数学分数除法的教学反思

时间:2024-09-20 22:48:04 教学反思 我要投稿

数学分数除法的教学反思

  身为一名人民教师,我们要在课堂教学中快速成长,写教学反思能总结我们的教学经验,教学反思应该怎么写才好呢?下面是小编整理的数学分数除法的教学反思,仅供参考,欢迎大家阅读。

数学分数除法的教学反思

数学分数除法的教学反思1

  分数除法应用题,历来都是教学中的难点。要突破这个难点,让学生透彻理解这类型的应用题,就要抓住乘除法之间的内在联系,通过运用转化、对比,使学生了解这类分数应用题特征,再借助线段图,分析题中的数量关系,找出解题规律。我主要从以下几个方面入手:

  一、走进生活,体验生活中的数学

  本来人体的机体构造对于小学生来说是一个很有趣的问题。教学一开始我把人体的`彩图展现在学生面前,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。使学生从中了解到更多有关人体构造的知识,增加了学生的知识面。

  二、使学生在学习过程中真正成为学习的主人

  教学中,为让学生认识解答分数除法应用题的关键是什么,我故意用乘法应用题与例题作比较,让学生从中发现与乘法应用题的区别。学生通过交流对比,亲自感受它们的异同,找出它们的内在联系与区别,亲身感受应用题中数量之间的关系,然后想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键也是从题目的关键句找出数量之间的相等关系,再列出方程。

  三、方法多样化,开拓学生的思维能力

  在解答应用题的时候,我鼓励学生尽可能地找出多种方法,让学生从多角度去考虑,这样做可以拓展学生思维,引导学生懂得多角度分析问题,解决问题。充分让学生亲身体验,让学生在探究中加深对分数除法应用题数量关系及解法的理解,提高能力,为学生进入深层次的学习做好充分的准备。

数学分数除法的教学反思2

  《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。分数除法简单应用题教学是整个小学阶段应用题教学的重、难点之一,如何激发学生主动积极地参与学习的全过程,力戒传统教学中烦琐的分析和教条的死记,引导学生正确理解分数除法应用题的数量。我作了以下的一些教学尝试:

  一、从生活入手学数学。

  一开始,我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。

  二、关注过程,让学生获得亲身体验。

  为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

  在教学中努力体现“自主、合作、探究”的学习方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨的.逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。

  三、多角度分析问题,提高能力。

  在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  在整个教学过程中,我是以学生学习的组织者,帮助者,促进者出现在他们的面前。这样不仅充分发挥学生的自主潜能,培养学生的探索能力,而且激发学生的学习兴趣。学生学的轻松,教师教的快乐。

数学分数除法的教学反思3

  分数除法简单应用题教学是整个小学阶段应用题教学的重、难点之一,如何激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量关系。

  一、从生活入手进行教学。

  数学来源于生活,教学要从学生的生活经验和已有的知识背景出发,给他们提供充分的从事数学活动和交流的机会。在本课教学的一开始,我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目:六年级男生人数是全班人数的二分之一,男生有27人,六年级有多少人?让学生简单计算。然后再让学生介绍本班的情况,自编类似的应用题,交给另一部分同学解答,引发学生参与教学的积极性,使学生感受到数学就在自已的身边。在生活中学习数学,其乐无穷!

  二、关注过程,让学生获得亲身体验。

  教学中,为让学生认识解答分数除法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。

  我在教学中努力体现自主、合作、探究的学习方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师在教学中存在偏差。教师往往喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨的逻辑推理,虽分析得头头是道,但容易走两个极端;或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的部分,无为地做深入的、细碎的剖析,这样既浪费了宝贵的课堂时间,又起不到好的效果。教学中我把分数除法应用题与分数乘法应用题结合起来进行教学,让学生通过讨论、交流、对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。教师在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的'主体地位,体现了生本主义的教育思想。

  三、多角度分析问题,提高能力。

  在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如是、占、比、相当于后面就是单位1;知1求几用乘法,知几求1用除法等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  教学中存在的不足之处在于,启发不够到位。教学过程中学生时有答非所问和不知怎样答的情况,如归纳本节课中的应用题特点时,由于没有引导学生分析数量。

数学分数除法的教学反思4

  今天的教学与分数意义的学习在孩子们头脑中产生了强烈的矛盾冲突。前几天的分数都表示谁占谁的几分之几(即分率),可今天求的却是具体数量。特别是例2,虽然运用学具让所有学生参与到知识的探索过程中,但仍旧感觉推进艰难。学生困惑点主要在以下两方面:

  1、为什么把3块月饼看作单位“1”,平均分成4份,取其中1份不是1/4?

  2、通过操作,结果明明是将单位“1”平均分成12块,取出其中的3块,为什么不能用3/12块表示呢?

  针对上述两个问题,我在教学中主要采取了以下一些策略:

  1、复习环节巧铺垫。

  在复习导入中增加一道用分数表示阴影部分的练习。其中一幅图是圆的3/4,另一幅图是圆的'3/12。这样,当学生困惑于例题3/4块和3/12块结果时,就能通过直观图,前后呼应,使学生豁然开朗。

  2、审题过程藏玄机。

  在教学例2请学生读题后,首先请学生思考“3块月饼4人平均分,每人能得到一整块月饼吗?”然后用语言暗示“每人分不到一块月饼,那到底能分得一块月饼的几分之几呢?请同学们用圆形纸片代替月饼,实际动手分一分,看看分得多少块?”有了每人分不到一块月饼的提示,又有了“到底能分得一块月饼的几分之几”的暗示,学生探索的落脚点定位到了以一块月饼为单位“1”,且初步理解了问题是求数量“块”而非部分与整体之间的关系。

  通过上述改进措施,学生理解3/4相对容易一些。

数学分数除法的教学反思5

  观察是学生常用的一种学习方法。如在本课得出被除数÷除数=被除数 / 除数时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出:(1)分母能不能为0?(2)用字母如何表示它们的关系?(3)分数是不是就是除法?在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,但遭到同伴的反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用a/b表示出来;在探究“分数是不是就是除数”,学生的'争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数÷除数=被除数 / 除数的关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少??通过争辩,明确分数和除法的各自意义,提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。

  “数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

  一、以解决问题入手,感受分数的价值。

  从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

  二、分数意义的拓展与除法之间关系的理解同步。

  当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

  教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

数学分数除法的教学反思6

  分数除法教学是整个小学阶段应用题教学的重、难点之一。一个数除以分数是在一个数除以整数的基础上,继续学习一个数除以分数的方法。如何推导分数除法的计算方法,有多种方法。例如:利用商不变规律进行推导;利用等式的基本性质进行推导;利用逆运算关系和分数的基本性质进行推导;联系实际问题分析、推导等。

  而教材选用的是最后一种,意在结合具体的情景,通过线段图的'分析,让学生明白算理。而在以前的教学中,我习惯让学生通过大量的例子归纳方法,让学生经历从特殊到一般的归纳过程。所以,在第一次教学时我先让学生计算两组比较简单的算式,并且引导学生对算式进行观察、比较和分析,让学生通过猜想——尝试——验证,发现一个数除以分数和乘这个分数的倒数的结果都相等。然后进行练习,学生学习效果也不错,教学过程一切自然流畅。

  清晰地记得去年教学此内容时,下课后,一个学生问我:“老师,一个数除以分数为什么要乘这个分数的倒数呢?”这句话引起了我的反思。是啊!一个数除以分数的算理还没有讲清楚呢?因为一直以来都是这样教学,只是通过猜想、尝试、验证、归纳一个数除以分数和乘这个分数的倒数的结果相等,也就把计算法则作为一个规定硬性地塞给了孩子,而忽视了算理的教学,这种学生只知其然而不知其所以然。翻阅教材,发现教材是通过画线段图让学生来明白算理,注重的算理的教学,忽视猜想、尝试、验证、归纳这种数学思想的渗透。如何让两者有机的结合起来呢?既能让学生明白算理又让学生渗透这种数学方法呢?

  经过仔细反思之后,今年我在教学此内容时,调整了我的教学过程。我在学生猜想、尝试、验证、归纳出一个数除以分数等于乘这个分数的倒数的结果后,我抛出了这个问题:一个数除以分数为什么要乘以这个数的倒数呢?学生思考,讨论。汇报时学生开始大部分围绕因为结果相等来总结。此时我再结合线段图对学生进行算理的教学,大部分同学们恍然大悟,都露出了灿烂的笑容。孩子们高兴地说分数除法的算理也恰恰证明了我们猜想是正确的。

  从这节课,使我感悟到,计算教学,最省事的教法就是把计算方法和盘托出,直接告诉学生,然后进行大量的训练。可是这样教学,尽管也能让学生熟练掌握算法,但学生只知其然,不知其所以然。为了培养学生的学习能力和探究能力,促进学生的发展,我们应该舍得花时间让学生经历计算方法的探索过程。这也是课程改革理念在计算教学中的具体体现。

数学分数除法的教学反思7

  《分数除法三》是北师大版小学数学第十册第三单元的内容。分数应用题的教学是小学数学教学中的一个重点,也是一个难点。如何激发学生主动积极地参与学习的全过程呢?教学时,我没有采用书上的情境,而是从学生的生活实际引入。《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始我就结合学生的生活实际提出相关的数学问题,例如:我们班有多少女生?有多少男生?女生占全班人数的几分之几?现在知道“全班人数”和“女生占全班人数的几分之几”求女生有多少人,怎样求?学生很快就知道列出乘法算式解决。反过来,知道“女生人数”和“女生占全班人数的几分之几”求全班人数呢?这样引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。

  让学生理解题中的数量关系是解决分数除法应用题的关键。教学中,我通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律,从而让学生体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。本课重点是要让学生学会用方程的方法解决有关的分数问题,体会用方程解决实际问题的重要模型。为了帮助学生理解,我借助线段图的直观功能,引导孩子们理清解题思路,找出数量间的相等关系。

  在学生学会分析数量关系后,我把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。在学生掌握了用方程解决问题的方法后,我又鼓励他们对同一个问题积极寻求多种不同的'解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。教学中,给学生提供探究的平台,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。

数学分数除法的教学反思8

  六年级上学期数学第二单元是“分数除法”,其中第一小节是:“分数除法的意义和计算法则”。在教学上,“分数除法的意义”好办,因为有分数乘法和小数乘法除法的意义做基础,在课堂上,只要按课文编排稍做解释学生就可明白。

  对分数除法计算法则,我对课文编排讲解内容作了一下变动。这一小节有3道例题,分别讲“分数除以整数” 、“整数除以分数” 、 “分数除以分数”。分数除法的计算法则如何得来,如何向学生讲得明白,一直是老师们所苦恼的问题。不讲嘛,似乎是没有完成教学任务,讲吧,即使是老师认为自己讲得很明白,其实学生真正理解吗?我认为,学分数除法的关键是记牢、熟练运用“计算法则”,至于这计算法则是如何得来的,可暂时忽略。我把这3道例题分为两节课讲解。第一课时讲“分数除以整数”,通过例1,“把6/7米铁丝平均分成2段,每段长多少米?”使学生明白,把一个数平均分成2份,既可以用除法“÷2”表示,也可以用乘法“×1/2”表示,也就是说“÷2”=“×1/2”,进而,把一个数平均分成3、4、5……,既可以用÷3、÷4、÷5……表示,也可以用×1/3、1/4、1/5……表示,而1/2是2的倒数、1/3是3的倒数……,从而得出“除以一个数(0除外),等于乘这个数的倒数”。在和学生学习过程中,尽管我用的是课本例1的教学素材,但在教学过程中,我一直有意忽略被除数和除数到底是分数还是整数的问题,只是强调被除数除以除数等于乘除数的倒数。教学完例1,就让学生做相应的练习(强化“除以一个数(0除外),等于乘这个数的倒数”的概念)第二课时,同学生学习例2、例3。课文中例2“一辆车2/5小时行驶18千米,1小时行驶多少千米?”,是详细地讲解了为什么18÷2/5最后可以表达为18×2/5,而我只是根据题意列出18÷2/5后,让学生回想例1的学习过程和分数除法计算法则,让学生自己说出18÷2/5=18×2/5,然后计算得出结果,而省略了中间的讲解过程。接着学习例3“小刚3/10小时走了14/15千米,他1小时走多少千米?”“14/15÷3/10=14/15×3/10”。这两道例题是应用题(但在教材安排中,没有把它放在分数除法应用题范围内),我没有把注意力放在计算法则的推倒过程上,反倒是根据题意为什么这样列式花了些时间。

  3道例题学习完(还包括相当量的练习),用了两节课,学生已经掌握了“甲数除以乙数(0除外)等于甲数乘乙数的倒数”的分数除法计算法则。根据学生情况的'反馈,学生掌握这一小节的知识是扎实的。

  现在我还在想,既然乘法不强调被乘数与乘数,如,一本书5元,买3本要多少元?既可以5×3,又可以3×5,只要结果是15元就算对,(但我坚持认为5×3和 3×5表达的意义是不一样的,不过,现行教材认为结果一样就行)那么,在学生不太明白算理而只掌握计算方法,在教学上应该是允许的。也许我这样做有点离经叛道,不符合现在的教育教学观念,但要求一定要让学生明白所有算理教学才算成功,似有点不太实际。学生(包括成人)很多时候知道要这样做并且做对了,已经是完成学习任务了,又何必强求一定要“知其所以言”呢?

数学分数除法的教学反思9

  《分数除法3》是一步计算的分数除法应用题。分数应用题的教学是小学数学教学中的一个重点,也是一个难点。

  为了突破这个难点,教材鼓励学生用方程解决简单的分数除法问题,这节课的教学重点就是用方程来解决问题。因此教学时,我让学生认真读题,从中获得信息,找出题中的等量关系,让学生理解并掌握解答分数除法应用题的关键是从题中的.关键句找出数量之间的等量关系,根据等量关系式,列出方程,用方程来解决这样的问题,培养学生的方程思想,让学生在自主探索与合作交流的过程中真正理解和掌握用方程解决分数问题的思想和方法。

  解决问题后引导学生进行检验,并对于学生可能出现的不同解法给与肯定,引导学生通过比较、反思,体会用方程解决分数除法应用题的优越性。使学生体会到用方程解决实际问题的重要模式。在练习应用题时,鼓励学生对同一问题寻求多种不同的方法,引导学生学会多角度的分析问题,培养学生的探究能力。

数学分数除法的教学反思10

  本节课是北师大版数学《分数除法》中的第三节课。本节课旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。为此,根据本节课教材的特点,结合学生已有的个体经验,本节课做了如下几个层次的设计:

  第一层次:“分一分”的活动。通过学生动手分饼活动,让学生经过观察、比较与思考,发现整数除以整数与整数除以分数知识间的内在联系,借助图形语言,初步感知体会“除以一个数”与“乘这个数的倒数”之间的关系。这样做不仅为学生创设了一个更好理解分数除法意义的机会,更主要的是教会学生一种学习的方法,即分数除法的意义可联系整数除法的意义进行学习。最后,通过启发性的问话:“观察这一组算式,你有什么发现?”激发学生思考、求知、解答的愿望,为下一步的探究做了很好的铺垫。

  第二层次:“画一画”的活动。在第一层次分饼的基础上分线段,虽然线段图比圆形图更抽象,但学生已有分饼的经验,所以学生根据问题不难列出算式,怎样求出结果就成为这一操作活动要解决的问题。其中(1)(2)小题比较容易,学生从图上可以看出结果,关键是第三小题不容易突破,是本节课教学的.难点。主要是让学生弄清第(2)小题的算理,再将此方法迁移到地(3)小题。

  第三层次:“想一想、填一填”的活动。由于学生有了前面操作的基础,这部分比较大小的题目,他们不难填出答案。但关键是让学生观察、比较、分析,从而发现题目中蕴含的规律。这一活动是学生对前面问题思考过程的整理,对分数除法意义进一步的理解。

  第四层次:实践应用活动。是学生应用所学知识解决实际问题,巩固、内化知识的过程。

数学分数除法的教学反思11

  “分数和除法的关系”主要引导学生探索并理解分数与除法的关系,教材呈现的直观的情境图:把3块饼平均分给4个小朋友,每人分得多少块?分饼的情境,对于五年级的学生来说相当熟悉,不但生活中有,以前的课本知识中也有,生活、学习的经验体会到和以前分饼的问题有相同之处,都是用饼分给一些小朋友,每个小朋友可以分得多少个饼的问题,算式是3÷4=?,有直观的'情境图帮助学生思考,有学生知道这个算式的结果是3/4块。借机可以让全体学生直观地体会结果不满1时可以用分数表示,直观帮助学生初步体会分数与除法的关系。五年级数学下册分数和除法教学反思

  验证“3÷4是否是3/4块,也就是每人分得是3/4块饼吗”是这堂课的难点,操作能帮助学生理解。方法一是一个饼一个饼地分,将第一个饼平均分成4份,每个小朋友分得其中的一份,也就是分得1/4个饼,用同样的方法分别将第二、第三个饼也分,每个小朋友还是分得1/4块饼,三次一共分得3个1/4块饼,合起来是3/4块饼;方法二是三个饼叠在一起分,平均分成4份,每个小朋友分得其中的一份,也就是每人分得3块的1/4,有3个1/4块饼,即3/4块。操作、图像都是直观的不同手段和形式,同样可以帮助学生理解“3/4块饼”得到的过程,形成丰富、准确的表象。

  观察等式3÷4=3/4、3÷5=3/5可以发现分数和除法之间的关系,有了板书的直观支撑,学生很容易知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数的分数线;有了板书的直观支撑,学生很容易知道除法与分数的区别,除法是一种四则运算之一,而分数是一种数,相对于自然数、小数而言的另外一种形式的数。在理解、掌握分数与除法关系的基础上,通过练习让学生进一步沟通分数与除法之间的关系,形成相应的技能。如,先将被除数改写成分子,后将除数改写成分母来的比较简单,且不容易出错等等。板书是可以一直留在学生视线中的直观媒体,便于学生反复观察、比较,可以帮助学生获得相应的结论。

  情境图、动手操作、直观演示、板书这些形式和手段,可以帮助学生直观地理解知识和运用知识。“试一试”是让学生把低级单位的单名数换算成高级单位的单名数,题目:7分米=( )/ ( )米 23分=( )/ ( )。学生交流中有两种思路,一是运用分数的意义来解决问题的,把1米看做单位“1”平均分成10份,7分米是这样的7份,所以7分米=7/ 10米;二是低级单位换算成五年级数学下册分数和除法教学反思高级单位时,用除以进率的方法解决问题,即7÷10=7/10(米)。运用分数的意义和规律准确完成单位之间的换算,学生在思考时是离不开直观的支撑的。直观是学生理解的基础,直观是沟通知识的桥梁。

数学分数除法的教学反思12

  本课的教学重点和难点是让学生理解“为什么除以一个分数,等于乘它的倒数”,否则,会使学生陷入只背结论,不明道理的误区,这样的结果或造成学生出错率高,为了很好的突出重点、突破难点,我创造性地使用了教材,做了如下的设计:

  一、动手操作,增加直观性。

  1、拿出自己准备好的圆形的纸,把它平均分成两份,每份是这张纸的几分之几?怎样计算?结果是多少?学生们通过自己的操作,很快说出了,“1除以2等于二分之一”的正确答案;

  2、问:这半张纸,也就是整张纸的二分之一,那么这张纸里有几个这样的二分之一呢?怎样计算?结果是多少?学生们通过观察和思考,得出了“1除以1/2等于2”的结论。我对学生的`做法进行了肯定和鼓励。

  3、再问:如果把整张纸每1/3一份,又可以分成多少份呢?每四分之一、每五分之一呢?

  学生通过亲自动手操作,很快得出了“1除以1/3等于3,1除以1/4等于4的正确结论”,到了1除以1/5时,根本不用动手折就得出了正确的结论。而且大部分学生都总结了“1除以几分之一,就等于几”规律。看着学生们兴奋的表情,我提出了以下的问题:观察以上的算式河的书,你发现了什么?

  二、观察讨论,形成规律

  学生们通过观察,讨论终于发现了“除以一个分数,等于乘它的倒数”,我又追问:为什么要这样做?大家通过回忆分数的意义,也弄明白了其中的道理。

  这节课的学习,学生们大部分掌握了计算方法,但有个别学生在计算时有除号不变的现象。所以,今后应加强这方面的训练,使学生全部掌握计算方法。在解答方程时也不会出错,提高计算能力和解题能力。

数学分数除法的教学反思13

  分数应用题是六年级下期的内容,它的教学是小学数学教学中的一个重点,也是一个难点。如何激发学生主动积极地参与学习的全过程呢?

  教学时,我没有采用书上的情境,而是从学生的生活实际引入。例如:我们班有多少女生?有多少男生?女生占全班人数的几分之几?现在知道“全班人数”和“女生占全班人数的几分之几”求女生有多少人,怎样求?学生很快就知道列出乘法算式解决。反过来,知道“女生人数”和“女生占全班人数的几分之几”求全班人数呢?这样引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。

  让学生理解题中的数量关系是解决分数除法应用题的关键。教学中,我通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的`联系,想方设法让学生在学习过程中发现规律,从而让学生体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。本课重点是要让学生学会用方程的方法解决有关的分数问题,体会用方程解决实际问题的重要模型。为了帮助学生理解,我借助线段图的直观功能,引导孩子们理清解题思路,找出数量间的相等关系。

  在学生学会分析数量关系后,我把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。

  在学生掌握了用方程解决问题的方法后,我又鼓励他们对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。教学中,给学生提供探究的平台,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。

数学分数除法的教学反思14

  《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。

  在讲这节课之前,本来以为是很简单的一节课,学生在理解分数与除法的关系时也一定会很容易,唯一的难点是用除法的.意义理解分数的意义,我想只要借助实物圆形纸片给学生演示一下,学生就会理解了,但当我讲完这节课后,才发现我的想法太简单了,我把学生想象成理想化的学生了,这部分知识虽然有一部分学生理解了,但仍有一部分学生在用除法的意义理解分数还很困难。在这节课的教学中,我觉得有以下几方面值得我去思考:

  一,在学生用除法的意义理解分数的意义时, 能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

  二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学“把3张饼平均分给4个同学,每个同学应分多少张饼?”时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

  三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

  四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。

数学分数除法的教学反思15

  一、教学内容:分数与除法,教材第65、66页例1和例2

  二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。

  2.使学生掌握分数与除法的关系。

  三、重点难点:1.理解、归纳分数与除法的关系。

  2.用除法的意义理解分数的意义。

  四、教具准备:圆片、多媒体课件。

  五、教学过程

  (一)复习

  把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

  (二)导入

  (2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)

  (三)教学实施

  1.学习教材第65 页的例1 。

  (1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

  (2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

  通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。

  ( 3)指名让学生把思路告诉大家。

  就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。

  老师根据学生回答。(板书:1 ÷ 3 =块)

  (4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?

  通过这样的练习,为下面的操作打下基础。

  2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

  3.学习例2 。

  ( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。

  老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

  通过演示发现学生有两种分法。

  方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个,3 个饼共得到12个, 平均分给4 个学生。每个学生分得3个,合在一起是块饼。

  方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。

  讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

  两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。

  ( 3 )加深理解。(课件演示)

  老师:块饼表示什么意思:

  ①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。

  ②把3块饼叠在一块分,分了一次,每人分得3块,就是块。

  现在不看单位名称,再来说说表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)

  ( 4 )巩固理解

  ① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=(块)

  ②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

  ③从刚才的研究分析,你能直接计算7÷9的结果吗?()

  借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

  4.归纳分数与除法的关系。

  ( l )观察讨论。

  请学生观察1÷3 = (块)3÷4 =(块)讨论除法和分数有怎样的关系?

  学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

  用文字表示是:被除数÷除数=

  老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

  ( 2 )思考。

  在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

  ( 3 )用字母表示分数与除法的关系。

  老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

  老师依据学生的总结板书:a÷b = (b≠0)

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

  5.巩固练习:

  (1)口答:

  ①7÷13= =( )÷( ) ( )÷24= 9÷9= 0.5÷3= n÷m=(m≠0)

  ②1米的等于3米的( )

  ③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。

  解释0.5÷3= 是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

  (2)明辨是非

  ①一堆苹果分成10份,每份是这堆苹果的 ( )

  ②1米的与3米的一样长。( )

  ③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。( )

  ④把45个作业本平均分给15个同学,每个同学分得45本的 。()(3)动脑筋想一想

  ①把一个4平方米的`圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  ②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

  教学反思:

  教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。

  设计意图:

  1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

  2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。

  3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

【数学分数除法的教学反思】相关文章:

小学《分数与除法》数学教学反思02-27

小学数学《分数与除法》教学反思12-10

分数与除法教学反思02-06

分数除法的教学反思10-11

分数除法教学反思03-27

《分数除法》教学反思02-15

分数与除法的教学反思03-25

分数与除法教学反思07-16

分数除法教学反思06-08