《乘法分配律》教学反思集锦15篇
身为一名到岗不久的人民教师,我们需要很强的课堂教学能力,写教学反思能总结教学过程中的很多讲课技巧,那么优秀的教学反思是什么样的呢?下面是小编收集整理的《乘法分配律》教学反思,仅供参考,大家一起来看看吧。
《乘法分配律》教学反思1
《乘法分配律》是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。故而,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证……
1、关注学生已有的知识经验。以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的`感兴趣的学习情境,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。
2、展示知识的发生过程,引导学生积极主动探究。让学生根据提供的问题,用不同的方法解决,引导学生观察,让学生说明自己发现的规律。不仅让学生获得了数学基础知识和基本技能,而且培养学生主动探究、发现知识的能力。
3、出示乘法分配律的几种不同的形式让学生进行练习。
通过这一系列的教学措施,一节课下来,总体感觉良好——觉得同学们掌握得还不错。于是,我布置了让学生们完成练习册中《乘法分配律》这一课的习题。
当我批改练习时我傻了眼,学生的作业大多是中,少部分得良和差(我的作业批改评定标准),为什么会是这样的结果,我进行反思,发现是讲时,例题出示的不多,当时学生都会做了,但是对于熟练掌握这个既是重点又是难的课程的确不是那么简单的,三种题型放在一起学生就很容易受到干扰,结果是张冠李戴,错得让我涕笑皆非。而为了让学生把这个知识点掌握牢固,我整整又用了两节课。
通过这个知识点的教学,我发现数学不多练是不行的。在学生理解之后,必须对其进行及时、有效的练习才可以使知识掌握的更加牢固。
《乘法分配律》教学反思2
小学数学《乘法分配律》教学反思教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,我认为在教学中应该注意这些问题:
1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。
教学中通过解决买水果济青高速公路全长约多少千米?这一问题,结合具体的生活情景,得到了(110+90)2=1102+902这一结果。这时我们往往比较注意了等式两边的外形结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。所以这里我们不仅要从解题思路的角度理解两个算式是相等的,还要从乘法的意义的角度理解,即左边表示200个2,右边也表示200个2,所以(110+90)2=1102+902
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)25与(404)25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15(84)和15(8+4);25125258和25125+258;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。
如:计算12588;10189你能用几种方法?
12588 ①竖式计算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。
10189 ①竖式计算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。对不同的`解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到用简便算法进行计算成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。
4、多练,针对典型题目多次进行练习。
练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如3698+72;6825+68+6874,3212525等。
《乘法分配律》教学反思3
乘法分配律是继乘法交换律、乘法结合律之后的新的运算定律,在算术理论中又叫乘法对加法的分配性质,由于它不同于乘法交换律和结合律是单一的运算。从某种程度上来说,其抽象程度要高一些,因此,对学生而言,难度偏大,如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。
因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。在教学过程中有坡度的让学生在不断的感悟、体验中理乘法分配律,从而自己概括出乘法分配律。我是这样设计:
一、让学生从生活实例去理解乘法分配律
一共25个小组参加植树活动,每组里8人负责挖坑和种树,4人负责抬水和浇树。重组教材,改变每组的人数,由(4+2)个25,变为(8+6)个25更能凸显出应用乘法分配律后带来的方便,也为乘法分配律的'应用打下伏笔和基础。并且把“挖坑、种树”“抬水、浇树”更改为“挖坑和种树”“抬水和浇树”减少了文字对学生理解带来的困难。
通过引入解决问题让学生得到两个算式。先捉其意义,再突显其表现的形式。
如(4+2)×25其意义就是6个25与4×25+2×25所表示的也是4个25再加2个25也就是6个25,它们的表示意义一样。因此得数也一样故成等量关系。然后观察它们之们的形式变化特点,两个数的和乘以一个数可以写成两个积相加的形式,再捉住因数的特点进行分析。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会
借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的意思,也能顺利地解决两个算式相等的问题。
二、突破乘法分配律的教学难点
让学生亲历规律探索形成过程。对于探索简洁分配律的过程价值,丝毫不低于知识的掌握价值。既然是“规律定律”,就是让学生亲历规律形成的科学过程设计中,不着痕迹的让学生不断观察、比较、猜想、验证,从而概括出乘法分配律,在探索、归纳过程中,渗透着从特殊到一般,又由一般到特殊的数学思想和方法。
相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变形的能力是教学的难点。为了突破这个教学难点,从生活中的实际问题出发,开放引入的情境,一共25个小组参加植树活动,每组里人负责,人负责。一共有多少同学参加这次植树活动?
学生主动去设计、解决,调动学生的积极性。让学生根据自己的想法,选择自己喜欢的方案,开放给学生,发挥学生的主体性,通过去发现、猜想、质疑、感悟、调整、验证、完善,验证其内在的规律,从而概括出乘法分配律。让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中。
在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。
当然,对乘法分配律的意义还需做到更式形结合解释,那就更有利于模型的建立。
《乘法分配律》教学反思4
《探索与发现(三)乘法分配律》教学反思
东新四小学 王唯
教学内容:
小学四年级数学(上)《探索与发现(三)》乘法分配律》教材第48页
教学目标:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
教学重点:理解乘法分配律的特点。
教学难点:乘法分配律的正确应用。
教学过程:
一、复习回顾
(出示课件1)计算
35×2×5=35×(2×)
(60×25)×4=65×(×4)
(125×5)×8=(125×)×5
(3×4)×5 × 6=(×)×(×)
师:上节课,经过同学们的探索,我们发现了乘法交换律和结合律,并会应用这些定律进行简便计算,今天咱们继续探索,看看我们又会发现什么规律。让我们一起走上探索之路。
二、探究发现
(出现课件2)
师:大家看,工人叔叔正在贴瓷砖呢,看到这幅图,你发现了哪些数学信息?
生:我发现有两个叔叔在贴瓷砖
生:我发现一个叔叔贴了4列,每列贴9块,另一个叔叔贴了6列,每列贴了9块。
师:你最想知道什么问题?
生:我想知道工人叔叔一共贴了多少块瓷砖?(按鼠标出示问题) 师:你能估计出工人叔叔一共贴了多少块瓷砖吗?
生:我估计大约有100块瓷砖
生:我估计大约有90块瓷砖。
师:请同学们用自己喜欢的方法来计算瓷砖究竟有多少块。(学生做,小组讨论,教师巡视)
师:谁来向大家介绍一下自己的做法?
生:6×9+4×9(板书)
=54+36
=90
分别算出正面和侧面贴的块数,再相加,就是贴的总块数。
生:(6+4)×9(板书)
= 10×9
=90(块)
因为每列都是9块,所以我先算出一共有多少列,再用列数去乘每列的块数,就是一共贴瓷砖的块数。
师:同学们的`计算方法都很好,请同学们仔细观察两种算法,你能发现什么?
生:我发现计算方法不同,但结果却是一样的。
6×9+4×9 = (6+4)×9(板书)
师:请同学们仔细观察上面两道算式的特点,你能再举一些这样类似的例子吗?
(学生举例,教师板书)
师:这几们同学举的例子符合要求吗?请在小组中验证一下。 (小组汇报)
小组1:符合要求,因为每组中两个算式都是相等的。
小组2:在每组的两个算式中,一个是两个数的和去乘一个数,另一个是用这两个数分别是去乘同一个数,再相加,符合要求。
(板书用=连接算式)
师:比较等号左右两边的算式,从它们的特点和结果相等中你能发现什么规律,小组再讨论一下。
小组1:我们小组发现,只要符合上面题目要求的算式,结果都是一样的。
小组2:我们小组发现,两个不同的数分别去和同一个数相乘,然后再相加,可以先把这两个数相加再一起去乘第三个数,结果不变。 结论(课件2):师:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做 乘 法 分 配 律。它是我们学习的关于乘法的第三个定律。
师:大家齐读一遍。
师:和同桌说一说自己对乘法分配律的理解。
师:上节课我们学习了用字母来表示乘法交换律和结合律,现在你能用字母的形式表示出乘法分配律吗?用a,b,c分别表示这三个数,试着写一写吧。
(a+b)×c=a×c+b×c
师:这叫做乘法分配律
三、巩固练习:
1、计算
(80+4)×25 34×72+34×28
师:观察算式特点,看是否符合要求,能否应用乘法分配律使计算简便。
2、判断正误
( 25 + 7 )×4 = 25 ×4 ×7×4 ( )
35×9 + 35
= 35×( 9 + 1 )
= 350 - - - - ( )
3、填一填
(12+40)×3=× 3 +×3
15×(40 + 8) = 15×+ 15×
78×20+22×20=(+ )×20
四、总结
师:说说这节课你有什么收获?
师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。
[板书设计]
探索与发现(三)
-----乘法分配律
(a+b)×c=a×c+b×c
6×9+4×9 =(6+4)×9
(40+4)×25 = 40×25+4×25
(64+36)×42 = 42×64+42×36
《乘法分配律》教学反思5
乘法分配律是人教版四年级数学下册的内容,是一节比较抽象的概念课,是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。因此,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。
所以,本课的教学目标,我定位在:
(1)从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。
(2)渗透“由特殊到一般,再由一般到特殊”的认识事物的.方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
本单元教材的一个鲜明特点是,不再仅仅给出一些数值计算的实例,让学生通过计算,发现规律,而是结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。这样便于学生依托已有的知识经验,分析比较不同的解决问题的方法,引出运算定律。
教材提供了这样一个主体图:春季里,同学们开展植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。需要解决的问题是:一共有多少人参加植树活动?学生会用两种不同的方法分别列出算式,接着通过计算发现,两个算式可以用“=”连接,即25×(4+2)=25×4+25×2。我将其首先呈现给学生,目的是结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。
接着设计“悬念”,抛出四组题目,把学生引到“两算式的结果相等”的情况中来。先请学生猜想,而后验证,再请学生编题,让每一个学生都不由自主地参与到研究中来。在编题过程中,很多学生都交出了正确的“答卷”,增强了他们学习的自信心和继续研究的欲望。接着,请同学在生活中寻找验证的方法,以四人小组为研究单位,学生的思维活动一下子活跃起来,纷纷探究其中的奥秘。小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得成功的动机。
通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律,“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考,学会了像数学家一样进行研究、发现!这对十岁左右的孩子来说,其激励作用无疑是无比巨大的,而“爱思、多思、会思”的学习习惯,会让孩子一生受益。纵观教学过程,学生学得轻松,学得主动。
我通过这节课的教学感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。
《乘法分配律》教学反思6
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解和叙述的定律。因此在本节课教学设计上,我结合新课标的一些基本理念和本地区的具体情况,注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。
《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”数学教育家波利亚曾经说过:“数学教师的首要责任是尽其一切可能,来发展学生解决问题的能力。”而我们过去的教学往往比较重视解决书上的数学问题,学生一旦遇到实际问题就束手无策。因此,在上课的'一开始,我创造性地使用教材,创设了一个肯德基餐厅用餐的情境,使学生置身于非常熟悉的生活情境中,极大地激发了学生的学习欲望。学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地证明两式相等。接着要求学生通过观察这个等式看看能否发现什么规律。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。
与此同时,我还十分注重合作与交流,多向互动。倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。因此,为了让不同的学生在数学学习中都得到发展,我在本课教学中立足通过生生、师生之间多向互动,特别是通过学生之间的互相启发与补充来培养他们的合作意识,实现对“乘法分配律”的主动建构。学生在这样一个开放的环境中博采众长,共同经历猜想、验证、归纳知识的形成过程,共同体验成功的快乐。既培养了学生的问题意识,又拓宽了学生思维,学生也学得积极主动。
应用规律,解决实际问题是数学学习的目的所在。在练习题型的设计上,有抢答(填空)题、判断题、连线题、简算题和拓展题,它们并不孤立,而是有机地联系在一起,由基本题到变式题,由一般题到综合题,有一定的梯度和广度。使学生逐步加深认识,在弄清算理的基础上,学生能根据题目的特点,灵活地运用所学知识进行简便运算和拓展练习。不仅要求学生会顺向应用乘法分配律,而且还要求学生会反向应用。通过正反应用的练习,加深学生对乘法分配律的理解。从课堂反馈来看,学生热情较高,能够学以致用。学生通过自己的努力以及和同学的交流合作,解题速度和准确性都很理想。只有这样才能真正提高学生的计算能力。
本节课有一定的亮点,但其中出现了不少问题:学生参与的积极性没有预想中那么高。可能与我相对缺乏激励性语言有关。也有可能今天的题材学生不太感兴趣。但学生不感兴趣的材料,教师应该想办法使呈现的这个材料变得能让学生感兴趣。另外,在回答问题时,个别学生的语言不够流利、准确。对乘法分配律的叙述稍显罗嗦,不够坚定、自信。在这方面有待今后加强训练和提高
《乘法分配律》教学反思7
由于本学期的时间比较短,所以自己在讲四年级数学课的时候,不免有些匆匆。为了保持好进度,习题处理稍显落后。在近一段时间对孩子们的“运用乘法分配律进行简算”的检查来看,效果不是很好。我发现这是好多学生不容易掌握的,很容易和乘法的结合律弄混淆。所以,我就想搞清楚,到底孩子们是哪里没有搞清楚?就在课下又提问了几个老在分配率出错的孩子运算公式,发现有的孩子能结结巴巴地把公式背出来,有的是比较顺利地进行背诵。那么,会顺利背诵公式的孩子们到底是哪里不会呢?
带着这个问题,我是旁敲侧击地进行“盘问”——我拿着生活中的2.5元的冰淇淋打比方,问问买23个和28个需要多少钱?孩子们算的很快。他们知道把23分解成20加上3,还有部分学生28×25=(20+8)×25,我当时一项,哎呦不错,还不是完全不会啊。看来,孩子们在真正的生活情境中还是有一大部分人会自觉的用乘法分配律的。可是,真正运用到教学中,孩子们确实很难达到自觉地运用分配律去计算,特别是一些变式就更加的困难了。
在批改作业的时候,有三四个孩子的下面的结果却是让我大跌眼镜——28×25=(20+8)×25=20×8×25,当时我就在想,坏了,孩子们把这两个公示记混淆了。果不其然,我给他们出了一道题72×25=(8×9)×25=8×25+9×25,我在给学生们一一讲解的时候,我就在反思,这一类问题出现是因为孩子们没有自觉观察算式特点的习惯。他们只是急匆匆的完成自己的'作业,对于此类的计算的目的单纯得很就是只要得到答案,自己就忽略了计算的过程。
后来我就想,我去时应该多出一点类似于(80+8)×25,72×25,125×32×25的这些题对孩子们进行相应的练习,这样来提高孩子们对公式概念的认识。我可以让孩子们先学会一道题的做法,在慢慢来进行相应的引导。并且出一些题目要求孩子们使用分配律或者结合律等等,对孩子们进行巩固。让孩子们学会多种方法解决一到数学题,把握“凑整”这个解题关键,正确、合理地使用运算定律,就是正确的。做到真正的学以致用!
《乘法分配律》教学反思8
昨天,我与全班同学一起进行了乘法分配律探讨学习,从作业的反馈中,一部分同学的作业相当完美,对公式的应用,变形拓展都能应用自如;我也发现部分学生的正确率很低,特别乘法分配律的“分别”相乘理解得不清楚,没有把每个加数与因数相乘,造成作业正确率低。针对这种情况,在教学中应该注意些什么,我积极思考,与同学进行交流,找出他们思维中出错的原因,正确进行补救,以达到对乘法分配律的正确运用,灵活应用。
一、乘法分配律的教学时,注重从例题的解答中引导抽象出乘法分配律。强调注重它的外形结构特点,也要同时注重其内涵。
教材中植树情境图给出了以下的条件:一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树,“一共有多少名同学参加植树活动?”这一问题,得到了如下两种解答方法。
方法一:①每组有多少名同学? 2+4=6人
②25组共有多少名同学参加植树? 6×25=150人
综合列式:(2+4)×25
=6×25
=150(个)
方法二:①挖坑种树有多少人? 4×25=100人
②抬水浇水的有多少人? 2×25=50人
③一共有多少人? 100+50=150人
综合列式:4×25+2×25
=100+50
=150(人)
同学们很容易得出(4+2)×25和4×25+2×25这两个算式结果相等。这时同学们往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个数的积的和,而忽视从乘法意义角度去理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解(4+2)×25=4×25+2×25是相等的,还要从乘法的意义的角度理解,即左边表示6个25,右边表示4个25加2个25,等于6个25,所以,(4+2)×25=4×25+2×25
二、注意乘法分配律的特点,多进行练习。
乘法分配律特征是两数的和乘一个数或两个积的.和。在练习时学生特别容易出现错误。把算式做成(80+8)×125
=80×125+80
=10000+80
=10080
为了学生更好地掌握可以让学生划出分别相乘的箭头如:
提醒同学把箭头画出来,把两个加数“分别”与括号外的因数相乘,这样尽量减少一些把一个加数乘掉的同学。
三、多进行分组练习
一组:15×(8+4) (80+8)×125 (40+4)×25
47×(100+1) 78×(200+2) (100-1)×125
在练习上述题后,让学生观察括号里的数如果不运用乘法分配律会变成怎样的一个算式:
15×12 88×125 44×25
47×101 78×202 99×125
这些算式我们如何将一个因数拆成两个数相加的形式,这两个加数尽量要拆成整十整百或是与外面的数相乘能得整十整百的数。
在让学生在对乘法分配律基本公式的运用掌握较好之后,再进行第二组乘法分配律反方向运用的形式。
《乘法分配律》教学反思9
1、情境的创设激发了学生的计算热情。
让学生在生动具体的情境中学习数学,这是新课标倡导的新理念.我联系学生的生活实际,创设了学生熟悉的购买家具的场景,配上我生动的语言叙述,一下子就把学生代入到了一个有数学味的问题情境中,吸引了所有学生的注意。紧接着的问题如果你是小红,你想买什么家具呢?根据小红家的需要,你们能提出哪些数学问题?更是激发了学生的'思维,学生个个积极动脑,跃跃欲试。在学生充分提出各种问题的基础上,我选择了有代表性的一个问题让学生独立解决,极大地激发了学生的计算热情。这一环节的教学,让学生经历了因用而算、以算激用的过程,将算与用紧密结合。
2、多层的设计有利于学生数学模型的建立。
首先让学生通过独立计算,交流计算方法,叙述计算过程等一系列的笔算乘法的技能训练,形成一定的算理。然后通过比较124和2132这两题,它们最大的区别是什么?在乘的时候,有什么不同呢?如果是四位数、五位数乘一位数,你认为该怎么乘呢?这两个问题的讨论、交流,引导学生进行整理反思,让学生能通过两位数乘一位数迁移到三位数乘一位数,进而自然联想到四位数、五位数乘一位数的计算方法其实都是一样的,从而帮助学生将零散的知识串起来,有利于学生数学模型的建立。
需要改进的地方是:在学生探索出笔算方法后,我因为担心学生没有听懂,怕学生做错,说错,故而引导太细,学生的学习主动性调动的不够。如果我能充分相信学生,大胆放手,让学生独立地去想,去做,去说,相信学生的表现会更出色。
《乘法分配律》教学反思10
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律是四年级学习的重点,也是难点之一。也是一节比较抽象的概念课,教学时我根据教学内容的特点,为学生提供了多种探究方法,激发了学生的自主意识。
上课时,我以轻松愉快的闲聊方式出示我们身边最熟悉的教学资源,以教室地面引出长方形面积的计算,两种方法解决问题,得出算式:(8+6)×2=8×2+6×2,从上面的观察与分析中,你能发现什么规律?通过观察算式,寻找规律。让学生在讨论中初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。从而让学生知道乘法分配律给大家计算带来的便利。从而感受数学的美。
这堂课由具体到抽象,大多需要学生体验得来,上下来感觉很好,学生很投入,似乎都掌握了,可在练习时还是发现了一些问题。如:学生在学习时知道“分别”的意思,也提醒大家注意,但在实际运用中,还是出现了漏乘的现象。针对这一现象我认为在练习课时要加以改进。注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。
乘法分配律在乘法的运算定律中是一个比较难理解的定律,因此在上课前我作了充分的准备。因为学生在三年级时已经学过求长方形周长的两种通过一节课的学习,学生对乘法分配律的`大致规律能理解,也能灵活运用,但是要求用语言来归纳或用字母表示乘法分配律的规律,有部分学生就感到很为难了。感觉他们只能意会不能言传般。课本中关于乘法分配律只有一个植树的例题,但是练习中有关乘法分配律的运用却灵活而多变,学生们应用起来有些不知所措,针对这种现状,我把乘法分配律的运用进行了归类,分别取个名字,让学生能针对不同的题目能灵活应用。
乘法分配律大致上有这样三类:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要进行平均分配,都要和8相乘。不能只把其中一个数字与8相乘,这样不公平,称不上是平均分配法,学生印象很深刻,开始还有部分学生只选择一个数与8相乘,归纳方法后学生都能正确应用了。
二、提取公因数法。如:25*40+25*60=25*(40+60)解题关键:找准两个乘法式子中公有的因数,提取出公因数后,剩下的另一个数字该相加还是该相减,看符号就能确定了。
三:拆分法。如:102*45=(100+2)*45=100*45+2*45这类题的关键在于观察那个数字最接近整百数,将它拆分成整百数加一个数或者整百数减去一个数,再应用惩罚的分配率进行简算。有了归类,学生再见到题目就能依据数字或运算符号的特征熟练进行乘法分配律的简算了。
以这个为切入点,从而比较顺利地引入新课,正好那天是植树节所以我又创让“打比方”成为数学课堂的闪光点。
凡是教过小学数学乘法运算律的教师都会体会到“乘法分配律”是乘法运算律中最难掌握的。学生在做练习题中错误最多。所以课前我对教材进行了身队深度的剖析和思考。最后想出了用打比方突破课堂难点。虽然我们的“比方”有时看来似乎有点不恰当,但是这种比方对开发学生的想象力,推理能力以及拓展思路竟达到了意想不到的效果。我是这样做的:
我由解决问题引出乘法分配律的等式,但我没有急于给学生灌注这叫乘法分配率,而是写下了这样一个式子;{姐姐+我}×妈妈=姐姐×妈妈+我×妈妈然后提问:“谁能解释为什么我这样写吗?思维活跃的学生马上就会回答:“因为妈妈是你和姐姐共有的,所以你和姐姐都有资格和妈妈在一起。”......学生们的学习兴趣一下被调动起来了,他们明白了数学原来也是通俗易懂的。然后我再让他们阅读教材,给这个看似“不恰当”的比方定性为“乘法分配率”。归纳整合为字母算式:(a+b)×c=a×c+b×c,这时我再此让学生展开联想,让他们学着老金刚怒目在自己身边和生活中进行举例,学生很快举出(上衣+裤子)×人=上衣×人+裤子×人,(铅笔+圆珠笔)×本子=铅笔×本子+圆珠笔×本子等例子等不是十分贴切,但却富有情趣,孩子在编例子的同时,其实已把握了乘法分配律的特征,学生就不会出现(a+b)×c=a×c+b的错误,在生动活泼的“打比方”中,既带给了学生体验学习的快乐,又让我们枯燥深奥的数学概念成为形象而具体的理解形成,这种教法我在教“乘法交换律”时也用到过,我在结尾时把它总结为“左右搬家”然后讲了个铺子搬家的故事,学生们在津津乐道的故事中,在形象贴切的“打比方”中学懂了数学知识,收到了良好的效果,真正使数学课堂贴近生活。
设了这样一个情境,“一共有25个小组参加植树 乘法分配律在乘法的运算定律中是一个比较难乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。
以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,提出问题:共有多少名同学参加了这次植树活动?通过两种方法和算式的比较,使学生初步感知乘法分配律。
展示知识的发生过程,引导学生积极主动探究。先让学生根据问题,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式,让学生观察,初步感知“乘法分配律”。然后要求学生照样子说出几组这样的等式,引导学生再观察,让学生说明自己发现的规律。这样学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。不仅让学生获得了数学基础知识和基本技能,而且培养学生主动探究、发现知识的能力。
最后让学生比较乘法交换律和结合律与分配率的最大区别,前者只在连乘的同一级运算中运用,后者是在两级运算中运用,所以,看清题目是一级运算还是两级运算对决定算法非常重要。这节课虽然成功引导学生发现了定律,但教完之后,在练习过程中还有部分学生掌握不好,在后一阶段依然要加强练习,边练习边总结算法,使学生达到熟能生巧的程度。
《乘法分配律》教学反思11
乘法分配律是第三章的教学难点也是重点。这节课的设计。我是从学生的生活问题入手,利用与生活密切相关的情境图植树问题展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:
在教学中,通过这次植树情境让学生感到数学就是从身边的生活中来的,激发学生学习的.热情。“一共有多少名学生参加这次植树活动?”。让学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。同时利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。
重点是理解算式的意义,我们在引导中进行总结(4+2)个25的和也可以写为25分别乘以4和2,再把他们的积相加的形式,接着让同学们再次深化理解自己尝试写出几个类似的算式,由于是网上教学,没办法直接展示学生的算式,于是我在大屏幕上写出几个算式,让同学们来说一说他们的观察到的算式,从而总结出乘法分配律的规律。进而通过计算,发现运用乘法分配律可以使得计算更加简便。
这节课的不足:
当我们运用乘法分配律进行练习的时候,我发现学生在做题时会错误的把中间的+抄写成×,导致错误。这说明学生没有完全对乘法结合律和乘法分配律进行区分,还需要再次进行强调。
这节课上对学生的主题地位有所忽视。虽然是网课教学,没办法与学生共同在一间教室,没办法与学生面对面教学,但是顾虑到时间的限制与学生的互动,留给学生的思考的时间不够充分,接下来在教学设计时可以减少授课容量,留给学生充分的思考时间。
《乘法分配律》教学反思12
《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。在设计本教案的过程中,我一直抱着“以学生发展为本”的宗旨,试图寻找一种在完成共同的学习任务、参与共同的学习活动过程中实现不同的人的数学水平得到不同发展的教学方式。结合自己所教案例,对本节课教学策略进行以下几点简要分析:
一、教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的`计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。
二、让学生根据自己的爱好,选择自己喜欢的方法列出来的算式就比较开放。学生能自由发挥,对所学内容很感兴趣,气氛热烈。到通过计算发现两个形式不一样的算式,结果却是一样的。这都是在学生已有的知识经验的基础上得到的结论,是来自于学生已有的数学知识水平的。
三、总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。
四、在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。
在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。
《乘法分配律》教学反思13
在教学本课之前,我安排了这样的预习作业:将左右两边相等的算式用线连起来(共五组),我故意安排了两组不相等的,居然大部分同学都上当了,说明他们对乘法分配律的认识仅仅停留在表面,没有认识到其实质。
在教学例题时我特别加强了“分别乘”的指导,不但结合实例让学生明白为何要分别乘再相加,而且用一些形象的箭头让学生感受分别乘的过程;而在学生探究了例题和试一试后,让他们通过比较,体会在利用乘法分配律进行简便计算时要根据具体情况选择:有时合起来乘容易,有时分别乘更容易,要灵活运用。
但是,今天的课堂作业让我十分失望,我本以为“分别乘”的指导比较到位,但还是有一些同学出现15×(20+3)=15×20+3这样的错误,并且有两名学生在解决实际问题中列出了(18+22)×15的算式后,还将它用乘法分配律展开计算,结果计算错误百出,如何让学生灵活地运用所学的知识,我还得进一步地学习研究。
本节课主要应用乘法分配律进行简便计算,培养学生灵活合理地进行计算的.意识和能力。课的一开始,我就复习乘法分配律,抓住其特点:合起来乘转化成分别乘再加起来或者分别乘转化成合起来乘。接着通过例题和试一试的教学,中间结合类型分别练习相应的题目,再通过比较让学生明白这两组题:有的时候是合起来乘简便,有的时候是分别乘简便,要根据具体的题目来选择。对于后面的练习,我注意引导学生比较和辨析,使学生较深刻地理解适合用乘法分配律进行简便计算的题目的结构形式,培养学生的审题能力,从而使学生更好地运用乘法分配律进行简便计算。
《乘法分配律》教学反思14
乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是所有运算定律中变化最多的,因此它是学生最难理解与运用的定律。因此我在教学中让学生在不断的感悟、体验中理解乘法分配律,从而概括出乘法分配律。
一、在对本课的教学目标上,我定位在:
(1)从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。
(2)渗透“由特殊到一般,再由一般到特殊”的'认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
二、在本课教学过程的设计上
我尽量想体现新课标的一些理念,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。顺延之前学习乘法交换律和乘法结合律的情境举例:利用植树活动情境“一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇水”。提出问题:“一共有多少名同学参加了这次植树活动”。让学生尝试通过不同的方法得出:
(4 + 2)×254×25 + 2×25
= 6×25 = 100 + 50
= 150(元)= 150(元)
此时,让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接。使之让学生从中感受了乘法分配律的模型。从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:
(a + b)× c = a × c + b × c
三、在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。
1、在完成课本36页做一做时,对应这3道判断题,
(1)、判断56×(19+28)=56×19+28,让学生感知到乘法分配律要分给括号里的每一个数,强调乘法分配律的“公平性”。
(2)、判断32×(7×3)=32×7+32×3,让学生注意到乘法结合律和乘法分配律的区别:通过对运算定律意义的描述,和算式的特点,提炼出最简洁的区分方法:乘法结合律是连乘情况下的,乘法分配律除了乘法还有加法(后继教学还会出现减法),容易使我们混淆的原因是,它们都是乘法的运算定律都有乘法出现,更关键是它们都出现了小括号。
(3)、判断64×64+36×64,借助64个64和36个64,一共是64+36=100个64,让学生理解乘法分配律逆向使用,在一些情况下,计算会变得十分简便。
2、在完成较简单的课本36页做一做后,进行一些扩展型的练习:
通过(250—25)×4,让学生感受到,乘法分配律除也可以两个数的差与一个数相乘。对于分配之后,再把两个积相减。同时复习强调我们熟悉的5道重要算式:5×2、25×4、125×8、125×4、25×8
由于本节课的知识运用的难度较大,学生对乘法分配律可以基本掌握,但是对于其万般变化,还是有点力不从心,而该运算定律对学生后继学习,尤其是小数和分数计算时有一定影响,所以还需要学生在本节课后进行深入的学习,教师也需要针对乘法分配律的每一种题型,结合学生的掌握情况进行更系统深入的讲解。
《乘法分配律》教学反思15
《乘法分配律》是四年级数学下册第三单元中的一节教学内容,一直以来的教学中,我认为这节课的教学都是一个教学难点,学生很难学好。
我认为其中的不易可以从三个方面来说:其一,例题仅仅是分配律的一点知识,在课下的练习题中还存在不少乘法分配律类型的题(不过,这好像也是新课改后教材的表现)。如果让学生仅仅学会例题,可以说,你也只是学到了乘法分配律的皮毛;其二,乘法分配律只是一种简单的计算方法的应用,所有用乘法分配律计算的试题,用一般的方法完全都可以计算出来,也就是说,如果不用乘法分配律,学生完全可以计算出结果来,只不过不能符合简便计算的要求罢了,问题是学生已学过一般的方法,学生在计算时想的最多的还是一般的计算方法;其三,本节课的教学灵活性比较大,并没有死板板的模式可以来死记硬背,就是学生记住了定律,在运用时,运用错了,也是很大的麻烦,从题目的分析到应用定律都需要学生的认真分析及灵活运用。
针对以上自己分析可能出现的问题,,确定从以下两个方面时行教学:
第一,以书本为依托,学好基础知识。
有一句话叫做“万变不离其宗”。虽然课下还有多种类型题,但它们都与书上的例题有着亲密的.联系,所以教学还是要以书本为依托。在教学中,我引导生通过观察两个不同的算式,得出乘法分配律的用字母表示数:a×b+a×c=a×(b+c),在引导学生经过练习之后,我还强调学生,要做到:a×(b+c)=a×b+a×c。用我自己的话说,就是:能走出去,还要走回来。再次经过练习,在学生掌握差不多时,简单变换一下样式:(a+b)×c=a×c+b×c,走回来:a×c+b×c=(a+b)×c。如此以来,学生算是对乘法分配律有了个初步的认识,知道是怎么回事,具体的运用还差很远,因为还有很多的类型学生并不知道。于是我就在第二节课进行了第二个方面的教学。
第二,以练习为载体,系统巩固知识。
针对乘法分配律还有多种类型,例题中也没讲到的情况,我上网查资料,加上并时的一些认识,把乘法分配律分为五类,并对每类进行简单的分析提示,附以相应的练习题印发给学生,让学生进行练习。
类型一:(a+b)×c a×(b-c)
例:A (40+8)×25 B 15×(40-8)
类型二:a×b+a×c a×b-a×c
例:A 36×34+36×66 B 325×113-325×13
类型三:100+1或80+1
例:A 78×102 B 125×81
类型四:100-1或40-1
例:A 45×98 B 25×39
类型五:+1或-1
例:A 83+83×99 B 91×31-91
【《乘法分配律》教学反思】相关文章:
《乘法分配律》教学反思02-07
乘法分配律教学反思07-03
乘法分配律教学反思03-26
《乘法分配律》教学反思(15篇)03-14
《乘法分配律》教学反思精选15篇03-26
《乘法分配律》教学反思(精选20篇)04-11
《乘法分配律》教学反思(通用25篇)02-09
《乘法分配律》教学反思(通用20篇)11-23
《乘法分配律》教学反思汇编15篇03-30