《运算定律》教学反思

时间:2024-06-24 07:56:58 教学反思 我要投稿

《运算定律》教学反思15篇

  作为一名人民老师,我们的工作之一就是教学,写教学反思可以快速提升我们的教学能力,快来参考教学反思是怎么写的吧!以下是小编整理的《运算定律》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

《运算定律》教学反思15篇

《运算定律》教学反思1

  四年级下学期第三单元是《运算定律与简便计算》。它把加法运算定律和乘法运算定律放在了一起,学生在学习了加法运算定律后,随后学习了乘法运算定律,这样,有利于知识的迁移,学生更容易理解。在简便计算这一部分中,除了应用“加法和乘法运算定律”进行简便计算以外,还安排了减法和除法的简便计算。可以说简便计算的方法,在这一册中全部出现了。如何让学生把这些简便运算都掌握,并且能融会贯通的运用,这是我们每位老师所思考的首要问题。在教学中我认为要把握以下几个方面:

  一、学会寻找题目的特点。

  (1)看到数字5、25、125想到数字2、4、8。将他们相乘,凑成整数。

  例如:25、36,把36写成4×9。变成25×4×9,使计算简便。

  (2)把接近整数的写成整数和一个一位数相加减。

  例如:202×32,把202写成200+2,变成200×32+2×32,使计算简便。

  (3)寻找能凑成整数的数,把它们相加减。

  例如:126×5+5×74,发现126+74=200,就可以运用乘法分配律,5×200,使计算简便。

  例如:357-64-57,发现357和57,都有一个57,相减正好是整数,可以运用数字搬家的方法:357-57-64,使计算简便。

  二、巧妙运用简便计算。

  简便方法的目的是通过用整数来参与计算,达到使计算化难为易的目的。题目的简便计算是千变万化的,主要是要让学生看懂根据题目特点,灵活选用简便计算。

  例如:28×25的计算方法可以是(A)(20+8)×25=20×25+8×25(B)(7×4)×25=7×(4×25)(C)28×(100÷4)=28×100÷4

  三、注重题目的对比。

  有些学生对于简便计算,你出10题,他做下来可能是题题错。学生很难掌握简便计算的`一个原因就是将题目混淆,故就不知道该题该用哪种简便计算。教学中,教师要加强类似题目间的对比。

  例如:(25×20)×4与(25+20)×4的比较,前者是运用乘法结合律,后者是运用乘法分配律

  例如:125×88和88×102的比较,前者是拆88,把88拆成8×11或88拆成80+8,后者是拆102,把102拆成100+2。

  总之,教学要根据教学内容的特点,为学生提供了多种探究方法,才能激发了学生的自主意识,才能唤醒了学生的求知欲望,才能促使学生对知识进行更新、深化、突破和超越。

《运算定律》教学反思2

  一、调整教材顺序,促进有效教学

  “乘法交换律”与“加法交换律”有着相似之处,都是交换数的位置进行运算,结果不变。“乘法的结合律”的教学可以与“加法的结合律”的教学安排在共一课时。学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出“交换两个加数的位置,和不变,这叫加法交换律”。然后再安排教学乘法交换律,让学生通过举例说明,得出a×b=b×a,再通过对“加法交换律”概念的类比,推理出“交换两个因数的`位置,积不变,这叫做乘法交换律”。再以同一课时或者前后课时,安排教学“加法结合律”与“乘法结合律”,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出“先把前两个数相加,或后两个数相加,和不变这叫做加法结合律”。教学乘法结合律时,再通过具体事例得出a×b×c=a×(b×c),再对“加法结合律”的概念的类比推理,得出“先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律”。

  二、设计对比练习,促进有效教学

  在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。

  学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。

  如,463+82+18,463-82-18,463-82+18

  9600×25×49600÷25÷49600÷25×4

  三、进行逆向训练,促进有效教学

  逆向运用

  加法结合律:346+(54+189)=346+54+189

  乘法结合律:8×(125×982)=8×125×982

  乘法分配律:89×75+89×25=89×(75+25)

  减法的性质:894-(94+75)=894-94-75

  连除的简便:350÷(7×2)=350÷7÷2

  逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。

  四、加强应用训练,促进有效教学

  例1、求下列图形“L型”菜地的面积;

  9厘米21厘米9厘米

  例2、学校合唱团99个学生,每人一套报装185元,后来再加上同等价格的指挥服装一套。一共需要多少元?

  例3、学校买了5副羽毛球拍,花了330元,还买了25筒羽毛球,每筒羽毛球12个,每筒羽毛球32元。又买了8个篮球。

  1、学校一共买了多少个羽毛?

  25×12

  =25×4×3

  2、买羽毛球一共花了多少元?

  32×25

  =8×4×25

  3、每枝羽毛球拍多少元?

  330÷5÷2

  五、加强错例分析,促进有效教学

  例1:25×32×125例2:32×125

  =25×4+8×125=4×(8×125)

  =4×8×4×125

  例3:463-82+18例4:9600÷25×4例5:25×(400+4)

  =463-(82+18)=9600÷(25×4)=25×400+4

《运算定律》教学反思3

  《运算定律和简便运算的复习》教学反思经过思考的课堂,老师游刃有余,学生思维得到拓展。不同的学生都有所进步。

  1、本节课我本着学生为主体,教师为主导。

  而且本身就是一节复习课。所以凡是学生能说清的,我绝不添言;学生说不清的`,练着说;还说不明白,优秀学生引领。

  2、把教学目的给孩子,把学习方案给孩子。

  放手让学生自主复习运算定律,并小组同学互说定义和字母表达式,并思考如何把定律和性质进行分类合理。学生的表现让我惊异。两种分类方法说的头头是道。思路清晰:可以根据四则混合运算,进行分类:加法有加法交换律,加法结合律;减法的运算性质;乘法有乘法交换律、乘法结合律、乘法分配律;除法有除法的运算性质。

  还可以根据运算符号变换分类:加法交换律、乘法交换律;加法结合律、乘法结合律;减法的运算性质、除法的运算性质;乘法分配律。给学生机会,他会还你一个奇迹!

  3、在乘法分配律的汇报过程中,学生的理解表达能力受阻。

  一方面原因是小组讨论学习的过程中,实效性还有所欠缺,只挑选容易的定律进行交流,自主复习内容不够全面。另一方面此部分内容有一定难度,也是本节课复习的重难点所在,后面习题针对此项进行了重点复习,进行了补充。

  4、我认为本节课,基础练习题目全面,有口答,有分析判断,有应用题目动笔,拓展训练能够从出题者的思维角度自主发散思维,总结简便运算的规律。使简便运算更加活学活用。

《运算定律》教学反思4

  加法运算定律是四年级下册第三单元内容,是在加法及验算、四则混合运算的基础上进行教学的。本节课的新知识在以前的`数学学习中都有相应的认知基础,学了本节的新知识又可以促进学生更深入认识原来学过的知识和方法。在之前的教学中,运算定律都是让学生通过观察、比较和分析,然后让学生根据对运算定律的初步感知举出更多的例子,进一步分析、比较,发现规律,并叙述所发现的规律。我认为这样做学生固然能够掌握运算规律,但并没有从本质上真正理解规律。因此,我在教学时,重点让学生从加法的意义上去理解并掌握规律,主要做到以下三个方面:

  一、唤起学生的认知经验,初步感知规律。

  教学中,结合情境引导学生列式解答问题,并抓住两个不同加法算式的`计算结果相等,且都能解决问题为切入口,引导学生得到等式。

  二、组织举出相关例子,充分展开讨论,初步提炼规律。

  请学生以上一等式为参照,再举一些有着同样现象的例子,讨论交流具有此类特征的算式的特点。在此基础上,引导学生用数学语言表达这种规律,初步提炼规律。

  三、调动学生已有知识的经验,注意数学学习方法的迁移和渗透。

  教学中注意沟通知识间的联系。在教学完加法交换律时,我及时把新学的知识和一年级学的凑十法以及加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律加法结合律之间的联系。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。

  本节课的教学,应该说学生经历了探索、发现、反思的过程,对加法交换律和加法结合律有了充分的认识和自己的理解。在教学的过程中仍存在着诸多的不足之处:学生初次用自己的语言描述加法交换律和结合律比较困难,出现表达不够严谨或不会表达的现象,这时我没有及时补救这种生成问题。

  课堂语言不够精炼,重复啰嗦;关于两种运算定律的特点,虽然在教学中让学生进行了观察和描述,在学完两种运算定律后,应给学生足够的时间练习巩固,在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,加深学生的理性认识,促进学生思维灵活性的发展。

《运算定律》教学反思5

  一学生主动构建新知

  知识不仅仅是教会的,而更应该是由学生自己学会的,要改变学生的学习方式,树立"以学生主动发展为本"的现代教学理念。本课为学生提供了自主探究,主动获取新知识的时间和空间,充分让学生通过摆,看,想,算等实践活动感知新知和旧知的内在联系。教师穿针引线适时点拨,帮助学生完成新知的主动建构。

  二,加强小组合作学习

  人的根本属性在于他的社会性。学生要从小学会与人交往,与人沟通,与人协作。本节课我在设计教学时,把小组合作学习作为一种主要的学习方式,通过学生之间的讨论,交流,每一位学生充分参与认知活动,提高课堂教学效率,保证每一位学生都能得到应有的发展,增强了学生的合作意识和合作能力。

  三,寓德于教。

  关注学生的学习,更关注学生的'情感体验和态度,价值观的形成。本课时通过生动的画面,鲜活的事例,使学生切身感受到我国航天科技的迅猛发展,感受到了航天工作者的辛勤工作和奉献精神,受到了爱国主义的情感熏陶,进一步激发学生学习的信心和勇气。

《运算定律》教学反思6

  运算定律与简便计算,共包括了五个定律和两个性质:

  加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c

  连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)

  大多数学生对于加法运算定律和乘法的交换律掌握的比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:

  1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)

  34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)

  2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。

  3. 简算与学生的'数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学

  4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4

  5.针对逆向运用,有以下规律

  加法结合律:346+(54+189)=346+54+189

  乘法结合律:8×(125×982)=8×125×982

  乘法分配律:89×75+89×25=89×(75+25)

  减法的性质:894-(94+75)=894-94-75

  连除的简便:350÷(7×2)=350÷7÷2

  逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。

《运算定律》教学反思7

  本单元是系统学习基础运算理论知识,学生在前面的学习中已经有了大量加法、乘法交换或结合性的经验,是学习本单元知识的认知基础,通过本节课的学习,学生可以加深对加法运算定律的理解,也为学生今后进一步学习奠定坚实基础。

  1、重视规律发现的过程

  本节课的学习就开启了学生对四则运算规律的探究,发现一条规律并不难,但掌握发现规律的方法十分重要。所以从学习加法交换律开始,就一直让学生亲身经历探究和发现的过程“观察发现--举例验证--归纳总结--字母表示”,不断强化具体步骤,就教给学生一把发现规律奥妙的金钥匙。

  2、重视直观演示的操作

  很多教师在教学规律课的时候仅仅只是局限在规律发现的过程,而我在教学本节课时是把规律的发现建立在加法的本质上,通过线段图直观演示的操作,帮助学生发现和理解规律,丰富了学生的认知,形成了基本模型。

  3、充分激活已有经验

  在此之前学生已经系统地对加法进行了学习,今天就在具体的'生活情境中展开研究。数学的学习是在活动中建立起来的,学生在老师的带领下从生活中的数学开始,逐步抽象到用字母来表示规律,让学生的思维循序渐进的进行了质的飞跃。

《运算定律》教学反思8

  《整数加法运算定律推广到小数》的内容是人教版小学四年级下册教材104页的例4以及相应的习题,学习的是整数加法运算定律推广到小数。

  教学目标分为三类:

  (1)知识目标:经历探索有限个例证使学生理解整数的运算定律在小数运算中同样适用的过程,并根据数据特点正确应用加法的运算定律进行简便运算。

  (2)能力目标:在具体情境中,灵活应用加法运算定律解决实际问题,体会解决实际问题策略的多样性,进一步发展数学思考,提高解决问题的能力。

  (3) 德育目标:在具体情境中,灵活应用加法运算定律解决实际问题,体会解决实际问题策略的多样性,进一步发展数学思考,提高解决问题的能力。教学重点: 使学生理解整数的运算定律在小数运算中同样适用。

  教学难点: 让学生自主探索,发现小数加减法是否可以简算,以及应用它解决相关的问题。

  在教学本课时,我根据学生的年龄特点和迁移的认知规律,运用转化的数学思想和简单的多媒体,创设贴近儿童生活的问题情境,为学生提供丰富的表象。采用的教学方法主要是:我采用了自主探究学习的方法。

  1、教学时,我创设了春季运动会的情景,通过有激励性的`四项技能竞赛情境导入,充分激发学生学习新知的欲望,使学生自觉地进行小数加减简便算法的探索活动,融入新知识的学习中。

  2、我结合学生原来的生活经验,大胆放手,给学生思考的空间,让学生成为数学学习的主人。在学生独立自行计算,发展学生的个性的基础上,再让学生从求选手总成绩不同的算法中比较、悟出整数加法定律在小数计算中同样适用。通过情境中特设计的两道都能用定律进行简便计算和一道不能简便计算的数据,使学生在有限个例证中证实了初步构建的数学模型,懂得能否凑成整数是判断小数加减算式能不能进行简便计算的依据。

  3、练习设计层次性。课堂练习是学生学习内容的重复反应或拓展,课堂练习能及时反馈不同层次学生掌握知识的情况。本课让学生通过基础知识的巩固练习、新知的应用、开放题思维训练使三个层次的学生都有所获、有所悟,并体验到成功的快乐,增强了学生学习信心

  4、在教学中还存在着许多不足与缺陷:如本课教学内容有数字的特殊性,如何根据学生生活创设趣味性、有效性、真实性的最佳的教学情境;计算课应怎样驾驭课堂既体现自主学习,又不枯燥乏味;在独立探索中有困难的学生应怎样及时引导和帮助,才能取得良好的教学效果。抛砖引玉,提升自我教学能力,是我本节课的目的。教海无涯,又因本人水平有限,本课堂教学难免存在着许多不足与问题,敬请各位领导、老师指点迷津,多多指正。

《运算定律》教学反思9

  这两周教学四年级下册第三单元《运算定律与简便计算》,目前已将加减乘除各自的运算定律教学完毕,学生对单纯的运算定律能有个初步的理解,但是今天教学了《简便计算的综合应用》这一课后,发现学生在实际计算中不能很好地运用各种运算定律,不能灵活正确地选择合适的运算定律进行简便计算。虽然在教学前已有这方面的顾虑,也做好了准备,但实际教学后更有感受。

  运算定律对学生而言比较抽象,但结合具体的算式运算过程,学生基本能理解。在此基础上,我在本单元的教学时,注重通过算式和实际情境,帮助学生从直观上来理解运算定律。如在教学“乘法分配律”这节课时,注重从购物情境入手,让学生在弄清“几个几”的基础上,理解“一个数乘两个数的和,等于这个数分别与它们相乘再相加”,最终数量大小不变。

  激励学生从已有的知识结构中提取有效的信息。由于各运算的定律间存在一定的联系,如加法和乘法都有交换律和结合律,则在教完加法运算定律后,学习乘法交换及结合律时,让学生注意观察、联想、比较,主动获得“乘法交换律和乘法结合律”,学习减法与除法时更是如此,这个使学生在掌握运算定律的同时又渗透了从已知类比转化来学习新知的方法。

  另外还注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。

  以上这些对学生掌握简便运算起到了不小的作用,但运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是一个较大的问题。故在教学简便计算综合应用时,在找准运用的'法则时,学生计算得既对又快,但独立完成作业时,不分学生又有点混淆不清了。尤其对乘法结合律与乘法分配律的应用。所以,我想,在教学时,注意了让学生从意义上来理解,在理解的基础上再从算式形态上来记忆,编一些记忆口诀。如“连乘的算式可用乘法交换、结合律”、“分配律从×、+的形式变换成×、+、×”等,尝试后,准确率又有所提高。

  此外,倾听学生的想法也很重要,这就可以清晰地知道学生出错的原因,对症下药,而且在简单点拨下,会有惊喜地发现,学生会突然间明白过来。还是实践出真知啊!

《运算定律》教学反思10

  在本节课的教学中,抓住学生的感悟,利用了知识迁移是方法,使学生能用乘法的运算定律使一些小数的计算简便,并能灵活运用地进行四则运算,提高了学生的计算能力。

  一、在复习整数乘法运算定律的基础上进行教学

  先让学生通过对整数乘法运算定律的回忆,熟悉运算定律在在整数运算中的运用,在利用计算比较是学生感悟运算定律在小数乘法中同样适应。

  二、在教学中以学生为主体,教师适时引导点拨

  首先出示几个算式

  0、71、2○1、20、7

  (0、80、5)0、4○0、8(0、50、4)

  (2、4+3、6)0、5○2、40、5+3、60、5

  让学生先观察每组算式有什么特点,实际上这三组算式分别运用的是整数乘法的交换律、结合律、分配律,但是这三组算式都是小数乘法,也符合吗?因此可以先让学生猜测,再进行验证。通过验证,学生发现整数乘法的运算定律在小数乘法中确实适用。先猜测再验证是学生学习数学的最基本的办法,也是科学的世界观养成的基础。在这一环节中,教师的作用只是引导点拨,决不把规律强加给学生,而是让学生自己去猜测、发现、验证。

  三、加强巩固,提高学生学习的兴趣

  学到了知识,然后用学到的知识去解决问题才是数学学习的'真谛。既然发现了整数乘法运算定律在小数乘法中同样适用,再运用这些定律使小数计算变得简便,这一步教学能激起学生运用新知识的欲望。接着出示

  0、254、784 4、80、25

  0、65201 1、22、5+0、82、5

  在简算的过程中让学生体验成功的快乐。

  本节课是一节典型的利用旧知识迁移新知识的课,学生已经对整数乘法运算定律掌握得很好,但是这些运算定律到底是否适合于小数乘法,也是这节课要探究的主要内容。因此这节课让学生先猜测,再验证,从而得到这些运算定律同样适用于小数乘法。然后就用得到的这个规律来对一些小数乘法进行简便运算。本节课始终遵循着猜测验证应用的教学主线,使学生始终亲身体验参与知识的结构过程。

《运算定律》教学反思11

  面对新的课程改革,教师首先应该改变教学的行为,即把对新课程的理解转化为自觉的教学行动。这就要求教师在教学行为的层面上,呈现出新课程的所蕴涵的新的教育理念和新的教学方式。在教学“整数乘法运算定律推广到分数乘法”这一课后,我做了深刻的反思:

  一、注重了情境的导入,提高孩子们的参与热情。

  本节课,开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的.效果。

  二、鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。

  在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人。

  三、需要改进之处:

  ①对学生的多样思维应加大评价力度。比如:在开始情境导入这一环节中,学生除了出现4×(2+3)4×2+4×3两种做法外,还出现了4×2×2+4这样的做法,虽然这种做法与本节课要研究的问题没有多大的联系,但老师却不应忽视孩子多样化的思维方式,应及时给予肯定,并加以合理的评价。再比如:孩子们在猜想整数乘法运算定律是否可以推广到分数乘法时,有一个孩子说到她是想到了整数加法的运算定律可以推广到分数加法,所以断定也能推广到乘法。这里,我给予了肯定,但力度不够。以上可以看出,评价一个孩子,要适时,适当,决不能敷衍,更不能抹杀,否则可能会压制孩子的思维积极性。这一点,在今后的教学中,我还有待加强。

  ②课前对学生的估计过高,所以使一些事先设计好的练习,没来得及做完。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。

  总之,通过本节课,使我在教育教学上,在落实新课改的精神上,有了很大的转变和提高,让教为学服务,提高教学质量,关键在课堂。

《运算定律》教学反思12

  “算法易模仿,算理难深入”这是孩子们学习运算是碰到的一大难题,同时也是我们教师教学是面对的棘手问题,今天的主题研讨活动给了我们一个很好的诠释,既提供了理论支撑,又有了具体操作的章法可循,可以说是受益匪浅。

  这次活动先由来自北京教科院中心的贾福录老师带来的《“数的运算”的知识结构与教学思考》微讲座,然后是《20以内退位减法》和《运算定律》两个单元的单元整体教学说课研究,以实例帮助老师们理解如何帮助学生理解加减乘除的算理算法。贾老师对运算教学中的“承重墙”和“隔断墙”的区分,让我有了清晰的理解。承重墙“是数学的本质,也是学生发展的基石。运算教学中的”承重墙“是:支撑学生探索算法、理解算理的重要”数学意义”;在运算学习中逐步积累和形成的经验与能力。“隔断墙”是不利于学生知识建构、阻碍学生发展的数学内容及表面形式。运算教学中的“隔断墙”是不同阶段学习的运算法则、运算方法。如:凑十法、破十法、平十法等。让学生通过这些方法表面上的不同,体会到本质上的联系,就是打通“隔断墙”。

  在《运算定律》单元整体设计中,我们更全面的认识了它的内涵和价值,根据前测数据设计教学目标,教学设计已有板块很到位。通过对学习本质、学习内容蕴含的数学思想和方法、列举人教版、北师大版、苏教版教材编排特点抓住了核心概念,从而设计出匹配的教学目标。在两位老师的解读中,我们深入解读课标、梳理教材中的前位和后位知识,从“积累模型建立的.学习经验”和“凸显推理、抽象、建模思维方式的构建”两个方面入手,在问题情境、列式解答、发现规律、举例验证、算理解释、模型表达的过程中实现模型的建构,在探寻规律环节通过四个步骤完整地经历建模的全过程,从学习知识到学习方法,实现新旧知识的有效沟通,真正内化运算的意义。

  两位老师进运算定律单元进行了整体设计。他们从单元的内容入手进行分析,明确不同内容的层次水平和学习要求,清晰的指出了本单元的能力目标。然后分析不同年级的教材找到了知识间的前后联系,发现运算律在运算教学中具有核心地位。基于对学情,教学内容的分析,将本单元的内容打通,将具有相同特点的交换律放在一起研究,把简单的“加法交换律、乘法交换律”整合在一课时,承载起种子课的作用,让学生初步形成探究的方法,为后面探究其他运算定律做好准备。

  这次课程也帮我打通很多知识之间的连接点。如:数的运算和数的意义其实是不分家的;课标提出的运算能力是正确的进行运算,在传授过程中,还要注意对抽象概念的理解;加法和减法其实是单位的累加和累减;学习整数、小数、分数加减法时,要沟通算法之间的联系。

  听了老师们的讲解和专家们的点评,使我受益匪浅。数的运算通过直观教学让学生更易理解算理,数形结合,抓住认知起点。数运算教学在小学阶段是非常重要的内容,理解数的核心本质很重要。从生活经验出发,直观教学,理解抽象的内容。用实物教学,以及形象的图片讲解,非常有趣味性。让孩子们发自内心的喜欢,主动去学。感谢各位老师的经验交流与分享!

  通过这次的研讨,在专家老师的解读与分析,让我对数学学科小学阶段的教学过程中有所理解承重墙与隔断墙,今后教学实践活动中怎样把握教材所呈现的知识点间的联系,采取有效的手段引领孩子们学习数学概念,数学知识,受益匪浅。感谢专家和老师们的干货分享,对我来说是实质性的指导,正如视频所讲,我们面临同样的问题,学生算法容易模仿,算理确是难以理解,今天有了更多的方法来指导我的教学,再次感谢这次活动。

《运算定律》教学反思13

  《网络教学已经持续一个多月了,上周我结束了第三单元运算定律的教学,通过研读教师用书,我制定了本单元的教学目标:1.引导学生探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算。2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。3.使学生感受数学与现实生活的联系,能运用所学知识解决简单的实际问题。,为了达到这些教学目标,每节课我都认真分析教材,把教学设计做成课件给同学们上课,线上授课每节课只有20分钟左右,而且同学们只能通过连麦来表达自己的想法,有时网不好,连麦需要很长时间,一节课只能几位同学连麦,其它同学老师是听不到他们想法的,所以我会在课前设计一些预习任务,让同学们对本节课老师要讲的内容做到心中有数,上课时就不耽误时间,直接表达自己的想法即可。通过学生作业反馈和回看自己的教学视频,我发现了很多问题。以下是对本单元教学的一些反思。

  1:对于加法、乘法的交换律同学们掌握得很好,在课上,同学们能举出一些相应的例子,还能根据这些例子总结相应的定律,同时还能用自己喜欢的方式表示加法、乘法的交换律。同学们的`作业也都完成的很好。加、乘法结合律理解起来也不算困难,同学们能在学习了交换律的基础上,迁移运算定律,利用情境理解两种运算顺序的意义,在比较运算意义和计算结果的基础上得到等式,并总结出定律的内容。这几节课,虽然是网络授课,但同学们仍能从已有的知识经验出发,通过观察、交流、归纳,亲历了探究加法、乘法交换律、结合律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。

  2:较难理解的是乘法分配律。通过回看视频我发现同学们在课上能用两种方法解决问题,并能说出用每种方法的原因,然后老师和同学们共同发现,这两种方法的结果是一样的,得出等式,归纳出乘法分配律。由于网课的局限性,只有几位同学说了他们的想法,不能听到更同学的想法。通过做题,我才发现学生对乘法分配律不能达到应用自如。部分学生对规律只是浅表认识,不能深刻理解其意义及作用。比如(ab)×c=a×cb×c,左边表示ab个c,右边是a个c加b个c,这样左右存在相等关系。在课上虽然我也是用这种方法讲解的,但有部分同学不太理解。在课上我也没有让同学们举例,只是我在说。这也是导致部分同学不理解的原因。在我以后的授课中我应注意这样的问题。

  课上只通过例题得出乘法分配律,但应用起来乘法分配律的变型题目太多。比如:102×15.需要把102变成1002的形式;而99×46需要把99变成100-1的形式;89×4545需要把45变成45×1的形式;28×225—8×225减法这样的形式:还有根据字母表达式直接应用,或从左往右或从右往左应用等等。这些应用技能不是学生短时间内灵活掌握的。由于题型太多,有少部分学生在应用时又回到原点,白费力气。比如105×16,明明拆成1005了。下一步不去分别乘括号外边的数,而是又得到105。

  本单元所学习的五条运算定律,不仅适用于整数的加法和乘法,也适用于有理数的加法和乘法,被誉为“数学大厦的基石”。

  总之,没有特效办法来解决,只能靠多讲多练。在实践中体会规律之奥妙,体会规律的应用确实能使计算简便。教材的安排意图也很明显,每学完一种规律,紧接着都安排了应用规律可使计算简便的题目。现在由于是网络授课,学生不能自律,没有达到及时和适量的训练,老师通过作业发现同学们的问题后,讲解也不是很方便,所以导致现在效果不是我期望的那么理想。

《运算定律》教学反思14

  加法运算定律是人教版四年级教学上册第三单元第一课时的内容,本节课的教学目标是探索并掌握加法交换律和加法结合律,能初步运用加法交换律和加法结合律进行简便运算。本节课的重点是掌握加法交换律和加法结合律并能初步运用,难点是运用加法交换律和加法结合律进行简便运算。

  本节课,我利用三代导学案进行教学,让学生依据自学导读单在前一天晚上自学本节课的内容,对加法交换律和加法结合律的探索过程、表达方法都有了一个初步的了解。课堂上我们就直接同桌交流自学导读单内容,老师只巡视,不讲评。在交流完自学导读单之后,我们就开始完成分层训练的第一题,这道题是根据已知的等式,写出运用了什么运算定律,通过这道题让学生回顾并展示加法交换律和加法结合律的内容及字母表示的方法,这是本节课的核心知识点,所以我在黑板上进行了板书。其实分层训练第一题的处理,承载着教学新知的任务,只不过这个新知学生已经提前预习了,课堂上只是一个学生的展示和老师的点拨。分层训练的第二题,是根据运算定律进行填空,对运算定律起到进一步巩固的作用。分层训练的第三题是运用加法运算定律进行简便计算,考虑到学生初次接触到这种题,所以就安排学生先做第一题,并让两个学生演板,一个学生按从左往右的顺序计算,并不简便,另一个学生是用加法结合律先把后两个数相加,因为后两个数正好能凑成整百的数。这样,通过两种方法的对比让学生切实感受到哪一种方法简便,并且知道了简便的方法就是利用加法运算定律把能凑成整十、整百的`数放在一起相加。接着,让学生完成后两道题,这时,应该有一部分学生能够比较顺利的用简便方法进行计算,还有相当一部分学生有困难,我看主要原因是学生不能发现哪两个数能凑成整十整百的数。通过今天的作业来看,今天的内容学生掌握的并不好,还需要在接下来的学习中加强练习,不断提高运算的能力。

  本节课还有很多不足之处,比如:学生交流的习惯还没有养成,还不能做到完成后就自觉交流。全班的交流也应该有选择的进行,而不是每道题都交流,这样就可以节省出更多的时间对重难点的内容加以练习和点拨。本节课的难点是运用加法运算定律进行简便计算,突破这个难点的方法是找出算式中哪两个数能凑成整十、整百的数,课堂上应该把这个方法告诉学生,比如看两个数个位上的数能否凑成整十数。还有学生的做题格式,还需老师的示范。

  总之,本节课看似流程齐全,学生活动积极,但是细节处理还不够得当,还需在以后的教学中不断改进。

《运算定律》教学反思15

  最近,有幸听了东洲小学青年教师基本功比赛选手俞老师执教的数学人教版教材《加法运算定律》,听后深受启发,东小数学课堂教学真正在贯彻新课程标准的理念。

  一、从现实生活情境中提供学生发现运算定律

  课的一开始用讲故事形式导入,既吸引学生又激发学生思考,同时又直接切入教学内容。故事为:猴妈妈给小猴子吃桃,规定早上吃4个,晚上吃3个,小猴子感觉这样吃少了。猴妈妈改变成早上吃3个,晚上吃4个,小猴子感到很高兴。老师问:小猴子占到便宜了吗?这个问题一提出,学生马上明确了第一种分法是3+4,第二种分法是4+3,实际上是一样多的,从而引出生活中经常接触到如7+8和8+7许多这样的例子,其结果是一样的,自然而然地引导学生并要归纳这些数学现象,并且明白这个现象的实质就是交换两个加数的位置,和不变。

  二、从个别现象类推中引导学生概括运算定律

  教学加法结合律时出示学校三个班参加冬季三项比赛的人数,让学生提出问题,教师根据学生提出的许多问题中选择一个对本节课需要引入新知研究的问题“三个班一共多少人参加比赛怎样计算?”让学生进行计算,根据学生多种计算算式中列出28+17+23和28+(17+23)、23+28+17和23+(28+17)等,让学生观察这两个算式的相同和不同之处,学生的新知研究从根据相同和不同之处迈向概括出了加法结合律。接着又通过一组题组让学生分组练习,通过分组练习学生体会到加法结合律的存在对计算时的简便之处,教师的教学设计目的从让学生个别现象类推到引导到概括出加法结合定律,教会了学生的认知方法。题组为:(69+172)+28、(207+155)+145,69+(172+28)、207+(155+145)。

  三、从具体练习应用中启发学生体会定律优越性

  本节课的教学目标预设为通过现实生活中的问题解决,引导学生抽象概括并理解加法交换律、结合律,感知加法交换律、结合律对于计算的'简便之处。如何让学生感知?执教者通过对填空题的抢答:204+57=57+□、(45+36)+64=45+(□+□)、57+65+135=57+(□+□)、23+46+77+54=(□+□)+(□+□)及对题目74+102+98你认为怎样计算方便,把学生引入了如何运用加法结合律进行简便计算的领域,这个引入不是强制的,而是学生自觉获得的需要,也是对新知学习价值的创生。

【《运算定律》教学反思】相关文章:

《运算定律》教学反思02-24

运算定律教学反思04-06

《加法运算定律》教学反思10-22

加法运算定律教学反思12-04

《运算定律与简便计算》教学反思(通用13篇)07-19

运算定律教案01-23

《运算》教学反思04-06

加法的运算定律说课稿01-14

加法运算定律教案08-21