数学方程的意义教学反思
身为一名刚到岗的教师,我们需要很强的课堂教学能力,写教学反思可以很好的把我们的教学记录下来,那么问题来了,教学反思应该怎么写?以下是小编收集整理的数学方程的意义教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
数学方程的意义教学反思1
《方程的意义》是一节数学概念课,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度。下面就结合我所执教的《方程的意义》这节课,谈谈在教学中的做法和看法。
回顾教学过程,我认为有如下几个特点。
一、复习导入,激趣揭题
该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。
二、实践操作,建立方程模型
本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。通过这一系列的观察、思考、分类、归纳突破本课的重难点。
三、回归生活,体会方程
在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的`意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。
四、教学中的不足
1、从学生已有的知识储备来看,他们会用含有字母的式子表示数量,大多数学生知道等式并能举例,向学生提供表示天平左右两边平衡的问题情境,大部分学生运用算术方法列式。但是,学生利用算术方法的解题思路,对列方程造成了一定的干扰。
2、对于利用天平解决实际问题虽然较感兴趣,但是,要求学生把看到的生活情境转化成用数学语言,用含有未知数的数量关系表示时,存在困难。
3、我应留给学生足够的时间去思考,而不应该替学生很快的说出答案。
五、改进措施
在以后的课堂中,我想首先是在课下的备课环节,重点的知识应重点去备,一定要详实,具体,充分考虑各种可能出现的情况,作到讲出一种,备出十种。备学生有时比备教材更为重要,稍微与学生脱节的备课都会在课堂教学中产生不小的影响。课上表述任务要求一定要具体,每一个形容,都会有不同的理解,学生也会完成到不同的层次上,要清晰,易理解,使学生能够按照要求操作、完成。
数学方程的意义教学反思2
教学《方程的意义》,我反复研读了这节课的内容,并与旧教材的进行了对比,思考着新教材为什么这样设计?
旧教材先利用天平认识等式,然后认识方程。而新教材通过情境,先让学生提出问题,学生在解决问题的过程中,学到用含有字母的式子表示数量之间的关系,在此基础上,利用天平理解等式的意义,最后揭示方程的意义。
在设计这节课时,我把方程的意义作为教学重点,不仅让学生了解方程的概念,还要会判断哪些是方程。更多思考的是学生对方程的后继学习与思考,注重知识的渗透。如后面学习的等式的性质、用方程解应用题等等。
课堂上我让学生根据创设的情境,提出数学问题,学生几乎提不出表示两者之间关系的`问题,都是些求未知数的问题。这时教师就直接出示要求的问题,然后让学生先找等量关系式,我发现只有极少数孩子能找到等量关系。由于找等量关系式教材中第一次出现,学生不知道从哪入手。学生思考讨论了一段时间,我发现也没有结果,我就引导着学生进行分析信息,找到了等量关系。找到了等量关系式,再列含有字母的式子就简单多了。课下我分析,主要是我在备课时,高估了学生,如何引导还需要多研究。这也是我下一步训练的重点。
为了让学生弄清楚方程与等式的关系,我通过天平的演示,让学生理解等式的意义,学生很容易根据天平列出算式。然后教师指出,我们刚才列出的这些式子都叫等式,在这些等式中,你们又发现了什么?学生很容易得出两种等式:一是不含未知数的等式,一种是含有未知数的等式,在此基础上,让学生比较得出方程的概念,然后通过练习判断哪是方程,那些不是方程?最后,让学生用画图的形式表示出等式与方程的关系,教材中没有出现这个内容,但我补充进去了,我觉得这样有助于学生加深对方程意义的理解。本节课从课堂整体来看,大部分学生思维比较清晰,会表述,但也有部分学生表述不清,发言不够积极。看来,课堂教学还要激活学生的思维,调动起学生的积极性,作为教师,还要多想些办法。
“自主合作探究”一直是我们所倡导的学习方式,但如何有效地实施?我认为,“自主学习”必须在教师的科学指导下,通过创造性的学习,才能实现自主发展。“合作探究”必须在学生独立思考的基础上进行,否则,学生则没有自己的主见,交流则会流于形式,没有深度。有了学生的独立思考,当学生展示交流时,不同的思路与方法就会发生碰撞,教师要尊重学生探求的结果,引导学生对自己的结果与方法进行反思与改进,促使全体参与,加生对知识形成过程的理解,培养梳理概括知识的的能力。
在整个教学过程中,教师作为主导者,要启发诱导学生发现知识,充分发挥学生的潜能,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。
数学方程的意义教学反思3
行动研究
行动研究是提高教师教育教学能力的有效途径。如"合作讨论"是新课程倡导的重要的学习理念,然而,在实际教学中,我们看到的往往是一种"形式化"的讨论。"如何使讨论有序又有效地展开"即是我们应该研究的问题。问题确定以后,我们就可以围绕这一问题广泛地收集有关的文献资料,在此基础上提出假设,制定出解决这一问题的行动方案,展开研究活动,并根据研究的实际需要对研究方案作出必要的调整,最后撰写出研究报告。这样,通过一系列的行动研究,不断反思,教师的教学能力和教学水平必将有很大的提高。
教学诊断
"课堂教学是一门遗憾的艺术",而科学、有效的教学诊断可以帮助我们减少遗憾。教师不妨从教学问题的研究入手,挖掘隐藏在其背后的教学理念方面的种种问题。教师可以通过自我反省与小组"头脑风暴"的方法,收集各种教学"病历",然后归类分析,找出典型"病历",并对"病理"进行分析,重点讨论影响教学有效性的各种教学观念,最后提出解决问题的对策。
交流对话
教师间充分的对话交流,无论对群体的发展还是对个体的成长都是十分有益的。如一位教师在教学"平均分"时,设计了学生熟悉的一些生活情境:分桃子、分鱼、分饼干、分苹果等。在交流对话时有的教师提出,仅仅围绕"吃"展开教学似乎有局限,事实上,在生活中我们还有很多东西要进行分配,可以适当扩展教学设计面。这样开放性的讨论能够促进教师更有效地进行反思,促进教师把实践经验上升为理论。
案例研究
在课堂教学案例研究中,教师首先要了解当前教学的大背景,在此基础上,通过阅读、课堂观察、调查和访谈等收集典型的教学案例,然后对案例作多角度、全方位的解读。教师既可以对课堂教学行为作出技术分析,也可以围绕案例中体现的'教学策略、教学理念进行研讨,还可以就其中涉及的教学理论问题进行阐释。如一位教师在让学生进行分数应用题的综合训练时出了这样一道题:一套课桌椅的价格是48元,其中椅子的价格是课桌价格的5/7,椅子的价格是多少?学生在教师的启发引导下,用多种方法算出了椅子的价格为20元。正当教师准备小结时,有学生提出椅子的价格可能是10元、5元……这时,教师不耐烦地用"别瞎猜"打断了学生的思路。课后学生说,假如一张桌子配两张椅子或三四张椅子,那么,椅子的价格就不一定是20元了。通过对这一典型案例的剖析以及对照案例检查自身的教学行为,教师们认识到,虽然我们天天都在喊"关注学生的发展",但在课堂教学中我们却常常我行我素,很少考虑学生的需要,很少根据学生反馈的信息及时调整自己的教学。
观摩分析
"他山之石,可以攻玉"。教师应多观摩其他教师的课,并与他们进行对话交流。在观摩中,教师应分析其他教师是怎样组织课堂教学的,他们为什么这样组织课堂教学;我上这一课时,是如何组织课堂教学的;我的课堂教学环节和教学效果与他们相比,有什么不同,有什么相同;从他们的教学中我受到了哪些启发;如果我遇到偶发事件,会如何处理……通过这样的反思分析,从他人的教学中得到启发,得到教益。
总结记录
一节课结束或一天的教学任务完成后,我们应该静下心来细细想想:这节课总体设计是否恰当,教学环节是否合理,讲授内如一位教师在让学生进行分数应用题的综合训练时出了这样一道题:一套课桌椅的价格是48元,其容是否清晰,教学手段的运用是否充分,重点、难点是否突出;今天我有哪些行为是正确的,哪些做得还不够好,哪些地方需要调整、改进;学生的积极性是否调动起来了,学生学得是否愉快,我教得是否愉快,还有什么困惑等。把这些想清楚,作一总结,然后记录下来,这样就为今后的教学提供了可资借鉴的经验。经过长期积累,我们必将获得一笔宝贵的教学财富。
数学方程的意义教学反思4
这一节课有学习的基础,在前面已经学了2—7的加减法,学生对怎么想加减法算式得数的方法已掌握得很好了。并且在前面的学习中也已会看图说三句话。所以,上课一开始,我就出示例图,引导学生看看图中是怎样的情景,然后引导学生说用加法列式的.三句话,在优生的带动下很多小朋友会说,并能正确地列出算式,也能说出每个数字是什么意思,教师再强调加法的含义,紧接着我又引导孩子们说说减法的三句话,并列式,说说每个数字的意思,师生共同强调减号前面是总数。完成例题教学后,半扶半放地让学生做试一试,大部分学生能顺利完成,在此又提问怎么想算式的得数。后面的练一练就完全放手让孩子们独立完成了。
数学方程的意义教学反思5
本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用,《方程的意义》教学反思。通过这一系列的观察、思考、分类、归纳突破本课的重难点。在这几个环节中有这样几个特点:
1.用天平创设情境直观形象,有助学生理解式子的意思
等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。
2、对方程的认识从表面趋向本质
(1)在分类比较中认识方程的'主要特征。在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。
( 2)要体会方程是一种数学模型。“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。
3在“看”“说”和“写”中体会式子
当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方法。
数学方程的意义教学反思6
11月11日是光棍节,在这个特殊的节日,谢老师以及各位兄弟姐妹能莅临我校进行教研活动,我非常的高兴,遗憾的是未能献上合格的公开课,在谢老师以及其他老师的点评中,发现了自己太多的不足,现则其重点简要说明,希在以后的教学中努力改进。
本节课是在学生学习了“9以内数的认识,7以内数的加减法,以及一图写二式”的基础上进行学习的,通过本节课的学习,学生应能顺利的进行9以内数的加减法以及根据一图写出四式,为后续学习数打下基础。
教学第一个例题(恐龙图)这部分我将课件上的恐龙制作成了动态的(好像在向前爬行),结果学生将其中一条减法算式理解成前面两只恐龙离开了视线,对另一条减法算式的理解造成了困难。谢老师指出,课件的动静制作应该要充分的考虑,不能单纯为了课件的美观,我将这里的“恐龙”制作成了动态的,无形中给学生的学习注入了无关刺激,给学生的学习造成了困难。
教学第二个例题的时候,我提出了一个在教学中应不应该把如何摆规定死(同颜色摆一起),谢老师指出,这里有三个层次的作用,第一层次是为了写算式和解释算式方便,第二层次是为了说明加法的意义方便,第三个层次是渗透集合的思想。经过谢老师的一番指点,才发现这样一个小小的规定,还存在那么多的深层含义,以后要勤于思考。
教学第三个例题的时候,有学生在计算的时候是用手指头点点算出来的。谢老师提出手指头是如何点的,按什么顺序,一问三不知啊,惭愧。平时自以为很简单的'数指头也包含那么多的学问在里面啊,学生的件件都不应该是小事,要认真对待,到底该不该让学生继续用手指来计算算式呢?
在后面的2个练习中,谢老师指出我缺乏层次性,其实练习的层次性设计对我来说并不陌生,在这节课的设计中,真的忘了,一点都没有考虑到,其中有时间的关系,但更多的是自己意识的不足,练习大概可以分这3个层次吧,第一层次是基础练习,第二层次是应用练习(与生活结合),第三层次是提高练习(为下步学习准备)。
谢老师还提了一个要不要设计合作交流的问题,首先是哪里合作交流的问题,某个环节要不要合作交流,有没有合作交流的必要,经过合作交流后学习效果是不是有提高,是不是切实提高了学生的合作能力。谢老师还提了2个建议,第一是开始时就明确要求,第二是分工要明确。
谢老师还提到了比如“不能完全按照教案,在课堂上遇到问题要具体问题具体解决”,“要让学生学会倾听,不但是倾听老师的发言,也倾听同学的发言”,“教低年级知识,你的自我知识储备必须扩张到更高年级相似内容”,等等。
兄弟姐妹们也提出了我在这节课中的种.种问题,比如备课要努力的研读教材以及教参,对学生的提问不能咄咄逼人,合作学习的时候要先说好要求等等。
也有兄弟姐妹很给面子,说我课堂顺畅,言语还不错,真是很难找到什么好的方面!
谢谢谢老师以及各位兄弟姐妹抽空来不吝赐教,也谢谢我们校长以及各领导各任课老师对本次活动的大力支持,只有你们的帮助,才有明日的我!
数学方程的意义教学反思7
这一次学校开展了活动,在活动中我们集体备课选定了《方程的意义》一课作为研讨课。这课的难点是区分“等式”和“方程”,为能突破这一难点我们精心设计了这节课的教学过程。
新课前先是出示了口算卡:
接着在方程意义教学过程中为了使学生能明白什么是相等关系,我们先用了一把1米长粗细均匀的直尺横放在手指上,通过这一简单的小游戏使学生明白什么是平衡和不平衡,平衡的情况是当左右两边的重量相等时(食指位天直尺中央),紧接着引入了天平的演示,在天平的左右两边分边放置20+30的两只正方体、50的砝码,并根据平衡关系列出了一个等式,20+30=50;接着把其中一个30只转换了一个方向,但是30的标记是一个“?”天平仍是平衡状态。得出另一个等式20+?=50,标有?的再转换一个方向后上面标的是x,天平仍保持平衡状态,由此又可以写出一个等式20+x=50。整个过程注重引导学生通过演示、观察、思考、比较、概括等一系列活动,由浅入深,分层推进,逐步得出“等式”——“含有未知数的等式”——“方程”。
虽然整个教学任务好象是完成了。但从学生的练习中我们发现还有一部分学生对“等式”和“方程”的关系还是没有真正弄清,例好在练习题中有一道讨论题:“方程都是等式,而等式不一定是方程。”这句话对吗?(答案是对的) 但是通过小组同学的'合作学习和争论,答案不一。虽然做错的同学最后被做对的同学说服了,但这也说明了“等式”和“方程”的教学过程中还存在问题。其实我们是忽视了“等式”和“方程”的直接对比
我们的口算题引入本来是为这节课的学习进行铺垫,但在第一次上课时,口算题我们做完后没有再回过头来再充分利用。课后经过大家的评课和科培中心老帅的指点,看起来是很简单的几道口算题,其中隐藏着等式和方程的关系。第二节课中我们通过改进,在讲完“等式”和“方程”后又回到口算卡,将口算卡的题通过变化——只是等式| ,——既是等式又是方程,这样进行对比使学生对 “等式”和“方程”的关系就弄得明明白白了。
数学方程的意义教学反思8
《方程的意义》这是一块崭新的知识点,对于五年级的学生来说,理解起来也有一定的难度。这是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑。因此,在教学中我通过创设贴近学生生活的情境来激发学生的学习兴趣,从而使他们愿学、乐学,为以后进一步学习方程打下基础。
在教学设计时,我把“方程的意义”作为教学的重点,方程意义的'教学目标定位是,不仅仅是让学生了解方程的概念,能指出哪些是方程;更多思考的是学生对方程后继的学习和发展,注重知识的渗透.课堂上让学生借助于天平平衡与不平衡的现象列出表示等与不等关系的式子,为进一步认识等式、不等式提供了观察的感性材料,然后引导学生对式子分类,建立等式概念,并举出新的生活实例进行强化.最后引导学生分析、判断,明确方程与等式的联系与区别,深化方程的概念.
本节课从课堂整体来看还可以,有大部分学生的思维还较清晰、会说;可还有部分学生不敢说,或者是不知如何表述,或者是表述的不准确,我想问题的关键是学生的课堂思维过程的训练有待加强,数学课堂也应该重视学生“说”的训练,在说的过程中激活学生的思维,让学生在新课程的指引下学会自主探索,学得主动,学得投入。
数学方程的意义教学反思9
教材分析
本节是学生首次学习用列方程的方法解决问题,所以字母表示数是学习本章节元知识的基础。按照教材的编写意图,要利用天平让学生亲自参与操作和实验,借助天平平衡的道理建立等式、方程的概念,以加深理解。因此本信息窗安排了三个内容,第一个首先利用天平平衡原理理解等式的意义。第二和第三个红点部分是学习方程的意义。
1、这节课要求学生进一步认识并掌握用字母表示数,初步了解方程的意义,为以后学习运用准备。
2、本节课是在学生已经初步认识了字母表示数的基础上进行教学的。
3、学习本节课是今后继续学习代数知识的'基础,同时对发展学生的多向思维具有举足轻重的作用。
,
学情分析
本节教学方程的意义,是学生第一次学习有关方程的知识。根据学生的年龄心理特点及生活经验,鼓励学生多观察、多讨论、多探究、多协作、多操作,采用了观察法、讨论法、探索协作学习法和操作法,使学生成为学习的主人。经过探索,掌握方程的特点和意义。
教学目标
1.能利用天平,通过动手操作理解等式的意义。
2.结合具体实例和情景,初步理解方程的意义,会用方程表
达简单的等量关系。
3.培养保护动物的意识,感受数学与生活的密切联系,提高
学习数学的兴趣。
教学重点和难点
重点:方程意义的理解 难点:建立等式、方程的概念
教学过程
数学方程的意义教学反思10
方程的意义这部分内容是学生初步接触了一点代数知识之后进行教学的,重点是“方程的意义”。设计的意图是想通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。因此本课设计了活动探索、自主分类、抽象概括、灵活运用4个环节,让学生通过观察、分析、抽象、概括,建立起方程的概念,明确方程与等式的关系。
根据儿童思维发展的递进性,设计了三个层次的活动,一是通过学生观察,抽象出相应的数学式子,建立起“平衡—相等、不平衡—不相等”的概念;二是通过自主探索,合作交流的学习方式,使不同能力的'学生都得到有效发展;三是引导学生对“等式”观察,将等式分为“含有未知数”和“不含未知数”两类,然后抽象出方程的概念。最后通过判断与独立创作方程两个学生活动,进一步理解了方程的意义,明确方程与等式的关系。教学实施中的不足之处:教师在教学中用语不够准确精练,对学生的数学语言表达能力指导欠缺,对学生的发言教师倾听程度不够,未能很好把握课堂教学中生成的课堂教学资源。
数学方程的意义教学反思11
《方程的意义》是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑,因此我们应该重视概念教学的开放性,自主性与概念形成的自然性。而且数学课程标准指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。
《方程的意义》这节课与学生的生活有密切联系,通过本节课的学习,要使学生经历从实际问题中总结概括出数学概念的过程。让学生初步了解方程的意义,理解方程的概念,感受方程思想。使学生经历从生活情境到方程概念的建立过程,培养学生观察、猜想、验证、分类、抽象、概括、应用等能力。通过自主探究,合作交流等数学活动,激发学生的兴趣,所以我在教学设计的过程中十分重视学生原有的知识基础,用直观手法向抽象过渡,用递进形式层层推进,让学生经历一个知识形成的过程,并尽可能让他们用语言表达描述出自己对学习过程中的理解,最后形成新的知识脉络。下面就结合这节课,谈谈我在教学中的做法和看法。
一、复习导入,激趣揭题
该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。
二、实践操作,建立方程模型
本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。通过这一系列的观察、思考、分类、归纳突破本课的重难点。在这几个环节中有这样几个特点:
1。用天平创设情境直观形象,有助学生理解式子的意思
等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的.式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。
2、自主操作,提高能力,激发兴趣
在探究方程的意义时我特意给学生提供操作天平平衡的不同材料,让学生分组实践,通过操作、观察天平的状态得到许多不同的式子,由于材料不同,每个组所得的式子也不同,有的全是已知数的式子,有的是含有未知数的式子,多种多样的式子激起学生的探究欲望激发学生观察兴趣。
3、对方程的认识从表面趋向本质
(1)在分类比较中认识方程的主要特征。
在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。
(2)要体会方程是一种数学模型。
“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。
4。在“看”“说”和“写”中体会式子
当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方1
三、实际运用,升华提高
在练习设计中由易到难,由浅入深,使学生的思维不断发展,使学生对于方程意义的理解更为深刻,特别使让学生自由创作方程这一练习题,既让学生应用了知识又培养了学生的创新思维。
本课时教学设计,改变了传统学习方式,利用课本的静态资源通过现代化教学手段,把数学情景动态化,大大激发了学生的学习兴趣,充分体现了以学生为主,让学生独立思考,不断归纳,把学生从被动地接受知识转为自己探究,为学生提供了自主探究,合作交流的空间。在学习中体会到了学习数学的乐趣,在获取知识的同时,情感态度,能力等方面都得到发展。当然这节课还存在一些问题,比如对等式与方程的关系突出得不够,读学生“说”的训练不够,应该给学生更多的表述的机会。
【数学方程的意义教学反思】相关文章:
《方程的意义》的教学反思02-27
方程意义教学反思02-16
《方程的意义》教学反思02-06
方程的意义教学反思02-10
方程的意义的教学反思02-10
方程的意义的教学反思15篇02-28
方程的意义教学反思(15篇)02-16
方程意义教学反思15篇03-01
《方程的意义》教学反思18篇03-01