生做练习。(学生板演,师生共同纠错)
(6)小结。
(7)布置作业。
二、成功之处:
1、在教学方法方面,我们可以采用启发式探究和互动式教学法来进行教学。这样的教学方法能够很好地体现认知心理学的基本理论原则。
2、学习的主体已经发生了改变:课堂不再是教师说了算,学生也不再是被动接受知识的工具。现在的课堂为学生提供时间和空间,让他们能够积极参与其中,勇于发表自己的观点,无论对错。我们真正做到了:只要是学生能够自己观察、口头表达、思考探究、动手操作的事情,我们尽量让他们自己去做。这样能够激发学生的学习热情,拉近师生关系,提高知识的接受程度,让学生真切地感受到他们是学习的主角。通过这种方式,我们能够将知识转化为自己的知识,使书本上的知识变成我们自己的宝贵财富。
3、学生参与度的提升:课堂教学应真正关注每位学生,确保他们都能享受到个人发展的机会。在我的启发和鼓励下,鼓励学生积极参与,并促进他们之间的交流和讨论,共同成长。
4、“三维”课程目标的实现上:不仅要注重学生掌握知识技能的过程和方法,还要关注学生在这个过程中形成的情感态度和价值观。
5、学法指导上:采用激发兴趣、主动参与、积极体验、自主探究的讲解讨论相结合,促进学生说、想、做,注重“引、思、探、练”的结合,鼓励学生发现问题,大胆分析问题和解决问题,进行主动探究学习,形成师生互动的教学氛围。
三、不足之处:
1、本节课堂的容量过大,导致学生没有足够的思考时间,课堂时间过于紧张。为了提高课堂效果,今后应该合理安排每一节课的容量,给学生更多的思考时间和空间。同时,我们也要重视探究题的作用,因为班上有一部分同学在数学方面基础扎实且对此感兴趣。出一些较难的思考题能够激发这部分同学的学习热情并提升他们的.能力水平。
2、学生练习时间不够充分,耽误了小结时间。
3、部分学生的计算能力仍有待提升,他们在简化计算方面缺乏熟练的能力。因此,我们需要进一步加强对学生这方面能力的培养。
总之,在课堂教学中,我秉承着以知识为基础,以思维为导向,以能力为目标,以发展为方向的教学理念,充分展示了知识的生成和形成过程。我以学生的发展为核心,明确了本节课的学习目标,并以学习任务驱动的方式进行教学,在椭圆标准方程的求解上做了重点讲解。同时,我尝试了研究性教学的方法,体现了“学生是主体,教师是引导者、参与者、组织者、合作者”的新课程理念。这种教学方式有利于改变学生的学习方式,激发学生的自主探究能力,并培养了他们的实践能力和创新意识。通过这种教学模式,我成功地达到了教学目标,并优化了整个教学过程。然而,在教学过程中仍然存在一些不足之处,我将继续努力,在今后的教学中不断总结经验教训,提高自身的教学水平。
《椭圆》数学教学反思 12
椭圆及其标准方程这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。
在第一课时中我从书中的小实验出发给学生演示并重点讲解动点在运动的过程中始终保持不变的几何特征即到两个定点的距离之和为定值(绳长)并通过改变两个定点的距离让学生直观体会椭圆的圆扁度与定点距离的关系,并提出思考若绳长和定点的距离相等及大于绳长时动点的轨迹又是什么?随后通过对学生分组进行讨论及总结给出定义;我在此时结合图形强调这个定值一定要大于两个定点的距离的理由,随后提出坐标法的基本思想并带着学生回顾动点轨迹方程的一般求法然后提出问题:椭圆的方程是什么引入第二部分即标准方程的推导;在推导椭圆标准方程时重点讲清楚坐标系的建立过程,并让学生总结建系的方法及原则;在椭圆标准方程的推导过程中由于是带有两个根式的方程化简对于我们学校的学生来说基础比较弱可能从来没遇到过,因此主要通过我在黑板上的推导及演算让学生看清过程,掌握推导方法并及时对动点轨迹方程的一般求法步骤再次进行学习引导并进一步深入总结。
得到椭圆标准方程后,让学生重点分析两个问题,第一个就是课本中的探究活动,让学生在图形中找到b的几何意义,并强调a>b>0;a>c>0b,c大小关系不确定;第二个就是提出方程的建立与坐标系有关,不同的坐标系方程是不同的,引出学生对焦点在y轴上的椭圆标准方程的推导产生兴趣,并自己完成推导过程,并通过分组讨论总结完成对椭圆标准方程推导。最后通过课本例1让学生初步体会椭圆定义及标准方程的应用。
本节课的重点是椭圆的定义及标准方程的推导,难点是标准方程推导过程中的`建系过程和方程化简过程。在椭圆定义的教学中我充分运用多媒体演示及课堂学生的动手试验突出椭圆定义中到两个定点的距离为什么要大于两个定点的距离;另一方面从图形出发让学生注意三角形两边之和大于第三边也可以解释;在标准方程建立的过程中建系是难点,学生很难入手,在这里我充分引导学生建系的目的是用坐标表示点,用方程表示曲线,引导学生关注两个定点的坐标及距离公式好表示,并强调建系要关注椭圆的对称性。在推导完方程后通过不同的坐标系让学生观察分析方程的推导变化进一步体会坐标系建立过程中关注点的坐标及曲线的对称性的重要性。
在方程化简过程中我同过课堂上学生自主推导焦点在y轴上的标准方程进一步让学生自己体会化简的过程和运算技巧,让学生能初步的解决类似问题,本节课我采取做,讲,练结合,师生之间有充分互动的过程,学生能从做实验,听讲解,自主练习的过程中体会椭圆标准方程的获得过程,能够从中体会发现和发明的乐趣并对知识的产生过程有很深入的体会,真正的做到了学生为主体,教师为主导的教学理念。
《椭圆》数学教学反思 13
本节课是在学生在小学学习过程中已经对圆有了初步的认识,并且在前面学习了轴对称与旋转的基础上展开,因此在教学设计中结合生活实际,从学生已有的知识水平出发,通过展示生活中的剪影同时也让学生举例说明生活中的圆形物体,让学生感觉圆无处不在,体现数学与生活的密切联系,另一方面从中提出问题,让学生自然而然进入新知识的探索和学习中。
在学习过程中,力求学习方法的改变,让学生动手操作实验,在实践中发现圆的形成过程和圆的性质,体会和理解圆的两个定义。在与圆有关的.概念的教学时,特别是弧的教学时,还应明确指出劣弧与优弧是相对出现的,同心圆与等圆的概念教学衔接不够紧密,放在画圆时就提出较好。
《椭圆》数学教学反思 14
美术就像空气一样存在于我们的生活中,衣、食、住、行等等都离不开美术。同心圆本身就是和美术相关的素材,以生活中经常出现过的事物,用一种很独特的形式或是方式呈现在美术教学的内容上,尽量让美术课堂贴近于生活,拓展学生的想象空间,展现每个学生的独特体验和感悟。
本课一开始我以图片洋葱让学生进行观察,让学生从观察中找到自己的发现,这样的导入贴近生活,更适合低段学生的心理特征;这一环节的设计,我认为还是挺成功的,学生都能对洋葱上的圆形有所发现,从而揭题“奇妙的同心圆“。接着我开始强化学生对同心圆的认识,以实物教具变魔术的形式,激发学生的学习好奇心,让学生从一个圆到多个圆的组合,再到螺旋形的比较,让学生通过视觉上的认识,清楚地认识什么是同心圆,以及同心圆与螺旋形的'区别。能干的学生还能说出同心圆的特点,如:圆心不一样,圆形不一样,颜色不同等,教师在此基础上进行总结引导,如:圆心可以很大,也可以非常小;同心圆的圆形可以是椭圆的、方圆的、甚至是不规则圆形的;颜色丰富多彩。示范表示学生更能轻松地把握这些特点。紧接着游戏环节,让学生分组找找生活中的同心圆,这个环节的意图我是想让学生学到的知识升华到生活中的运用中,因为艺术源于生活,想让孩子们感受到生活中其实有着各种各样奇妙的同心圆,课堂教学时,我设计了8张图片的找同心圆,并且是以开火车的形式进行比赛,时间花费的过多了,其实学生在通过变魔术环节时已经明白了同心圆,这个环节还需要斟酌,筛选。之后共同欣赏同龄小朋友的作品,学生对这些作品都比较喜欢,他们在说感受的时候,都能说到同心圆的特点,教师从两个问题去进行引导,第一:看了这么多的同心圆,你有什么感受?第二:这些同心圆美在哪里?师傅事后给出了宝贵建议,说课堂上这个环节,学生的作品还过于多了,特别是类似的作品可再精简,就可以选择4种不同的同心圆,让学生自己进行筛选,挑挑自己喜欢的同心圆,然后说说为什么喜欢,这样学生的创作更加灵活多变。
生活是知识的源泉,丰富多彩的生活世界是美术课堂取之不尽、用之不竭的资源。美术课程标准中有这样一段叙述:我们对学生所实施的不是专业美术教育,而是生活美术教育。这就要求教师要从教育的角度来认识美术课程,而不是从美术的角度来看待美术教育,因此才会将美术学习活动与学生生活经验联系起来,让我发现了生活中的美术教育……活中的美术课堂,让我更多的从教育的角度来认识课程,从而促使我从促进学生发展的角度来组织课堂内容,才会更多的关注美术课程的综合性和多样性,进而培养学生的综合能力的发展。
列·托尔斯泰曾经说过,“如果学生在学校里学习的结果是使自己什么也不会制造,那他的一生将永远呈模仿和抄袭。“美术活动应该是一种创造性活动。美术活动课从目标、内容、过程、方法、结果等方面都体现出学生地位的自主性或他们的“自治自由“;换句话说,在美术活动课中,“学生在活动过程中,自始至终都应该是自觉主动的行为者,而不是教师的追随者“,他们充分发挥了作为审美主体应有的能动性与创造性。
而根据儿童的天性活泼好动,乐于表现自己的心理,我抓住他们的这一特点,在课堂环节的设置上多让学生说。这既符合儿童的身心特点,又活跃了课堂的气氛,还增强了学生对美术学习的兴趣。欣赏交流中的美术课堂,我感受到自己那一颗年轻快乐的童心,是他们给我带来了一种心境,能够用心去品尝生活的甘露,在孩子们的嬉戏欢娱中感受到一份快乐,使情绪获得健康的感染。让我感受到了人生的价值,生命的真谛,体味生活带给我的乐趣。
让学生在学会欣赏中认识美术,我与学生之间是交融互动的过程,是一个师生共同收获的过程,是师生互动、生生互动迸发现灵感的过程……相信在这样课程中的美术课堂,每个学生都会体验到成功,感受到快乐!
这堂课,给予了我很多的收获和真实感,当然首先要感谢山桥的老师们,盛丽萍老师,黄蓉老师,郑洁老师,还有山桥101班班主任方小妃老师以及朱强校长,19日那天我是第三节上课,当时我第一节课下课后就去班里拷课件,然后郑洁老师就和我说班里的孩子好些没有油画棒的,我当时就急了,心想这怎么办,课都没法继续呢,然后郑洁老师连忙说:“等会我帮你去别的班级借一下好了。“话刚落音,我的心就放了下来,随后班主任方老师就帮我统计了没有带材料的学生,记忆非常深刻的是,在第三节课还没有开始的时候,盛丽萍、郑洁、黄蓉等老师都帮我借了许多的油画棒,当时心中更多的是感动,谢谢大家的帮助。其次,是感谢美术组的各位亲们,当我抽到精品课的时候,大家帮忙一起选课,磨教案,真的是一件很幸福的事情,再次见证“团结真的就是力量“。
【《椭圆》数学教学反思】相关文章:
《椭圆》数学教学反思04-23
教学数学教学反思02-12
数学教学反思02-25
数学教学的反思03-10
数学的教学反思02-26
数学教学反思07-18
趣味数学教学反思04-08
幼儿数学教学反思04-21
数学教学经验反思04-21