“圆柱的表面积”教学反思
作为一名到岗不久的人民教师,我们的工作之一就是课堂教学,写教学反思可以快速提升我们的教学能力,教学反思应该怎么写才好呢?以下是小编帮大家整理的“圆柱的表面积”教学反思,欢迎阅读,希望大家能够喜欢。
“圆柱的表面积”教学反思1
“圆柱的表面积”历来是学生学习的难点。观察发现,难点一:圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个“化曲为直”的过程。这是理解的难点;难点二:在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;难点三:计算难度大,无论是圆的周长和面积计算中都涉及圆周率(∏);难点四:类似制作烟囱、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。如何有效组织教学,谈谈自己的粗浅的看法。
一 抓住特征,建立表象。在六年级上学期,已经学习了长方体和正方体的表面积,学生对表面积的概念并不陌生。教学圆柱的表面积时,重点是通过制作圆柱模型、观察圆柱展开图,让学生理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的。通过操作,真正建立圆柱侧面的表象。
二 突破难点,紧抓联系。探索并理解侧面积的计算方法是这部分教学的难点。圆柱的侧面是一个曲面,例2结合具体情境,展示了圆柱的侧面展开图,沿着高将侧面展开后是一个长方形。“化曲为直”过程中,教学重点要抓二者之间的联系,即展开后长方形的'长就是圆柱的底面周长,宽是圆柱的高。通过“展”、“围”的反复操作,让学生切实建立这两者之间的联系,有利于突破难点。
三 抓住本质,理清思路。圆柱的表面积包括一个侧面和两个底面。计算圆柱的侧面积时要用圆柱的底面周长乘高,而圆柱的底面积则需用到圆的面积公式。在同一题里,周长公式与面积公式混淆也是计算圆柱表面积出错的原因之一。怎样能更好的理清思路,灵活的进行计算呢?我认为,尽量将复杂的问题简单化,以不变应万变。即圆柱的侧面展开图是一个长方形,计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。当然,涉及到解决具体的问题,我们就要联系实际具体问题具体对待。
本单元的学习有利于发展学生的空间概念,有利于培养学生的思维的有序性,有利于培养学生认真审题的好习惯,提高学生灵活应用能力。
“圆柱的表面积”教学反思2
一、创设情境,悬念导入。
上课铃响了,教师戴着厨师帽进教室,并设下悬念:做这样一顶厨师帽需要准备多少面料?
板书课题:圆柱的表面积
二、合作探究,发现方法。
1、圆柱的表面积包括哪些面的面积?
2、研究圆柱的侧面积。
(1)大家猜测一下,圆柱的侧面展开来可能会是什么样的?
(2)学生想办法亲自验证。
(学生通过动手剪、拆课前准备的圆柱体,发现侧面展开有的是长方形、有的是正文形、有的是平行四边形,还有的可能是不规则图形。)
师问:①剪、拆的过程中你有什么发现?
②长方形的长当于什么,宽相当于什么?
③你能把展开的平行四边形想办法变成长方形吗?不规则图形呢?
(3)推导圆柱体侧面积的计算公式:
通过学生动手操作、观察比较得出,因为:长方形的面积=长×宽
所以:圆柱的侧面积=底面周长×高
3、明确圆柱的表面积的计算方法。
师生共同展示圆柱的表面积展开图,问:现在你会求圆柱的表面积吗?
板书:圆柱的表面积=圆柱的侧面积+两个底面的面积
三、实际应用
现在你能求出做这样一顶厨师帽需要多少面料吗?
出示例4:一顶圆柱形的厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
1、引导:①求需要用多少面料,实际是求什么?
②这个帽子的表面积 的是什么?
2、学生同桌讨论,列式计算,师巡视指导。
3、汇报计算情况。
板书:帽子的侧面积:3.14×20×28=1758.4(cm2)
帽子的底面积:3.14×(20÷2)2=314(cm2)
需要用面料: 1758.4+314=20xx.4≈20xx(cm2)
答:需用20xxcm2的`面料。
四、巩固练习:课本第14页“做一做”。
五、畅谈收获,总结升华:这节课你有什么收获?说说自己的表现。
六、作业:课内:练习二第5、7题;课外:练习二第6、8题。
附:板书设计
圆柱的表面积
长方形的面积= 长 × 宽
圆柱的侧面积=底面周长 × 高
圆柱的表面积=圆柱的侧面积+两个底面的面积
例4:一顶圆柱形的厨师帽,高28cm,冒顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
帽子的侧面积:3.14×20×28=1758.4cm2)
帽子的底面积:3.14×(20÷2)2=314(cm2)
需要用面料: 1758.4+314=20xx.4
≈20xx(cm2)答:需用20xxcm2的面料。
“圆柱的表面积”教学反思3
《数学课程标准》的基本理念指出:“教师要向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”
1、在教学中,我设计了具有趣味性、挑战性、探索性和有一定的现实意义的教学情境――计算饮料罐的.商标纸面积,学生在独立思考的基础上进行了小组合作,他们分工明确,在愉快的劳动中获得了对知识的理解,并在不知不觉当中使用了S=ch这个公式。
2、教学过程中,学生通过自己观察、触摸,体验感知圆柱的特征、圆柱的表面积包括哪些部分;并通过动手裁剪实验,与小组成员共同探究圆柱侧面积与表面积的计算方法,通过不断的测量与计算,构建起知识的框架。学生对这些计算的方法有了丰富的情感、态度和实践经验支撑的“活学活用”。
3、计算烦琐,对于学生而言是有一定难度的,学生们的计算正确率确实很低,因此解答圆柱体的表面积其实是对学生综合应用所学面积公式的一大考验。
“圆柱的表面积”教学反思4
著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。
圆柱的表面积教学,关键在于通过圆柱的侧面展开图推导出圆柱的侧面积公式。教材中只介绍了把圆柱沿着高将侧面展开,得到一个长方形。通过长方形的面积推导出圆柱的侧面积,这是一种普遍的现象,学生容易理解和接受。但为了培养学生的自主学习能力和自主探究的兴趣,我将圆柱侧面积的教学大胆改革,让学生试先准备好各种圆柱形的纸盒,给学生足够的`空间让学生自主探索圆柱体的侧面展开情况及侧面积的计算方法。整节课,学生学习积极性非常高,收到了好的教学效果,也使其自主探究能力和小组合作能力都得到了提高。
反思如下:
一、圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:“斜剪!”“展开之后是什么图形?”有人猜是三角形,有人说是梯形,有人说平行四边形,带着种种可能同学们又开始给圆柱穿上一层衣服,然后沿着斜线剪开,结论不用说,平行四边形展现在同学们面前。继续用平行四边形推导侧面积公式,平行四边形的底是圆柱的底面周长,高呢?是不是平行四边形的斜边?经过一番争论之后,得出高需要重新做垂线。
二、展开之后的图形可以怎样还原成圆柱?数学课要培养学生的思维能力,如果会展开那只是顺向思维,展开后会还原才能培养他们的逆向思维。“长方形和正方形都有两种还原方法,那平行四边形是否也有两种还原方法?”问题抛出又产生了分歧,很多同学只会按剪开之后的形状还原,再换个方向竖起来就不行了,总是上下各有两个尖角,其实这是学生拿平行四边形的方式有问题,让他们把平行四边形的斜边贴到桌子上再还原,这样就有很多人展开了笑脸。“找窍门,怎样不贴到桌子上也能正确还原?”细心的同学发现只要捏住相邻的两个角就能轻松还原了,一句话——角对角。得到结论:只要是平行四边形一定可以围成圆柱。
通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。
实践也使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
“圆柱的表面积”教学反思5
因为疫情迟迟没有好转,离开学时间还是遥遥无期,所以培育小学秉着“停课不停学”的理念,开始了网课教学。
我今天教学的内容是人教版六年级下册《圆柱的表面积》,本节课的教学难点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,重点是灵活运用侧面积、表面积的有关知识解决实际问题。本节课的教学,从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中让学生自己去解决,让学生在动手操作、合作探究中学习。
一、激情导课,激发学生的求知欲。
复习开始时,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?”就在学生们的猜测下,我拿出了课前藏好的圆柱。我继续发问“谁能给大家介绍一下这位新朋友?你们还想知道它的什么?”然后,让学生动手摸一摸手中的圆柱体,“谁能告诉大家你摸到了什么?”形成圆柱表面积的表象,从而很轻松的得出:圆柱的表面积等于圆柱的侧面积和两个底面面积之和。
二、把握重点,突破难点,合理利用教材。
“圆柱表面积”这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。教材安排了两道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“近一法”取似值作为一个知识点。再结合学生的实际,巧妙的`把他们联系成一个整体,做到收中有放,放中有收。
三、教学方法上,采用直观演示和实践操作相结合。
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作。让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。
再让学生以小组为单位,通过看一看、摸一摸,自己观察、发现,思考怎样求圆柱体的表面积? 讨论:求圆柱体的表面积需要知道哪些数据? 从而得出圆柱体表面积的计算公式。充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式,并运用幻灯片辅助教学,有利于学生对知识的理解及掌握。
四、练习题的设计上由易到难,讲练结合。
在练习题的设计中,遵循了从易到难的原则,先是已知周长、半径和直径求圆柱的侧面积,在此基础上再想一想已知这三个条件怎样求出圆柱的表面积。采用分步口答的方法,让学生说出自己的想法,从而达到熟练掌握求圆柱的表面积的计算方法。例4主动放手让学生独立解答,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。
当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练;另外,在练习题的设计上都是只列式不计算的方法,没有让学生真正计算出侧面积和表面积;小组合作的初衷是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
“圆柱的表面积”教学反思6
一、任务分析
预备班六年级学习内容简单,学生年龄小。所以只有教案设计适当,尝试坡度小些,变式花样精而少些,教师改变教学观念,以学生发展为主,才能在传授知识的同时,发展学生能力,培养学生创新能力,塑造学生的良好人格,落实素质教育的目标。
二、设计说明
1、必要的铺垫。
出示实物,让学生观察。使学生对圆柱有一个感性的认识。
引导学生归纳圆柱形有哪些特征?增强学生概括能力和抽象能力
2、在老师指导下,学生自主探究,获取新知。
老师设计以下四个层次:
(1)老师给出问题:
讨论:a、侧面展开是什么形状?
b、长方形的长等于什么?
c、长方形的宽等于什么?
d、圆柱的表面积有哪些图形组成?
(2)学生动手操作,观察,讨论
自主发现结果:a、圆柱的侧面积=其侧面展开所得长方形的面积
b、长方形的长=底面周长;宽=高
c、圆柱的表面积=圆柱的侧面+2底面面积
(3)老师演示课件:直观看出,圆柱的表面积=圆柱的侧面+2底面面积
(4)师生较自然推导出圆柱的表面积计算公式。
层层设疑,让学生主动去探索,通过自身实践,获得新知,使学生
获得基础知识与基本技能的过程中同时形成积极主动的学习态度,学会学习并形成正确的价值观。
3、通过变式训练,促进深化。
为了帮助学生正确运用圆柱表面积公式计算,按教学目的要求,循序渐进地采用变式训练。老师设计了3组练习。
a、思考:侧面积的计算
b、例1:表面积的计算
c、阅读:培养学生自学能力
4、通过学生之间的小组合作交流、讨论,师生之间互动交流学习,实现合作学习,能够培养学生的团队精神,树立正确的人生观。
5、充分利用多媒体工具教学,可以使课堂气氛生动有趣,充满生气。同时结合必要适当的板书,强调解题格式,使学生学得既灵活又扎实
(板书:3个概念,2个公式,1次计算)
三、教学后记
教育家赞可夫指出:“在各科教学中要始终注意发展学生的逻辑思维,培养学生的思维的`灵活性和创造性”。在数学教学中,教师要特别注意培养学生根据题中具体条件,自觉、灵活地运用数学方法,通过变换角度思考问题,发现新方法,制定新策略。
在教学过程中,我应更加重视和发展学生的好奇心,让每一个学生养成想问题、问问题、挖问题和延伸问题的习惯。让所有的学生都知道自己有权力和能力提出新见解、发现新问题。这一点对学生的发展很重要,它有利于学生克服迷信和盲从,树立起科学的思想和方法,有利于学生形成良好的学习品质。
“圆柱的表面积”教学反思7
1、直观演示和实际操作相结合
新课开始,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲练结合。
教学这节课,是以讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3 d=4 c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7 h=6 h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的`表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。
“圆柱的表面积”教学反思8
在认识圆柱体的课堂上,我设计了让学生分小组进行自主合作学习的教学形式。学生的小组活动各不相同,比较突出的优点是学生对圆柱的特征认识都是在自己动手操作的过程中体验到出现的主要问题:
①学生对自己所探索的知识不会归纳,表述;
②学生的探研学习是无序的,随意的;
③各组的各位成员对知识的探究和思考,差异很大;
④学生的自学能力较差;
⑤学生不会交流学习。
研究“圆柱的认识以及表面积”是在学生已有的有关圆面积和长(正)方体的表面积等有关知识,已具有了独立研究表面积的能力,而且圆柱形在小学生的显示生活中处处可见,比较熟悉,因此,我们备课组将此学习内容作为学生进行探索,研究学习的材料。
通过试验课:我们对以下几个方面进行反思:
1、这样的课,让学生进行探研学习,教师进行引导的关键是设计好一张让学生有序进行知识归纳和理解的表格。
2、这样的'课还要多让学生上逐渐培养学生交流学习的能力和独立思考分析的能力。
3、在学生动手探索的过程中,教师要做的是帮助,不是引导、指责,指导也应是在学生需要的时候,再给予
4、这样的课,有利于教师对学生的学习特点进行观察和分析。
只有看清了学生的学习,才能有方向努力做好我们的教。
“圆柱的表面积”教学反思9
圆柱的表面积教学,关键在于通过圆柱的侧面展开图推导出圆柱的侧面积公式。因此本节课的教学,从始至终贯穿着以学生为主体,教师为主导,训练思维为主线的原则,在各个环节中让学生自己去解决,让学生在动手操作、合作探究中学习。
一、把握重点,突破难点,合理利用教材。
圆柱表面积这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用进一法取近似值。教材安排了三道例题,但在教学中,我将侧面积计算方法的 推导作为教学难点来突破,将表面积的计算作为重点来教学,将用近一法取似值作为一个知识点。再结合学生的实际,巧妙的把他们联系成一个整体,做到收中 有放,放中有收。
二、直观演示和实践操作相结合。
在侧面积和表面积的计算环节中,我首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积 之和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的'长就是圆柱的底面周长,长方形的宽就是 圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,然后我又启发学生:圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是 每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。这时有的学生会说,沿高展开后还可能得到正方形,这是一 种特殊现象。借此我又让学生自己进行操作、尝试,得出了与书上不一样的结果。这样做,不仅启发了他们的思维,又培养了他们的创新意识。
三、习题设计。
在练习题的设计中,遵循了从易到难的原则,在形式、难度、灵活性上都有体现。判断题有利于学生对知识的理解;动手测量并计算圆柱体实物表面积的题目,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。
当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
“圆柱的表面积”教学反思10
教学内容:
小学数学第十二册教材P33~P34
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:
圆柱形物体、学具、多媒体课件
教学重点:
圆柱侧面积的计算方法推导。
教学过程:
一、猜测面积大小,激发情趣导入
1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)
2、这两个圆柱谁的侧面积谁大?为什么?
3、复习:圆柱的侧面积=底面周长×高
刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积
1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)
2、你们觉得这两个圆柱谁的表面积大?为什么?
生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?
生:计算的方法
师:怎么计算圆柱的表面积呢?
圆柱的表面积=侧面积+两个底面的面积 (板书)
4、那现在你们就算算这两个圆柱的表面积是多少?
生:(不知所措)没有数字怎么算啊?
师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?
生1:我想知道圆柱体的底面半径和高。
生2:我想知道圆柱体的底面直径和高。
生3:我想知道圆柱体的底面周长和高。
师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。
5、汇报展示:
情况一:半径:31.4÷3.14÷2=5(cm)
底面积:3.14×5×5=78.5(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+78.5×2=748.576(平方厘米)
情况二:半径:18.84÷3.14÷2=3(cm)
底面积:3.14×3×3=28.26(平方厘米)
侧面积:31.4×18.84=591.576(平方厘米)
表面积:591.576+28.26×2=648.096(平方厘米)
师:通过我们计算验证了我们刚才的判断是正确的。
接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?
生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。
生2:这样做挺麻烦的有没有更简单一点的方法呢?
6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)
教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。
问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)
所以圆柱体表面积=长方形面积=底面周长×(高+半径)
用字母表示:S=C×(h+r)
我们用这个方法来验证一下我们的例2看是不是比原来简单?
汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)
那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。
本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。
三、 分组闯关练习
1、多媒体出示题目。
第一关(填空)
沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。
第二关
一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。
第三关(用你喜欢的方法完成下面各题)
一个圆柱,它的底面半径是2厘米,它的'高是15厘米,求它的表面积?
2、汇报结果,给予评价。
我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。
四、 质疑(同学们还有什么疑问吗?)
五、反馈小结:
教学反思
1、 自主探究,体验学习乐趣
以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。
2、合作交流,加深对知识的理解深度。
给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。
“圆柱的表面积”教学反思11
圆柱体的表面积是学生学了长方形、正方形、平行四边形、三角形和梯形等多种平面图形和长方体、正方体的表面积的基础上展开教学的。在学生从认识直线图形到曲线图形的过程中,不仅拓展了他们的知识面,丰富了学生空间与图形的学习经验,而且也给学生探索学习-圆柱体的表面积是学生学了长方形、正方形、平行四形、三角形和梯形等多种平面图形和长方体、正方体的表面积的基础上展开教学的。在学生从认识直线图形到线图形的过程中,不仅拓展了他们的知识面,丰富了学生空间与图形的学习经验,而且也给学生探索学习的方法注入了新的内容,并使得学生的空间观念得到了进一步的发展。
图形的学习对于学生来说是一个抽象的知识,只有结合生活,练习生活,让学生亲眼去看一看,亲手去做
一做,亲自去想一想,才能使之成为具体的、可接受的知识。本节课的教学设计分为三个层次。教学层次非常清晰。
第一层次:巩固上节所学《圆柱体的认识》的有关知识。学生通过观察实物,掌握圆柱体的底面、侧面和高,能正确地说出圆柱体的特征。
第二层次:推导圆柱体的侧面积和表面积计算公式。首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。通过实物观察和实验,使学生了解到这个长方形的长就是圆柱的底面周长,长方形的宽就是这个圆柱的'高,从而用已学过的长方形的面积公式很自然地推导出求圆柱体的侧面积公式。在会求侧面积这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求表面积的计算方法。使学生认识到立体转平面、形变量不变的辨证关系,培养学生们的观察、分析能力。
第三层次:针对本节所学知识设计了一些基本应用题。安排有:求圆柱的侧面积,求圆柱的表面积。是对圆柱侧面积和表面积公式的巩固。
郑老师极其注重数学知识生活化。一方面,注重从生活现象中提取数学知识,引入数学学习;另一方面在学生掌握了一定知识后,及时应用所学知识解决生活中的问题,也可以说数学的回归。比如练习中帽子、通风管表面积的计算等,我想如果给足时间,数学知识的回归在这些课上有更多的体现和应用。在六年级的课堂上,郑老师注重学生的探究活动是很明显的。以学生为中心,以学生的主动探究为主,
让学生敢想、敢说,从而主动的去获取知识。同时,注重操作活动在图形学习中的地位。操作是学生认识图形、探究图形特征的重要途径,正是操作活动,学生的探索学习才能得到顺利展开,也正是操作活动,学生对有关数学知识的体验更加真切和深刻。最后,郑老师注重学生的思维表述。如果说操作活动能更强调知识的深刻性,
那么语言表述也就是说,就是对知识的梳理,知识的罗列,知识的系统话整理和知识的重组。
整堂课也有值得探讨的地方。语言的衔接稍有跳跃。课堂的连接语是课堂驾驭能力的表现,也反映了教师
设计课堂,生成课堂之间的一种应变。同时,这也与教师对于教学设计过程的熟悉程度有关。
“圆柱的表面积”教学反思12
数学课程标准指出,有效的数学活动不能依赖模仿和记忆,动手实践,自主探索,合作交流是学生学习数学的重要方式。而且,要倡导学生主动参与,乐于探究,培养他们获取新知识的能力。本节课一开始,我没有直接告诉学生圆柱的特征,而是让他们自己观察、触摸,感受什么是圆柱的表面积。接着我和同学们一起动手实践,操作,将自制的'圆柱体模型展开,让学生明白圆柱体的表面积就是两个圆和一个长方形。通过观察,学生明白长方形的面积就是圆柱的侧面的面积。接着小组合作探讨圆柱侧面积的计算方法,在这里让我惊讶的是,有一个孩子一边演示一边总结,长方形的长和宽都可以做圆柱体的底面周长。这是我没有想到的,最后孩子们通过小组合作推导出圆柱体表面积的计算方法,思路清晰,算理透彻,真正成了学习的主人。
可以说,在这节课的学习过程中,我不是让学生被动地接受教材,也不是自己推导出现成的结论让孩子们去识记,去背诵,而是通过操作实践等活动,让学生经历了知识的“再创造”过程。由于学生经历了不断的“再创造”的过程,积极主动的从事数学思考、建构数学知识,所以整堂课的学习气氛和教学效果取得了双丰收,这样,孩子们怎能对数学不动心呢?
“圆柱的表面积”教学反思13
通过本节课的教学,使我深深地认识到同学们的学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。数学来源于生活,生活中到处有数学。从学生的.生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极性参与的有效方法。
在第一环节中,教师就创设了“饮料罐”情景,你想学什么?让学生自己提出问题,激发了学生创造的愿望。
第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。在课堂上多给学生发言展示的机会会极大地调动学生的潜在意识,使其情感上得到满足。
“圆柱的表面积”教学反思14
《圆柱的表面积》这节课是我从教以来上的第一节市级公开课,若干年后改用苏教版教材,又在市级六年级新教材培训时上了这节课。“圆柱的表面积”是学生学习的难点。难点在于:理解难,圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个“化曲为直”的过程;易混淆,在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;计算难,无论是圆的周长和面积计算中都涉及圆周率。这学期再一次教学圆柱的表面积,我深入钻研教材,并对以往的教学经验进行了整理,注重了知识的系统化教学,取得了较好的教学效果。
一、化曲为直沟通联系。
课前布置预习作业,找一贴有商标纸的椰子汁罐,沿高剪开你有什么发现,然后给罐的上下底面剪两个底面给贴上。课上由一张长方形纸卷成圆柱,平面到立体,而后由圆柱展开成一个长方形,立体到平面。渗透了“化直为曲”“化曲为直”的思想。学生碰到圆柱侧面积问题时自然能运用,交流时,说沿着侧面上的一条高剪开,把侧面展开,成为一个长方形。让学生观察后说出:展开后的长方形与圆柱侧面积的关系。两者面积相等,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高。通过“展”、“围”的几次操作,让学生切实建立这两者之间的联系。
二“生活课堂”建立表象
本节课中,现实生活问题的解决,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对问题进行独立探索尝试、同桌讨论交流,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
三、抓住本质,理清思路。
本堂课中探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的'一些简单实际问题。根据以往经验,在实施过程中有一定的困难,有的同学是因为对其中的公式或意义没有真正理解,不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,而且圆的周长和面积公式已有所遗忘,列式计算时漏洞百出,计算的难度又导致一部分学生前功尽弃。所以在上这节课之前,我利用时间帮助学生把圆的周长和面积公式复习到熟练程度,侧面积的计算学生自然没困难。为帮助学生理清思路,表面积的计算分三步去进行,侧面积、底面积、侧面积加上两个底面积就是表面积。课上遇到计算比较繁琐的将数字改简单易算的,这节课的容量大,我觉得不必在计算上花费大量的时间。
实践下来,通过学生的作业反馈中,发现绝大部分算式列得都正确的,几个公式搞的还是清楚的,但是小数乘法由于3.14和带0整数的参与,有些错误。接下来的练习课中综合的表面积题中要继续加强。
“圆柱的表面积”教学反思15
教学内容:
九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题
教学目标:
1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。
教具准备:
圆柱形的物体,圆柱侧面的展开图
教学重点:
理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
教学难点:
根据实际情况来计算圆柱的表面积。
教学过程:
一、复习
下面()图形旋转会形成圆柱。
二、认识侧面积的意义和计算方法。
1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。
问:你能想办法算出这张商标纸的面积吗?
⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。
⑵交流:你们是怎么算的?
沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。
⑶讨论:商标纸的面积就是圆柱中哪个面的面积?
观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?
使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。
2、出示例1中的罐头。
⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据较方便?
⑵出示数据:底面直径11厘米高:15厘米
⑶学生算出商标纸的面积。
⑷交流:你是怎么算的?先算什么?再算什么?
3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。
追问:怎么算圆柱的侧面积?
圆柱的侧面积=底面周长×高
长方形的面积=长×宽.
4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?
5.独立完成“练一练”第1题
三、认识表面积的意义和计算方法。
1、出示例3中的圆柱。
⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?
⑵让学生算一算后交流。师板书:
长:3.14×2=6.28(厘米)宽:2厘米
⑶圆柱的两个底面的直径和半径分别是多少厘米?
板书:直径2厘米半径1厘米
2、引导画出圆柱的展开图。
⑴这个圆柱有几个面?分别是什么?
⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?
⑶在书上方格纸上画出这个圆柱的展开图。
⑷交流:你是怎么画的?
3、认识圆柱的表面积。
⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?
板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积
⑵算出这个圆柱的表面积。算后交流,提醒学生分步计算。
4、练习:完成“练一练”第2题。
⑴各自练习,并指名板演。
⑵对照板演,讨论:
这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢?
想一想:如果知道的是圆的周长呢?
四.总结反思
1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?
2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?
畅谈体会。
五、巩固应用
1.完成练习六第1题。
注意指导学生思考问题要求的是圆柱的哪个面。
2.完成练习六第2题。
先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?
教学反思:
本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。
1.重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的`已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。
2.重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。
3.重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
【“圆柱的表面积”教学反思】相关文章:
《圆柱的表面积》教学反思03-10
圆柱的表面积教学反思07-23
圆柱的表面积教学反思06-20
《圆柱的表面积》教学反思06-29
“圆柱的表面积”教学反思15篇07-25
《圆柱的表面积》教学反思(15篇)10-17
《圆柱的表面积》教学反思15篇03-20
(荐)《圆柱的表面积》教学反思15篇06-29
《圆柱的表面积》教案03-29