《3的倍数特征》教学反思

时间:2024-08-12 11:02:19 教学反思 我要投稿

《3的倍数特征》教学反思

  作为一位优秀的老师,我们的工作之一就是教学,写教学反思可以快速提升我们的教学能力,来参考自己需要的教学反思吧!下面是小编收集整理的《3的倍数特征》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

《3的倍数特征》教学反思

《3的倍数特征》教学反思1

  3的倍数的特征比较隐蔽,学生一般想不到从“个位上的数字之和”去研究。上课开始先让学生通过练习回顾旧知:2的倍数与5的倍数的特征。然后让学生猜想:3的倍数又有什么特征呢?这样能较好调动学生学习的积极性。由于受2的倍数与5的倍数特征的影响,有些学生很自然猜测到“个位上是0,3,6,9的数是3的倍数”、“各位上的数字加起来是3,6,9的数是3的倍数”等等,学生能想到这几点是非常不错的。

  学生进行猜想后,我并没有判断学生的猜想是否正确,而是出现了百数表,让学生在百数表中圈出所有的3的倍数,让学生从表中发现3 的倍数的特征,把自己发现的在小组间交流。此时,我还是没有判断学生的发现是否正确,而是让学生打开课本自学,从课本中找3的倍数的特征,当遇到问题解决不了时,我们可以向课本求助。然后问学生“各位上的数字的和是3的倍数是什么意思?请结合举例说说。”接下来将数扩到百以上,通过各种方式举正反例通过计算来验证从而得出3的倍数的特征。最后比较验证之前的猜想与发现。当我们向课本找到结论时,我们也要质疑,通过举例来验证。鼓励学生对知识要敢于质疑,敢于通过各种方式去验证,培养学生良好的数学思维。

  在教学中,我能有效获取课堂生成资源,同时也注重方法的指导。比如:同桌举例验证时,涉及到了“123456”是否是3的倍数,先给予学生思考的时间,让后问:还有更加简便的方法吗?老师有效引导,让学生去发现“去3法”能给我们的判断带来很大的方便。还有在方框里填数等。有较好的教学机智与课堂驾驭能力,如:在百数表圈3的倍数时,我的课件中有个数“99”忘记没有圈好,学生发现了这问题。在这里,我是表扬了发现此问题的学生,老师故意说:我是特意没有圈的`,看我们的学生观察是否仔细,考虑问题是否全面……,把原本的错误变成良好的教学资源。练习的设计业很有层次与梯度,联系生活实际。

  本节课也有很多不足的地方:百数表中的数据太多,部分学生的发现是乱七八糟的;在举例验证的过程中,学生的计算还不够,学生亲自从算中去体会更好;总结不太及时,从及时总结中提炼、提升会更好。

《3的倍数特征》教学反思2

  “能被3整除数的数”一课,能体现新的教育理念、教育思想。仔细分析,有以下几个特点:

  1、确立了基本技能目标和发展性目标并重的教学目标。

  本节课不仅重视学生掌握能被3整除数的特征,并能运用特征进行正确判断,同时十分重视学生学习过程的体验和方法的渗透,让学生通过“猜测——验证——提出新的假设——验证”的'探索过程来发现知识,获得结论,并感悟方法。

  2、理性处理教材,使教学内容生活化。

  教科书只是提供了学生学习活动的基本线索。教学中,教师要充分发挥主观能动性,创造性的使用教科书,本节课重新设计例题,通过用“0——9”十个数字组成能被整除的三位数让学生探索特征,这样处理使教学内容有较强的灵活性,促进了学生思维的发展。教学内容生活化不仅能激发学生兴趣,产生亲切感,而且使学生认识到现实生活中蕴藏着丰富的数学问题。开课时收集的数据一方面激发了学生学习的兴趣,同时也缩短了教师和学生的距离,课后“你再长几岁,这个岁数就能被3整除”这一开放题富有情趣,给学生留下了深刻的印象。

  3、着力改变学生的学习方式。

  学习方式的转变是本节课的主要特色。本节课始终以自主探索、合作交流为主要的学习方式,让学生通过自主选教学内容,举例验证等独立思考和小组讨论等合作探究活动,获得教学知识、感悟方法。如在课的第二阶段,设计三个层次的教学活动,让学生充分探索、讨论、交流,使学生真正成为学习的主人。第一层通过学生猜测、举例、选数字组数,使学生产生两次认知冲突;第二层通过交换三位数数字的位置,仍然没能发现特征,产生第三次认知冲突;第三层次通过计算各位上的数的“和、差、积、商”使结论逐渐显露。这一过程不仅培养了学生探究精神,磨练了意志,同时也使学生品尝了成功的喜悦。

  4、合理定位教师角色,营造民主、和谐的学习氛围。

  课堂教学中只有摆正了师生关系,才可能使学生得到发展。本节课学生始终是数学学习的主人,教师是数学学习的组织者、引导者和合作者。可以从以下两方面看出:一是从师生活动的时间分配上,二是从分层探究、有针对性的适当引导上。这节课从开始到结束,气氛始终处在民主、和谐之中,生活化的学习材料、平等的师生关系和开放的探究方式,

《3的倍数特征》教学反思3

  1.以学生原有认知为基础,激发学生的探究欲望。教师利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的.倍数的特征”迁移到解决“3的倍数特征”的问题,产生认知冲突,萌发疑问,激发强烈的探究欲望。本案例中,学生很快进入问题情境,猜测、否定、反思、观察、讨论,大部分学生渐渐进入了探究者的角色。

  2.以问题为中心组织学生展开探究活动。在上面案例中,教师注意突出学生的主体地位,教师依据学生年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,并不断组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律、得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。

《3的倍数特征》教学反思4

  《3的倍数的特征》是学生在学习过2和5倍数特征之后的又一内容,因为2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的`数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出3的倍数特征。

  但上课的过程中,学生并没有按照我想的思路去进行,一个学生在我没有预想的前提下说出了3的倍数的特征,所以我准备让四人小组去合作交流发现3的倍数的特征也没有进行。只是让学生两人去再说一说刚才那个学生的发现,加以理解,巩固。

  这节课结束后,我感觉以下方面做得不好。

  1、备课不充分。自己在备课时没有好好的去备学生,没有做好多方面的预设;

  2、在观察百数表到后面总结3的倍数特征时,都应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。老师不要着急,学生能说出的尽量让学生说,多放手,相信学生。

《3的倍数特征》教学反思5

  《3的倍数的特征》是五年级下册数学第二单元“因数与倍数”中的一个知识点,是在学生已经认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。

  因而在《3的倍数的特征》的开始,我先复习了2、5的倍数的特征,然后学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2.5的倍数的特征”迁移到“3的倍数特征的问题中,得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。在问题情境中让学生产生认知冲突产生疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把3的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征。接下来,经过进一步提示,引导学生观察各位上数的'和,发现各位上的和是3的倍数。于是,形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。

  为了验证这一猜想,我补充了一些其他的数,如49×3=147,166×3=498等,使学生进一步确认这一结论的正确性。还可以任意写一个数,利用这一结论来验证,如3697,3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的倍数。通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进行检验,看是不是普遍适用。

  为了使学生更好地掌握3的倍数的特征,进行课堂练习时,我还把一些数各个数位上的数经过不同的排列,再让学生判断,以加深对“各位上数的和是3的倍数”的理解。如完成“做一做”第1题时,学生判断完45是3的倍数后,教师可以再让学生判断一下54是不是3的倍数。

  利用2、5、3的倍数的特征来判断一个数是不是2、5或3的倍数,其方法是比较容易掌握的,但要形成较好的数感,达到熟练判断的程度,也不是一、两节课所能解决的,还需要进行较多的练习进行巩固。

  这节课结束后,我感到自主学习和合作探究是这节课中最重要的两种学习方式,学生通过自主选择研究内容,举例验证等独立思考和小组讨论,相互质疑等合作探究活动,获得了数学知识。学生的学习能动性和潜在能力得到了激发。在自主探索的过程中,学生体验到了学习成功的愉悦,同时也促进了自身的发展。但最大的缺憾之处,最后总结3的倍数特征时,应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。而练习题方面,也应形式面多样化。

《3的倍数特征》教学反思6

  《3 的倍数的特征》本节课的教学活动,注重学生实践操作,展开探究活动,组织学生进行交流和探讨,注重培养学生发现问题,解决问题的能力,让学生经历科学探索的过程,感受数学的严谨性和数学结论的正确性。我是从教学环节维度进行观课的,本节课有五个环节包括:一、复习旧知,直接导入。二、自主探究,合作验证。三、总结提升,共同验证。四、运用结论,巩固训练。五、全课小结,课后延伸。每个环节环环相扣,设计合理。下面就说一下自己的想法。

  一、以旧带新,引入新课。

  赵老师先复习了2、5的倍数的特征,为这节课的学习打下了基础。赵老师以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的'角色。

  二、亲身经历,探索规律。

  本节课教师努力尝试构建数学生态课堂,让学生继续利用小棒摆一摆,进而发现不止是3根、6根小棒能摆出3的倍数,9根也能“只要小棒的根数是3的倍数,摆出来的数就是3的倍数。”教师将“动手摆小棒”升级为“脑中拨计数器”,将“直观性思维”升华为“理性思维”,通过小组交流、集体验证,学生的探索发现离“3的倍数的特征”只有咫尺之遥。整节课让学生经历“动手操作——观察发现——举例验证——归纳总结”的探究过程,实现课程、师生、知识等多层次的互动。

  三、精心选题,巩固新知。

  习题的设计力争在突出重点,突破难点,遵循学生认知规律的基础上,体现基础性、层次性、灵活性、生活性、趣味性。本节课教师设计了3道练习题。在巩固练习部分,第(1)、(2)题是基本题;第(3)题,教师努力拉近数学与生活的联系。把数学和生活有机联系起来,使学生体会到数学在现实生活中作用和价值,初步学会用数学的眼光去观察事物、思考问题,树立学好数学、用好数学的志趣。

  四、回顾梳理,举一反。

  在学生学习的过程中注意“学习方法”的指导,让学生感受到掌握方法才能举一反三,真正做到触类旁通。最后一个环节设计了让学生静静的回顾这节课的学习历程“动手操作——观察发现——举例验证——归纳总结”,使其在数学思想上做进一步的提升。

《3的倍数特征》教学反思7

  《3的倍数的特征》的教学是五下数学第二单元“因数与倍数”中一个知识点,是在学生已认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。因而在《3的倍数的特征》的开始阶段我复习了2、5的倍数的特征之后就让学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2。5的倍数的特征”迁移到“3的倍数特征的问题中, 得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。

  在问题情境中让学生产生认知冲突,萌发疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把 3 的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的'倍数特征 。学生在经历了猜测、分析、判断、验证、概括、等一系列的数学活动后感悟和理解了3的倍数的特征,引导学生真正发现:3的倍数各位上数的和一定是3的倍数;不是3的倍数各位上数的和一定不是3的倍数。从而,使学生明确3的倍数的特征,然后进行练习与拓展。这样的探究学习比我们老师直接教给他们答案要扎实许多,之后的知识应用学生就相应比较灵活和自如,效果较好。

  这节课结束后,我感觉最大的缺憾之处在最后的拓展练习上,由于自己事先练习下水没有做足,所以误导了学生。题目如下:“从3、0、4、5这四个数中,选出两个数字组成一个两位数,分别满足以下条件:1、是3的倍数。2、同时是2和3的倍数。3、同时是3和5的倍数。4、同时是2、3和5的倍数。”学生问要写几个时,我回答如果数量很多至少写3个。呵呵,其实此题不需要如此考虑,因为它们的数量都有限。

  希望以后自己的教学会更扎实起来。

《3的倍数特征》教学反思8

  3的倍数的特征比较隐蔽,学生一般想不到从“各位上数的和”去研究,本课注重引导学生经历探索的过程。上课开始先让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的倍数有什么特征呢?猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”,还有学生猜测:“各位上的数字加起来是3,6,9一定是3的倍数”,能想到这点应该说是了不起的。本课到这里都很顺利,因为完全在我的预设之中。

  下面进入验证环节,先学生判断自己的学号是不是3的倍数,再在这些学号中挑出个位上是0,3,6,9的数,通过交流这些数不一定都是3的倍数。学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢。于是进入到动手操作环节,在此基础上,利用计数器转移探索的方向,让学生用3颗算珠在计数器上任意摆数,得出结果:摆出的数都是3的倍数,到这里有几个学生显得很兴奋。随后用5颗算珠实验,发现摆出的数都不是3的倍数,到这里学生中已经有一些议论,他们都有了发现。为了让更多的学生看出其中的神奇,我将自主权交给了学生们,自己选择算珠的颗数进行了第三次实验,然后板书出每组的实验结果,从结果的数据中,学生们都很兴奋地发现了所用算珠的颗数是3颗,6颗,9颗,拨出的.数都是3的倍数,每个数所用算珠的颗数,也是每个数各位上数的和。把算珠颗数抽象成各位上数的和,是理解3的倍数特征的关键。

  “试一试”是教学的第三步,如果一个数不是3的倍数,那么这个数各位数的和不是3的倍数。利用反例进一步证实3的倍数的特征,体现了数学的严谨性和数学结论的确定性。可惜在这一点上,我很仓促地指着黑板上算珠颗数是4颗,5颗,7颗,8颗时,所摆出的数都不是3的倍数,直接告诉了学生,而没有让学生自己举出反例。随后设计了一系列习题,使学生得到巩固提高。

  整节课只能说顺利地走了下来,对于教者我来说从中发现了自己教学上的不足之处,在今后的教学中,我将不断学习,及时总结,虚心请教,以进一步提高自己的教学业务水平。

《3的倍数特征》教学反思9

  《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的.倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。

  一、猜想:让学生回顾旧知,2的倍数和5的倍数有什么特征,学生们发现都只要看一个数个位上的数就行了,于是很顺地设下了陷阱:同学们,那猜猜看3的倍数有什么特征呢?由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到:“个位上是0,3,6,9的数一定是3的倍数”。

  二、验证::先让学生在百数图中找找看,显然像13、16、19等等的数不是3的倍数,学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢。

  三、探究:在此基础上,让学生在百数图中找出3的倍数的数,如果把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→2115→5118→8124→4227→72

  我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  四、验证:下面各数,哪些数是3的倍数呢?

  2105421612992319876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。这样结论的得出水到渠成。

《3的倍数特征》教学反思10

  2、3、5倍数的特征我设计的是一节课,但上完这节课上完后,给我最大的感受,学生对2、5的倍数的特征不难理解,对偶数和奇数的概念也容易掌握,但我由于对教材的把握不够,时间用到2、5倍数上的较多。以至于对3的倍数特征探究不到位。

  好的开始等于成功了一半。课伊始,我设计了抢“30”的游戏,目的是让学生从中找到3的倍数,但我发现这个游戏没让学生部明白要求没有能提高学生的兴趣。意义不到。数学学习过程中应该是观察、发现、验证、结论等探索性与挑战性活动。首先让学生独圈出写出100以内2、5的倍数,独立观察,看看你有什么发现?学生很容易发现他们的特征,而这只是猜测,结论还需要进一步的.验证。但我对这部分的处理太过于复杂零碎。以至于用的时间过多。比如说2、5倍数与其他数位的关系,着就不是本节课的重点。

  小组合作,发挥团体的作用,动手实践、合作交流是学生学习数学的重要方式。我觉得我们班小组小组合作还有很多部足的地方,比如说学生的之一能力倾听能等等还需进一步训练。

《3的倍数特征》教学反思11

  3的倍数的特征比较隐蔽,学生一般想不到从“各位上数的和”去研究。上课开始先让学生回顾旧知:2的倍数和5的倍数有什么特征?学生们发现都只要看一个数个位上的数就行了,于是很顺利地设下了陷阱:“同学们,那猜猜看3的倍数有什么特征呢?猜测是一种常用的数学思考方法,让学生猜测3的倍数有什么特征,能较好地调动学生的学习积极性。由于受2的倍数和5的倍数的特征的影响,有学生很自然猜测到“个位上是0,3,6,9的数一定是3的倍数”,还有学生猜测“个位上的数字加起来是3,6,9一定是3的倍数”,能想到这点应该说是了不起的。本课到这里都很顺利,因为完全在我的预设之中。

  下面进入验证环节,先让学生判断自己的学号是不是3的倍数,再在这些学号中挑出个位上是0,3,6,9的`数,通过交流,学生发现这些数不一定是3的倍数。学生初步发现了3的倍数的特征与2和5的倍数不同,不表现在数的个位上,那3的倍数究竟与什么有关系呢?于是进入到动手操作环节。在此基础上,抽象成各位上数的和,是理解3的倍数特征的关键。

  “试一试”是数学的第三步,如果一个数不是3的倍数,那么这个数各位数的和不是3的倍数,利用反例进一步证实3的倍数的特征,体现了数学的严谨性和数学结论的确定性。随后设计了一系列习题,使学生得到巩固提高。

《3的倍数特征》教学反思12

  《3的倍数的特征》是人教版义务教材新课程第八册的教学内容,对这节课的教学设计,有从2、5的倍数的特征中引入的、有让学生通过摆火柴棒研究的,其中不乏好点子好设计。但是,大部分老师都要抛出一个问题让学生思考:“火柴棒的总根数跟3的倍数有什么联系?”或者干脆问“3的倍数和数位上的数字的和有什么关系?”总觉得教师对学生的引导过于直接,对于五年级的学生,经过这样的提问,一般都能找到3的倍数的特征,也能用语言来表述。我认为,我们的关键不但要让学生找到3的倍数的特征,更应该引导学生怎样去发现数位上的数字的和与3的倍数之间的关系。我考虑,能不能在本节课中运用分类,让学生自主探究呢?以下是两个教学片段:

  教学片段一:

  让学生用30秒时间,写3的倍数,大部分学生都从小到大写了25个左右

  老师板演了10个:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任务。

  师:请你给自己写的3的倍数分类,看看能不能找到规律。限时2分钟。

  (结束)学生回答。

  生1:3、6、9;12、15、18、21、24……按位数分类。(有3人和他一样分)师:按位数分类,那么3位数里哪些是3的倍数呢:103、208是3的倍数

  吗?(学生答不出)

  生2:3、6、9、12、15、18、21、24、27、30;

  33、36、39、42、45、48、51、54、57、60

  63、66……

  (有32人和他一样)

  师:你分类的标准是什么?

  生2:个位是0——9的都归为一类,共两类。

  生3:共十类。个位是0的一类,个位是1的一类,个位是2的一类,到个位是9的一类。

  师:懂了。3、33、63是一类;6、36、66是一类,共十类。那21253是不是3的倍数,能迅速判断吗?(生无语)

  师:看来,分类的方法很多。但是,哪一种分类才能帮助我们发现3的倍数的特征,是有价值的呢?(学生陷入沉思)

  以上学生的分类方法,都有不同的标准,从单一分类的角度来看,没有问题。但是对于寻求3的倍数的特征,却没有意义。大部分学生是从2、5的倍数的特征中受到启示,这是学生的经验,却是一种负迁移。课前,我也想到了,那么是不是就一定要先提醒学生,不要走弯路呢?我认为,负迁移也是一种宝贵的经验,经历过挫折,对知识的理解就会更加深刻,无需刻意回避。

  教学片段二:

  师:继续观察这些数,还有其它分类方法吗?限时5分钟。(陆续有学生举手,5分钟后,共有15位学生举手,巡视一遍。)

  师:谁来介绍自己新的分类方法?

  生1:3、21、30;

  6、15、24、33、42;

  9、18、36、45、63;

  12、39、48、57;

  ……

  师:你的分类标准是什么?

  生1:第一类,每个数数位上的数字的和是3;第二类,每个数数位上的数字的和是6;第三类,每个数数位上的.数字的和是9;第四类,每个数数位上的数字的和是12;以此类推。

  师:谁来帮他“以此类推”?

  生2:每个数数位上的数字的和是15,也是3的倍数;每个数数位上的数字的和是18,也是3的倍数。

  生3:每个数数位上的数字的和是21,也是3的倍数;每个数数位上的数字的和是24,也是3的倍数。

  师:你能用一句话来表达吗?

  生4:每个数位上的数字的和是3、6、9、12、15、18等,这个数就是3的倍数。

  生5:每个数位上的数字的和是3的倍数,这个数就是3的倍数。

  师:很厉害。但是,我们需要验证。判断老师刚才写的3的倍数(前5个)105、111、156、273、300。

  生4:1加0加5等于6,6是3的倍数,105也是3的倍数。

  生5:1加1加1等于3,3是3的倍数,111也是3的倍数。

  ……

  (一个学生根据规律回答,其他学生用竖式验证。)

  生6:3的倍数的特征是找到了,但这样的分类太乱。我一共分3类:

  第一类:每个数数位上的数字的和是3:3、12、21、30;

  第二类:每个数数位上的数字的和是6:6、15、24、42、51;

  第三类:每个数数位上的数字的和是9:9、18、27、36、45……,

  这样的数是3的倍数。

  师:那老师的这些数:339、504、918、1527、2442属于哪一类呢?

  生6:339,3加3加9等于15,然后1加5等于6,分到第二类;918,9加1加8等于18,然后1加8等于9,分到第三类;1527分到第二类;2442分到第一类。所有3的倍数没有超出这三类的。

  师:厉害!(让其他学生说了两个四位数,用他的方法来判断是不是3的倍数,大概有三十个左右的学生能用这样的方法分析。老师又举了一个反例。)

  师:谁能用几句话来概括?

  生6:一个数,每个数位上的数字的和是3、6、9,如果和大于9的,数位上的数再加,直到出现一位数,如果是3、6、9,那么这个数就是3的倍数。

  师:真佩服你们!

  第二天,有学生告诉我他发现了一种更快判断3的倍数的方法,不用把数位上的数都加起来,比如538,3是3的倍数就不要管它了,只要5加8加一下,13不是3的倍数,538就不是3的倍数。我又说了一个五位数20xx,学生分析,6是3的倍数,不去管它,2加7是9,9是3的倍数,整个数就是3的倍数。

  学生的探究能力如此之强,是我没想到的,学生快速判断3的倍数的方法,实际上已经综合了很多的知识,尽管不能很明确地用语言来表达,但是,方法是完全正确的,其实这又是一个学生新的探究的开始。

  从本节课中,我有几点小小的感悟:

  一、教师不要害怕学生探究的失败。学生第一次探究的失败,完全是正常的,这是他们运用已有的经验,进行探究后的结果。尽管这种经验的迁移是负作用的,但是从失败到成功的过程,记忆是深刻的。负迁移在教学中比比皆是,我们不但不能回避,而且要好好利用,要让学生积累对数学活动的经验,同时能将“经验材料组织化”。

  二、教师要给学生创造探究的机会。学生的探究能力其实是老师意想不到的。最后一位学生对3的倍数的概括(一个数,每个数位上的数字的和是3、6、9,如果和大于9的,数位上的数再加,直到出现一位数,如果是3、6、9,那么这个数就是3的倍数。),尽管实际的意义不是很大,但是它更具有横向的关联,2的倍数特征是:个位是0、2、4、6、8的数是2的倍数;5的倍数的特征是个位是0或5的数是5的倍数。或许,这种类比联想更容易让学生理解新的知识,更何况是学生自己探究出来的。其实很多教学内容我们都可以让学生进行探究,关键是教师如何给学生提供一个探究的载体,一种探究的环境。

  三、教师对学过的知识要经常地进行整合。新教材的特点是有些知识点分得比较散,所以教师要经常把学生学过的知识,在新知中不知不觉地再应用,再巩固。温故而知新,在复习与巩固中,学生会对旧知有更高的认识,更深的理解,也容易排除学生对新知的畏难思想。同时要经常地对各种知识进行串联,编织学生知识的网络,使学生认识到各种知识之间是相互关联相互作用的,以利于学生解决一些实际问题或综合性问题。

  四、教师要经常在教学中渗透一些数学思想。分类是一种数学思想,同时也是一种数学思维的工具。人教版小学数学第一册学生就接触了分类《整理房间》,第七册《角的分类》、第八册《三角形的分类》,让学生对分类有了更多的理解。其实在生活中,无处不在的分类:超市货物的摆放、自己书本的整理、性别之间、班级之间等等。对于分类的标准,分类的原则,学生在不知不觉中有了感悟。借助分类,有40%的学生找到了3的倍数的特征,学生完全是在观察、尝试、验证的基础上探究的,是自主的行为研究。在小学数学中,渗透了很多数学思想,如集合、对应、假设、比较、类比、转化、分类、统计思想等,在教学中合理地运用这些数学思想,对学生学习数学的影响是深远的,也会让我们的数学探究活动更有意义,更有价值。

《3的倍数特征》教学反思13

  《3的倍数的特征》的教学是五年级数学上册第三单元“因数与倍数”中一个重要知识点,是学生在学习了2和5的倍数特征之后的新内容。

  3的倍数的特征与2和5的倍数的特征有很大差别,2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我在本节课设计理念上,突出以学生为主体,教师为主导,方法为主线的原则,从现象到本质,从质疑到解疑。当然本节课也存在很多问题,下面我进行做几点反思。

  1、瞄准目标,把握关键

  在导入环节,我通过复习旧知识进行“热身”。由于学生已经掌握了2和5倍数的特征,知道只要看一个数的个位就能判断一个数是不是2或5的倍数,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来,尽管是负迁移。实际上,鲜明的冲突让学生发现却不是这样,于是新旧知识间的`矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。

  2、经历过程,授之以渔

  猜想3的倍数特征是基础,在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想。验证也是有技巧的,30以内即可发现3的倍数中,个位上可能是10个数字中的任何一个,之前的判断已经站不住脚。之后继续探究,在100以内,基本可以发现规律,但为了严谨,必须跳出百数表,在100以上的数中去验证这个规律。最后,引导学生理解这个结论背后的原理,为什么它的规律和之前的规律不一样?这样一来,学生不仅学会本节课知识,更掌握了科学的探究方法。

  3、追求本真,知其所以然

  本节课的目标定位上,我考虑到学生的已有认知基础,我决定引导学生探索3的倍数的特征背后的道理。这一尝试建立在我对学生学情把握的基础上,因为3的倍数的特征的结论一但得出,运用起来没有难度,后面的练习往往成了“休闲时间”,而进一步提升探索难度,无疑是开发思维的良好契机。我运用数形结合的方法逐步深入,最后还是把话语权留给学生,这样就给予不同学生各自适应的个性化学习方略,真正做到了让每位同学在数学上都得到发展。

《3的倍数特征》教学反思14

  站在跳板上学习数学——3的倍数的特征教学反思

  《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展 。

  “3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。但针对这样的环节,也有老师提出反对意见,他们认为教师在教学中不仅要注重知识的正迁移,还要防止负迁移的产生,要能正确地预见学生学习中可能出现的错误,采取适当措施,防患于未然,达到所谓“防微杜渐”的目的;他们满足于学生的一路凯歌,陶醉于学生的尽善尽美,视学生的差错为洪水猛兽。但是课堂就是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。正式因为如此,我们的.新课堂也呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。

  其次,看一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数就是2的倍数,个位是0、5的数就是5的倍数。而3的倍数特征则不然,一个数是不是3的倍数,不能只看个位,而要看它所有所有数位上的数的和是不是3的倍数。在教学中,我和大多数的教师一样,更多的是关注两者的不同,注重让学生对两种特征进行区分,因此,教学中往往刻意对比强化,凸显这种差异。但这样的处理很明显在数论的角度上割裂了两者的共同点。实际上教师在引导学生发现3的倍数的独特特征的同时,也应该注意引导学生归纳2、3、5倍数特征的共同点。别小看这寥寥数言的引导,实质它蕴藏着深意。因为从数论角度讲一个数能否被2、3、5乃至被其它数整除,其研究的理论基础是一样的:即如果各个数位上的数被某数除,所得的余数的和能够被某数整除,那么这个数也一定能被某数整除。当然,小学生由于知识和思维特点的限制,还不可能从数论的高度去建构与理解。但是,这并不意味着教师不可以作相应的渗透。事实上,正是由于有了教师看似无心实则有意的点拨:“其实3的倍数特征与2、5的倍数特征其实有一点还是很像的,不知同学们注意到没有?”学生才可能从2、3、5倍数特征孤立、割裂、甚至是相互对立的表象中跳离出来,朦胧地感受到这三者之间的联系:2、3、5倍数特征可以看作是一样的,都是看它是不是谁的倍数,只不过判断一个数是不是2、5的倍数,只需看这个数的个位是不是2、5的倍数,而判断一个数是不是3的倍数就要看它所有数位的和是不是3的倍数。

《3的倍数特征》教学反思15

  今天我教学了3的倍数的特征,我首先复习2、5的倍数的特征,然后我出示了几个不同的四位数,问生:谁能很快判断出哪些是3的倍数?想知道有什么窍门吗?这们引入课题很顺当,学生也很有兴趣。下面,我先让学生写出50以内3的倍数,再观察:3的倍数有什么特点?学生一时很难发现,仍从个位上的数去观察,但马上被其他同学否定,当时我心里有点担心怎么看不来呢?,我启发学生再看看个位和十位上的数,通过交流后,在部分学生马上发现把每个数的.数字加起来的和除以3都是正好除的,我让学生用这个发现对书上第76页的表格100以内的数进行验证一下,学生验证后我又让学生从100以外的数来验证。从而得出了3的倍数的特征。再通过用1、2、6可以写成哪些三位数?这些三位数是3的倍数吗?由此有什么发现?让学生进一步明白3的倍数跟数字的位置没有关系,只跟各位上数的和有关系。这样学生在完成想想做做第5题时学生思考时就不会漏写了。最后,通过后面的练习,我觉得在教学某些知识时,最好老师不要轻易下结论,只有让他们自己在反复实践中自己得出结论,才能牢固地掌握知识。

【《3的倍数特征》教学反思】相关文章:

《3的倍数的特征》教学反思02-11

3的倍数的特征教学反思06-10

3的倍数的特征教学反思02-11

倍数的特征教学反思04-21

《3的倍数的特征》教学反思 15篇04-11

3的倍数特征教学反思15篇04-07

25的倍数特征教学反思02-19

《3的倍数的特征》教案02-27

《3的倍数的特征》教案07-01