圆的面积教学反思

时间:2023-07-11 07:53:16 教学反思 我要投稿

圆的面积教学反思(精品)

  作为一名到岗不久的老师,课堂教学是我们的工作之一,对学到的教学技巧,我们可以记录在教学反思中,教学反思我们应该怎么写呢?下面是小编为大家整理的圆的面积教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

圆的面积教学反思(精品)

  圆的面积教学反思 篇1

  一、教材内容分析

  人教版六年级上册《圆的面积》这部分内容是平面几何的最后阶,(教材67——68页)它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实践几何转入论证几何作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解并掌握公式的应用,为今后进一步学习打下基础。

  二、学情分析

  六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的了解,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,要结合操作演示,让学生在学习圆面积公式的推导过程中,激发学生的学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程,并且能应用公式解决一些生活实际问题。

  三、教学目标知识与技能

  1,让学生利用已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。

  过程与方法1,引导学生经过“感知——动脑——观察——合作探究”等系列活动.逐步培养学生的抽象思维能力。

  2,通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索。情感态度与价值观

  让学生在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生领会图形转化的神奇和魅力。

  四、教学策略选择与设计

  1、注重情境创设,有意识地激发学生学习知识的兴趣 :数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的.兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。

  2、注重实践操作,有意识地培养学生获取知识的能力 :学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既打通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。

  3、注重学法指导,有意识地引导学生应用转化的方法 :本节课中,在求圆面积公式时,不是教师灌输式地教会学生S=πr2,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现圆的面积公式的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。

  4、注重教具和学具的应用,有意识地突破学生学习知识的难点 利用圆的面积这一节的教学用具辅助课堂教学,有其直观、形象而又生动的特点,它能使抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用教学用具和

  教材学具,充分调动了学生的学习兴趣,提高了课堂教学的效率。

  五、教学准备

  教学用具,圆形卡片学具

  六、教学过程

  关键词:情境教具 学具准备 操作 转化 推导 猜测观察讨论 运用交流

  一、创设情境,揭示课题

  1,创设情境

  学校的花坛的半径为10米,我们能求出它的面积吗?

  2,揭示课题

  为了解决这个问题这节课我们一起学习“圆的面积”好不好?

  板书:圆的面积

  3,说一说

  师:我们以前学过哪些平面图形的面积计算公式,把你知道的说出来与大家交流一下?

  生答: 师:同学们回答得很好,今天我们就用以前我们已经掌握的数学知识来算一算圆的面积。

  二、动手操作,实践探究

  1,引导学生回忆之前学过平行四边形、三角形和梯形面积公式的推导方法

  2、动手操作,尝试转化

  1),看老师手上拿的是什么?(圆)什么叫圆的面积?能不能把圆转化成学过的图形来计算它的面积呢?

  2),如果把圆平分成8等份、16等份,那请你们拿出自己动手剪开后的学具,用这些近似的等腰三角形小纸片拼一拼,看能拼成什么图形。教师巡视指导

  3),用教具演示,把圆平分成16份,让学生观察圆面积的“转化”。(圆近似成了长方形)

  4)、通过上面的操作,你们知道圆的面积公式推导采用的是什么方法吗?从上面的操作你得到了什么结论?

  3、探究联系,推导公式

  现在来看拼成的长方形面积与圆的面积有什么联系?长方形的长和宽与圆的周长和半径有什么关系呢?

  1),猜测,再一次观察老师的示范

  2),学生小组合作操作,每一组学生回答,并展示自己拼成的作品

  3),小组讨论得出结论:圆的面积采用的是“化曲为直”的“转化”法。如果把圆平分的份数越多,每一份分得就会越小,拼成的图形就越接近长方形。

  4),小组讨论总结出:拼成的长方形面积和圆的面积相等,长方形的长相当于圆的周长的一半,宽相当于半径。

  5),观察,小组讨论得出公式:(板书)

  长方形的面积 = 长 × 宽

  圆的面积 = 周长的一半 × 半 径

  S =πr ×r = πr2

  三、运用公式,解决问题

  1、下面我们就应用圆的面积公式来解决一些生活的实际问题。出练习让学生做,巩固所学知识

  2、再次出示上课前提出的情境题,让学生独立完成,再帮助学生订正 学生独立运用所学知识解答,加深对概念的理解,全班汇报交流 运用所学的知识,解决现实中的实际问题,既能达到巩固的作用,又能让学生体会到数学的应用价值。使学生加深对知识的正确认识,掌握了圆的面积计算方法。

  四、课堂小结

  (一)组织交流

  回顾一下这节课我们学习的内容。

  (1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (二)总结

  平面图形的面积公式推导,一般都用到“转化法”这种数学思想。圆的面积公式,在我们的生活中运用非常广泛,如计算:环形面积、圆形花坛的面积、麦田自动喷灌的面积、树干的横截面积、圆形蒙古包的面积、圆形凉亭的面积、

  圆形饭桌的面积、水桶底面积、圆锥沙堆的底面积等都用到圆的面积计算公式,希望大家多留意观察身边周围的事情,去发现和提出问题,再应用所学的知识去解决它,这样你的学习成绩会大有进步的!

  七,板书设计圆的面积(1) 长方形的积 = 长 × 宽

  圆的面积 = 周长的一半×半 径

  S = πr×r = πr2 八、教学评价设计

  在本节课的教学中,我在教学评价这一环节力争做到:(一)在探究新知的过程中注重对学生数学学习过程的评价;(二)在复习旧知识时恰当评价学生的基础知识和基本技能;(三)在运用旧知识时重视评价学生发现问题、解决问题的能力。

  《圆的面积》教学反思

  蕲春县第四实验小学 何国栋 在本节课的教学中,我在教学和设计中充分利用数学和生活的联系,在教学和设计中大胆运用以下环节:1,既然数学源于生活,那么选择学生熟悉的生活场景,使学生感受到所研究的数学知识就在生活中的广泛应用,直观地唤起其已有的知识经验,激发其学习的兴趣,又为新知识的学习做好了准备。 2,启发学生归纳出平面图形的面积公式推导方法,是采用 “割补法”、“旋转平移法”等数学“转化”的思想方法,让学生建立空间概念。 3,注重学生动手操作,让学生在探究中发现知识、理解知识、掌握知识,体现了以学生为主体的思想。尤其是让学生自己“剪”、“拼”,进一步使学生感知圆的边缘是曲线,拼成的图形边缘接近直线。体现了让学生在自我探索、自我发现中获取知识的新理念,这样跟进一步运用学生原有的学习经验,让学生运用转化的思想,把问题化归到原有的知识体系中;利用学生的实践活动,让学生经历知识的形成过程,进而找到推导圆面积公式的方法,获得积极的情感体验;培养学生的探索意识、合作意识及创新意识,引导和帮助学生成为发现者、研究者和探索者,让每个学生各方面

  圆的面积教学反思 篇2

  圆的面积是学生在初步认识了圆,学习了圆的周长,以及在认识了几种平面图形面积的基础上进行教学的。圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  一、情境的引入,激发兴趣。

  课的开始,我运用两只羊争吵的情境(一只在长方形羊圈里,另一只系在木桩上),比较长方形和圆的面积,既复习了长方形的面积,也激发了学生探究圆的面积的兴趣。

  二、探究的方法,孰优孰劣。

  在探究圆的面积的这一-环节,教材上,先用数方格的方法得出圆的面积是多少,并让学生填好表格,以期发现圆的面积与半径的关系。这部分内容的教学旨在激活学生己有的经验,数出圆的面积,教材表格中却给出了正方形的面积,以及圆的面积大约是正方形面积的几倍。我认为这有些强拉着学生走,并不真正出于学生内在的探究需求。因此,在课的开始,我把这部分内容暂且放着。

  在五年级上册,学生们已经学过用数方格的方法来探究像手掌、树叶等曲线图形的面积;还探索过平行四边形、三角形、梯形的面积。根据这些已有的经验,学生自己可以提出探究圆的面积的两种方法。在发现用数方格的方法的局限性后,重点研究如何用转化的`方法探究圆的面积。

  三、探究的过程,自主操作。

  这部分内容的教学,考虑到了学生的现实认知水平,先让学生在自主探索、实践操作、合作交流中找到转化的方法,在此基础上,借助课件,使学生合乎情理地认识到:平均分的份数越多,就越接近长方形,有机渗透了极限的思想,体会了“化圆为方、化曲为直”的转化过程。接着让学生根据提示探索圆的面积的计算公式。

  这节课也存在以下不足:

  一、转化结果单一

  课堂上学生将圆转化为已经学过的平面图形结果单一,只出现了平行四边形。虽然在课的最后以课件的形式出示了三角形和梯形,但这并不能代替学生自己的发现和思考。我想原因有三个:一是我在课上提示了剪,强调了拼,禁锢了学生的思维,使学生想不到直间转化成求多个三角形面积和的方法;而怎么剪对学生来说就是有难度的;二是拼成梯形和三角形是有一定的条件的,要平均分成一定的份数才有可能拼成,三是课上留给学生的时间有限,学生在这么短的时间里完成剪、拼不同的图形是很难的,而留给学生更多的时间又是不现实的。

  二、缺少思维的碰撞

  我觉得操作探究部分,我有点操之过急。尤其是推导圆的面积公式部分,更多的是通过自己的课件操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,多进行生生、师生之间的有效交流,让使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。

  我个人认为这一章是整册书教学的难点,学生在作业和考试当中反应出了如下一些问题:

  1、搞不清楚一个圆中直径和半径的关系,主要体现在看到圆的半径或者直径,不能很快求出该圆的直径或者半径。此外,看到圆的直径或者半径,不能很好的算出圆的周长、面积。

  2、知道一个圆的周长,不能很好的求出圆的直径或者半径。对计算一个小数除以3。14,感觉有点束手无策的味道。

  3、不能清楚的求出圆的周长或者面积,往往答非所问,要求面积,他要去算周长,要求周长,他又算成了面积。单位也往往把面积单位和长度单位搞混淆,这也算是部分学生出错的原因。

  4、对于学生来说,最难的是组合图形面积、周长、阴影部分的。相关计算,还有半圆有关的计算都是学生在计算中经常忽略的问题,总是按一个圆的来计算。计算当中,很多学生对半径的平方也是常常出错,对一个数和3。14的乘积,总是会把小数点搞错。

  圆的面积教学反思 篇3

 

  圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  透过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,透过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。

  一、感受圆的周长与面积的不一样

  本课开始,我先让学生比较圆的周长与圆的面积有什么不一样,之后结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下方探究圆的面积计算的方法奠定基础。

  二、学具演示,激发探究

  透过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。此刻回想起来,我不就应一上来就问如何计算圆的面积,而就应先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自我手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的`宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自我制作的学具操作起来很不方便,既耽误时光,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索潜力、分析问题和解决问题的潜力得到了提高。但值得反思的是,我总是抱着一节课就应解决一个知识点的想法,所以为了赶时光,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时光,这是我今后课堂教学就应个性注意的地方。

  三、分层练习,体验运用价值

  结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不一样的层应对学生的学习状况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用。在每一道练习题的设置上,都有不一样的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。

  在这一节课中,我总觉得操作学具时光短,我有点操之过急,只是让学生草草地操作,更多的是透过自我的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,就应给学生足够的思考空间和探索时光,使学生的思维的能动性和创造性得到充分激发,探索潜力、分析问题和解决同题的潜力得到充分提高。另外,在细节的设计还要精心安排。

  圆的面积教学反思 篇4

  圆的面积是人教版六年级数学教学的重要内容,在学习圆的周长时,学生已经有了“化曲为直”的初步思想与体验。虽然学生对极限思想理解不够具体。但不管曲线化直线是否够直,其实并不影响近似长方形的长与圆周长的.关系。理解了这点,学生通过“剪拼议”在老师引导和学生引导下,能够接受长方形长等于圆周长一半,宽等于圆的半径,长方形面积等于长乘宽,所以,圆的面积等于π乘半径的平方。

  虽然解决了教学重难点,完成了教学目标。但从一个例题,学生仅仅了解了转化思想。但远远达不到对转化思想的理解运用。如何利用好课本知识,学习致用。在备课时,我刻意增加了把圆拼成近似三角形,近似梯形,课堂上,在把圆拼成近似长方形,推导出圆面积公式,完成教学任务后,我提出既然可以运用转化思想,化曲为直。把没学过的知识点转化成学过的知识点,利用已有知识解决。那么我们能不能转化成其他已学过的图形呢?学生气氛活跃,经过拼图,很快拼成了近似三角形,近似梯形。但剪拼以后,应该怎么办?学生普遍陷入困惑,没有思路。这时,我注意开始启发学生。我们转化图形以后,怎样建立新旧图形之间的联系,需要从基本条件开始,那么,需要怎么找新旧图形之间的联系,从哪些条件着手。学生受到启发,很快从底,高,与三角形的联系推导出了圆面积公式。不仅如此,学生还趁热打铁,从长度,长,宽,高,周长,到面积推导出了各个量之间的联系。学生兴奋地说,知道了以后转化图形以后,怎么找条件之间的联系了,也知道找的顺序,从长度到面积,从面积到体积。新旧图形之间的联系应该是方方面面的,

  一节课,用心探究,用心准备,不但能解决知识目标,更能拓展学生能力。从鱼到渔,条条大路通罗马,全面提高学生数学素养与探究能力。

  圆的面积教学反思 篇5

  本课是在学习的圆的初步认识和圆的周长的基础上进行教学的,教学重点是理解圆面积的推导过程。

  圆面积公式推导过程中隐含着一种重要的“转化”与“极限”数学思想方法。教学时我先让学生根据方格图大胆地猜想出圆面积的范围。之后在教师的启发引导下,通过学生的动手操作、观察、发现拼成的近似长方形的长和宽与圆的什么有关,从而推导出圆的面积,使学生获得用转化法可以求出圆的.面积,体现一种“化圆为方”、“化未知为已知”的转化思想。在此基础上让学生通过讨论、操作、探究得出圆面积的计算。这一过程的设计正体现了新课标所倡导的三维教学目标,由重结论向重过程转变。不仅重视学生数学知识的获得,更重视数学思想和数学方法的形成,使学生学得更有趣,更有价值。

  教学中主要通过回忆、迁移、动手操作、自主探索,最后课件清晰演示加以辅助,理解圆面积公式的推导过程,从而突破本课的重难点。

【圆的面积教学反思】相关文章:

《圆的面积》教学反思03-29

圆的面积教学反思06-21

圆的面积教学反思06-22

圆的面积教学设计及反思04-19

圆的面积教学反思优秀02-05

《圆的面积》教学设计与反思02-17

《圆的面积》教学反思 15篇04-14

圆的面积教学反思(15篇)03-25

圆的面积教学反思13篇02-11