分数的基本性质教学反思
作为一位刚到岗的教师,我们要有一流的课堂教学能力,教学的心得体会可以总结在教学反思中,教学反思应该怎么写才好呢?下面是小编收集整理的分数的基本性质教学反思,仅供参考,希望能够帮助到大家。
分数的基本性质教学反思1
“分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮忙,所以,分数的基本性质是本单元的教学重点之一。反思本节课,我认为以下几点做得较成功:
(1)新课的引入新颖,一上课,先听一段故事,学生十分乐意,并立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。透过故事设疑,激起了学生探求新知的欲望。新课的教学扎实,重视了学生获取知识的思维过程。紧紧围绕教学重点,透过学生一系列的活动,获得丰富的感性知识,在此基础上进行抽象概括,使学生深刻理解分数的基本性质。教师环环紧扣的提问以及引导学生逐步展开的充分的讨论,帮忙学生一步步得出结论。
(2)重视学生潜力的.培养,知识力求让学生主动探索,逐步获取。在教学中,教师为学生带给了自主探索的机会,透过让学生动手、动口、动脑,充分参与教学活动,培养了学生的抽象概括潜力、动手操作潜力和口头表达潜力,充分体现学生的主体作用。
(3)课堂练习形式多样,有层次,有梯度,目的性、针对性较强,到达了巩固知识、培养技能、激发兴趣、发展思维的目的。
本节课出现的问题也很多:
首先,在折纸交流环节学生们参与率并不高,好多学生尤其是后进生普遍是无从下手,在交流时也不主动,很多学生还停留在一知半解的状态。
其次,在构成性质过程中,对分数基本性质与分数除法的关系,商不变的性质等进行了整合,只有部分学生了解,没有深入到全班。
还有,“把每一份平均分成几份”这句话描述不够清晰,学生理解有困难,能够在课件中完善。
分数的基本性质教学反思2
分数的基本性质是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的,分数的基本性质在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。
这节课我大胆利用““猜想——验证——反思””的教学方法,留给学生足够的探索时间和广阔的.思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题。鉴于以上思考,我在本节课的教学设计上努力做到以下几点:
1、充分发挥学生主体作用,引导学生自主探究。放手让学生操作、观察、比较,验证自己的猜想。课前老师给每位学生发了一个大小相等的圆,但圆被平均分的份数不相同,有2份、3份、4份、5份、6份、7份、8份、9份、12份、16份。要求学生自己任意图上颜色,并用分数表示,然后通过“找朋友”的游戏让学生直观地认识两个分数的分子分母不同,但实际表示的大小却是一样的,进而让学生初步发现分数的基本性质。接着让学生通过举例来验证自己的猜想是否正确,从而培养学生的动手能力,以及观察问题解决问题的能力。
2、运用知识,解决实际问题。为了把知识转化为能力,练习题的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。学完例2以后,马上结合知识点进行反馈练习,加深对这个过程的理解。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。
3、0除外的环节设计是本节课的亮点,在学生根据三个分数归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外。突破难点。
分数的基本性质教学反思3
“分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,它是本单元的教学重点课时,是在学生已掌握了商不变的性质以及分数与除法的关系基础上进行教学,以下两点是我在教学后的.思考:
1、创设情境,通过讲电视剧《西游记》中的小故事的方式引出,激发学生的学习兴趣。 运用情景引入和猜测的方式吸引学生主动参与学习研究。
2、发挥学生主体作用,引导学生自主探究。放手让学生操作、观察、比较。发挥小组合作的作用,分析等式含有的规律.但在具体操作时我的引导不够到位,指向不够明确,学生显得有些拘谨,没放开。整堂课中老师还是有牵着学生走的现象。
分数的基本性质教学反思4
今天我和同学们一起学习了分数的基本性质一课,总体来说,学生掌握的还不错,我在课堂中注重了以下几个方面的教学:
一、敢于并善于放手让学生自主合作获取知识
1、分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察、演示过程中,十分重视学生主动参与,多次组织小组讨论,让每个成员都能充分发表自己的看法,相互交流、相互启迪,以感知分数的分母、分子是按一定的规律变化而分数大小不变,体现了理解与掌握数与数之间联系变化的观点。
2、在推导规律的过程中,抓住分数的分子、分母按怎样的规律变化而分数大小不变这一点,通过动手操作、实践,引导学生自己去发现、证实并归纳:分数的分子分母同时乘以或除以一个相同的数(零除外),分数的`大小不变。在这关键处,教师又进一步发动全班讨论,把问题引向纵深,既重视学生自主参与,相互合作的发挥,又有利于学生展现自己知识的建构过程,不仅知其结果,而且更了解自己得出结果的过程和先决条件,促进知识与能力的同步发展。
二、教师的主导作用与学生主体参与相结合
1、我认为教师的主导作用在于点拨,启发引导与情感语言激励,使学生主动参与学习,积极进行探讨研究、揭示规律、运用规律,放手让学生运用知识,自主获取知识,因而在融洽的师生关系中实现了教学目标。
2、恰到好处地运用电脑等媒体演示,做到数形结合,声情并茂,激发学生兴趣,同时通过电脑演示,化静为动,充分展现知识形成的过程,给课堂教学增添了无穷的魅力,使学生保持旺盛的学习兴趣,提高归纳推理能力,培养学生学习的主动性和创新性。
三、练习设计目的明确,形式新颖,既实又活
电脑新技术的应用,代替了繁琐的纸笔计算,使学生能把精力集中到理解数学、探讨数学和运用数学上去。教者针对学生的好奇、好动、好胜的特点,发挥媒体的声音、视频、动画、图像等信息的作用,采用了人机交互的问答练习方式与及时有效的反馈融为一体。在激发学生兴趣的同时,突出重点、分散难点,并且扩大了练习的范围与容量,学生参与其中,其乐融融,使学生在“玩”中学习数学,掌握并运用数学。
但在今后分数的基本性质的应用中还需大量的练习,让学生在练习中更加熟练的应用所学知识!
分数的基本性质教学反思5
在教学“分数的基本性质”时,我力图让学生在开放、愉悦、和谐的氛围中参与学习。
一、创设情境,激发兴趣。
“知之者不如好知者,好知者不如乐知者。”爱因斯坦说:“兴趣是最好的老师。”小学生天生具有好奇好胜的心理特征,而这些特征往往是学生对数学产生兴趣的导火线。在本案例中,通过创设猫妈妈分绳子的教学情景,一下子吸引了学生的注意力,使学生急于要帮小红猫排疑解惑,促使学生动脑想,动手操作,达到了激发学生积极参与学习活动的目的。
二、营造氛围,合作探究。
《新课程标准》中指出:学生是学习的主人,教师是学习的组织者、引导者。在教学中要最大限度地启发学生积极参与教学实践活动的过程,注重问题的探索性,留给学生充分的思维空间,让他们自己去发现、去探索知识。在案例中,通过猫妈妈分绳子,小花猫说猫妈妈偏心眼。这时让学生来当裁判,你认为小花猫的话对不对,你准备怎样来着手研究它?这时学生的好胜心被激活了,有的迫不及待的说,有的一声不吭地动手实验着,后来通过学生的实验有力地证实了小花猫的话是错的。就这样把抽象的数学知识贯穿于故事情节中,使学生随着情节的推进一步步探究知识的生成过程,学得趣味盎然,意犹未尽。
三、轻松练习,发展能力。
根据小学生好奇、好胜、好动、注意力集中时间短的心理特点,为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习积极性。因此,在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面可以集中学生的注意力,另一方面也可以放松学生的.心情,让他们在轻松愉快的氛围里学习知识,同时也应注重练习的层次性、趣味性与开放性。在本案例中设计了:①有探究结束后的数学诊所,②有新课中的尝试性练习,③更有智力大挑战部分的必答题、抢答题、竞赛题以及游戏活动。学生在形式多样的练习中表现出了极大的兴趣,相互督促、相互补充、相互竞争,较好地把独立思考与合作交流结合起来,尤其是获得优胜组的那些同学个个脸上洋溢出胜利的喜悦,增强了团队精神和合作意识。
总之,在设计教案时要为学生提供充分自主探求的空间,把探索、发现知识的权利还给学生,让学生亲身体验数学知识的形成过程,让数学课堂教学成为焕发小学生生命活动的殿堂!
分数的基本性质教学反思6
分数的基本性质教学反思
分数的基本性质一课是本册教材第四单元的一个资料。这部资料是学生在学习了分数的好处、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律我觉得十分的重要。
本节课,我认为探索分数大小不变的规律是难点,运用这个规律来解决一些实际的问题是重点。那么在课堂中如何来体现这两方面,我想用故事来贯穿整个教学过程。
(一)情境的创设。
课的开始,我讲了一个猴妈妈分大饼的故事,(同学们,你们听故事吗,那老师给大家讲一个故事。猴山上的猴子最爱吃猴妈妈做的大饼了。有一天,猴妈妈做了3只大小一样的饼,他把第一只饼平均切成了4块,拿了一块给第一只猴子。第二只猴子看见了说:“妈妈,我要2块,我要2块。”于是,猴妈妈把第2只饼平均切成8块,拿了2块给第二只猴子。第三只猴子更贪,说:“妈妈,我要4块,我要4块。”于是,猴妈妈把第3只饼平均切成16块,拿了4块给第二只猴子。同学们,你们明白哪知猴子分得多吗?)透过分大饼这一故事目的是想创设了一种和谐愉悦的气氛,能激发学生的学习兴趣,更能激起学生探索新知的欲望。在课堂实施中,我发现学生还是爱听故事的,从这个故事中学生也能说出分到的饼的大小是一样的。并能十分流利地说出了每个猴子分到每个饼的1/4,2/8,4/16。之后我提出疑问,既然你们刚才说到三只猴子分到的饼一样多,那就意味着这三个分数的大小是相等的,那我们还没有学过分子和分母不一样的分数的大小比较,你怎样明白这3个分数大小相等呢?就引出了规律的探索的第一步。
(二)、规律的探索。
在故事中学生得出这3个分数大小相同后,为了给学生创设个性化的学习空间,我对学生说你能够根据老师发给你的材料来验证这三个分数的大小,如果你觉得不需要这些材料,那也能够不用。这样的设计我的目的是能够给予学生必须的探究空间,同时也增添活动的趣味性和挑战性。在学生实际操作中我发现,有的学生用3个大小一样的圆、有的用3张大小一样的长方形纸,也有的学生用了分数和除法的关系,运用这个关系的时候还用到了我们以前学过的商不变性质,解决了这3个分数的大小是相等的。因为在这个环节中有学生利用商不变性质来解决了这3个分数的大小,所以在揭示分数的基本性质后也没有再提出和商不变性质的关系。本来当学生透过实践的操作后发现这三个分数的大小是相等后,我追问:猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你能说出一组相等的分数吗?这个追问我的目的是等一下让学生观察规律时,只有一组分数觉得太少了,所以那里让学生再说出一组分数,带给更多的学习材料,以便学生更好的观察。在试教的时候,发现学生观察的时候不是一组一组观察,而是上下观察,所以本节课我就把这个环节做了调整。然后在老师的引导下,学生的独立思考,同桌的合作交流以及全班学生的交流,并
透过老师的板书,很清楚的观察到分子和分母是怎样变化的。因为这个规律只是在这1组分数中得出的,还不能代表这个规律是正确的,因此我提出疑问,是不是所有的分数只要分子和分母同时乘或除以相同的数,分数大小就不变呢?意思是让学生再举出一些例子来验证自己刚才发现的规律是确。听课的老师问我这个环节设计在那里是什么意思,有没有必要,他们感觉那里浪费了很多的时间,以前也听过这一课,当时这位老师是没有让学生去验证自己的发现是不是正确的,之后听课的老师说到就凭一组材料来发现这个规律是不是太少了,是不是就应带给更多的材料让学生去发现。让学生去验证自己的发现。所以这个环节我就抱着试一试的态度去上的,结果发现效果也不是很好,看来这个环节到底怎样上还得研究。最后自己发现的规律和书上的规律进行比较,得出相同的数“零”要除外的,从而完善规律。最后让学生说说这个规律中哪些字十分的'重要,并仔细严读,更加牢固地掌握这条规律。当学生已经理解并掌握这个规律后,尝试让学生去解决生活中一些问题,因此在教学例2前,我出示了我们有2/5的学生参加学校的书法小组,有4/10的学生参加舞蹈小组,哪组参加的人数多?这样设计主要是为例2做铺垫,并让学生感受到化成分母相同而且大小
不变的分数是为以后分数大小的比较做好准备。做例2之前,我更关注的是如何让学生来理解这个题目的意思,让学生明白在做题目之前要先理解题目的意思,在课堂的实施中,发现学生理解的相当透彻。当请一位学生上来做的时候,这位学生直接在2/3的后面乘以4,之后我让学生擦掉,直接写答案,听课的老师说,为什么擦,我也说不出什么理由,但仔细一想,如果学生的这个错误好好的利用,那是十分值得的,因为那里一能够帮忙后进生理解利用分数的基本性质去怎样做,二注意书写的格式。由于比较紧张,也没有多大思考,因此就错过了一次很好的展示机会。最后由于时间比较紧,也没有用这个故事串联起来,本来那里还想问学生一个问题,说说猴妈妈是运用什么规律来满足三只猴子的要求,而且是分的这么公平的呢?如果小猴子要分4块,那候王怎分才公平呢?如果要5块呢?这个其实是思维的拓展,没有好好的利用,十分可惜。所以对后面的练习带来了麻烦。
(三)练习的设计
为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习用心性。在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面能够集中学生的注意力,另一方面也能够放松学生的情绪,让他们在简单愉快的氛围里学习知识,本课中设计了:①填空。3/5=3×()/5×()=9/()
4/()=48/60
7/49=3/()=()/7=
②决定。
①5/25=5÷5=25÷5=5×12=25×12
②12/20=12+2=20+2=14/24
③2/5=2×2/5=4/5
④5/8=5÷5/8×8=1/64
③游戏。老师写一个分数,你能写出和老师相等的分数?你能写几个?写的完吗?在写的时候,你是怎样想的?
④1/a=7/b(a和b是不为0的自然数),当a=1、2、3、4的时候,b分别=?a和b为什么有怎样的关系?为什么有这样的关系呢?
由于时间紧张,因此练习的设计与原先的有所区别,只让学生填了4个很简单的填空,第二个练习是我写了一个分数1/3,比一比在最短的时间里,看哪个同学写的分数多,而且大小相等。在巡视的时候,我看到大部分学生是后一个分数的分子和分母是前一个分数的分子和分母2倍,然后就叫了一个学生回答,也没有肯定这位学生是回答的正确还是错误的,就急着把自己的想法写在黑板上,1/3=2/6=3/9=4/12,让学生说说看,老师写的对吗?因为课堂上的例子都是后一个分数与前一个分数都是2倍,3倍的关系,所以他们都说错了?原因是第3个分数的分子和分母不是第2个分数分子和分母2倍关系。时间紧迫,也没有好好的去利用这题。总之,一节课下来,问题多多,值得反思。
分数的基本性质教学反思7
学习《分数的基本性质》这节课,学生已经学习有了分数的意义、分数与除法的关系、商的变化规律等知识来做基础。同时,这节课的学习是进一步学习约分、通分的基础,而约分和通分又是分数四则运算的重要基础。因此,理解分数大小不变规律就显得尤为重要。
本节课的教学重点是理解和掌握分数的基本性质,难点是应用分数的基本性质解决问题。
1、情境引入,明晰目标。
我首先创设了一个唐僧给猪八戒和沙僧分西瓜的情境,(猪八戒分得它的1/2,沙僧分得它的2/4,结果猪八戒不同意吵了起来,这时,聪明的孙悟空听到了哈哈大笑,而且对他们说了一句话就让他们停止了争吵。你知道孙悟空为什么会笑?他又对他们俩说了什么呢?)通过分西瓜这个故事,激发了学生的学习兴趣,创设了一种强烈的探究氛围,同时也引入新课的学习。
2、动手操作,理解规律。
简单的情境,在个别学生的讲述下,大部分学生能够想象两人的西瓜同样多。为了让学生明白其中的道理,在第二环节,我首先让学生借助手中的正方形纸片先独立的分一分、涂一涂、比一比,发现1/2=2/4=4/8,再与对子交流自己的发现。紧接着我又让学生自己举两个例子,然后再次对子之间交流想法,是否和自己的发现吻合。最后发现“分子分母同时乘或除以相同的数(0除外),分数的`大小不变。”即分数的基本性质。
3、想法共享,共同领悟。
教材中有个想一想:根据分数与除法的关系,你能说明分数的基本性质吗?这个问题对于学生而言有一定难度,它需要前后知识的联系。所以我将这个难点交由个别学生发言,由一个点的“启发”带动全班学生这个面的“领悟”。
分数的基本性质教学反思8
在一年一度的实验老师研讨活动中。我选择了《分数的基本性质》为授课内容。《分数的基本性质》是人教版小学数学五年级下册的内容,它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的。《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一。我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。对这部分内容我是这样设计教学的:
一、迁移引入,沟通新旧知识的联系。
学习分数的基本性质可以利用商不变的性质进行正迁移,所以我在开课伊始板书:“2÷3”,然后故作神秘地说“我能变出一个和它的商一样的除法算式,你能吗?”学生纷纷举起了手,变出了一个又一个除法算式。“它还能变。”根据除法和分数的关系,将这个除法算式写成分数形式,“根据商不变的性质我们可以把一个除法算式变成很多除法算式,那一个分数能不能也变出很多分数呢?”帮助学生意识到商不变规律与新知识的学习具有定的联系,为新知识的学习奠定基础。
二、经历由“猜测——动手操作验证——得出规律”的探究过程。
在本课的学习中,为充分体现学生的主体地位,使之经历学习探究的全过程。我创设了探索场景,让学生首先猜测分数是否也有与除法同样的'性质。接着充分利用直观手段,设计了折纸涂色的操作活动,通过让学生动手操作来发现三个分数之间的相等关系,接着引导学生一起探索这三个分数之间存在的规律,从而把具体的知识条理化,使学生获得具体真切的感受,帮助学生在活动中感悟分数大小相等的算理。归纳得出分数的基本性质,让学生参与学习的全过程,在掌握所学知识的同时获得成功的体验。当总结出规律后找出规律中的关键词“同时”、“相同的数”,再提出为什么这里的相同的数不能为零,并通过商不变性质的性质、分数与除法的关系,使学生全面理解掌握分数的基本性质。在教学中我还注意关注学生的多种思维方式,鼓励学生用自己的语言叙述解决问题的过程,体现了对学生观察能力、动手操作能力、逻辑思维能力和抽象概括能力的培养。
三、运用知识,解决实际问题。
先进行基本练习,深化对分数的基本性质认识,通过应用拓展,使学生加深对分数的基本性质的理解,如游戏:老师写一个分数,你能写出和老师相等的分数?你能写几个?写的完吗?在写的时候,你是怎么想的?并培养学生运用所学的知识解决实际问题的能力。拓展题2/7的分母加上14,要使分数的大小不变,分子应该加上多少。此题不仅能够帮助学生辨析“分数的分子和分母同时加上或减去相同的数,分数的大小不变”此话的真伪,而且能促使学生更加灵活地运用分数的基本性质。在教学中,学生不仅想到2/7=[2+()]/(7+14)=6/21,所以6—2=4的方法,还有部分学生提出更简洁的方法。思路如下:分母加上14,就表示分母增加了7的2倍,扩大到原来的3倍。同理,分子也必须同时增加2倍才能使分子扩大到原来的3倍,从而保持分数值不变,所以分子应该增加2*2=4。创新思维的火花在学生中闪现,体现出他们对知识的掌握更加灵活、对知识的理解更加深刻。
本节课出现的问题也很多,如在进行分数的基本性质与商不变的规律的沟通联系时,只是对照两句性质进行,没有举出具体的例子。如果能让学生多举一些例子,归纳方法从“特殊”到“一般”推进从而得出结论,就使得结论的得来更科学。
分数的基本性质教学反思9
在本次教学活动中,我选择了《分数的基本性质》作为授课内容。这一内容是小学五年级下册数学课程的一部分,通过学习《分数的基本性质》,学生可以更深入地理解分数的概念,并掌握约分、通分的方法。同时,这也为他们今后学习比的基本性质打下了基础。因此,《分数的基本性质》在分数教学中具有重要意义,是本单元的重点内容之一。在设计这节课时,我采用了“猜想和验证”的教学方法,让学生有充分的探索时间和思维空间,培养他们独立思考和解决问题的能力。通过这样的教学设计,我希望激发学生的学习兴趣,让他们不仅掌握数学知识,更重要的是掌握学习方法,从而培养他们的自主学习能力,促使他们产生“我能学会”的成就感。
一、迁移引入,沟通新旧知识的联系。
学习分数的基本性质可以利用商不变的性质进行正迁移,所以我在开课伊始出示课件:120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?学生纷纷回答商是4,我故作神秘地说“这几个算式都不相同,为什么它们的商是一样的呢?大家回忆一下,这是我们以前学过的一个什么性质?”学生很快就答出“商不变的性质”。接着复习前几节课学习的“分数与除法的关系”帮助学生意识到商不变规律和分数与除法的关系与新知识的学习具有定的联系,为新知识的学习奠定基础。
二、经历由“猜测——动手操作验证——得出规律”的探究过程。
在本课的学习中,为充分体现学生的主体地位,使之经历学习探究的全过程。我创设了探索场景,让学生首先猜测分数是否也有与除法同样的性质。接着充分利用直观手段,设计了“猴王分饼”的操作活动,通过让学生动手操作来发现三个分数之间的相等关系,接着引导学生一起探索这三个分数之间存在的规律,从而把具体的知识条理化,使学生获得具体真切的感受,帮助学生在活动中感悟分数大小相等的算理。归纳得出分数的基本性质,让学生参与学习的全过程,在掌握所学知识的同时获得成功的体验。在教学中我还注意关注学生的多种思维方式,鼓励学生用自己的语言叙述解决问题的过程,体现了对学生观察能力、动手操作能力、逻辑思维能力和抽象概括能力的培养。
三、运用知识,解决实际问题。
当小羊和小熊在玩游戏时,他们遇到了一个有趣的挑战:找到与他们相等的分数。小羊拿出了一个分数,分母比分子大14,然后问小熊这个分数与三分之一相等,要求小熊算出这个分数是多少。小熊思考了一会儿,然后用代数的方法解决了这个问题。他设这个分数为$frac{x}{x+14}$,然后根据题目条件建立方程:[frac{x}{x+14} = frac{1}{3}]通过交叉相乘得到:[3x = x + 14]解方程得到$x=7$,所以这个分数是$frac{7}{21}$,即$frac{1}{3}$。小熊高兴地告诉小羊,他成功找到了与三分之一相等的分数,他们一起继续玩游戏,学习更多有趣的知识。
这道题可以帮助学生巩固分数的.基本知识,同时激发学生灵活运用知识的能力。在解答问题时,学生可以通过观察到三分之一的分母比分子大2,而最终结果要求分母比分子大14这一特点,巧妙地提出了一种更简洁的解题思路。他们发现原本相差的2正好乘以7就能得到14,因此只需将分子和分母同时扩大7倍,就能得到所求的数。这种创新的思维方式展示了学生对知识的灵活理解和深刻把握。
本节课出现的问题也很多,如当总结出规律后并未及时引导学生找出规律中的关键词“同时”、“相同的数”;在进行分数的基本性质与商不变的规律的沟通联系时,只是对照两句性质进行,没有举出具体的例子。如果能让学生多举一些例子,归纳方法从“特殊”到“一般”推进从而得出结论,就使得结论的得来更科学。
分数的基本性质教学反思10
在数学课上讲故事,对学生来说是一种全新的体验。故事中融入数学问题,不仅能激发学生的兴趣,还能让他们从中发现数学的乐趣。这样的设计能够引导学生以数学的视角来分析和解决问题,让他们意识到学习数学的'重要性。课堂故事的引入方式既有趣又引人深思,让学生在愉快的氛围中展开学习。这种教学方式的确能够激发学生的学习兴趣,让他们更主动地参与到课堂中来。
本节课的教学目的是通过让学生在感悟中自主探索,激发他们的学习兴趣。自主探索是学生学习活动的核心,让每个学生根据自己的经验感受和思维方式,自由探索、发现和创造。通过讲故事、展示图片,引导学生感受到三个分数相等的现象,然后提出问题让学生猜想这三个分数是否真的相等,并思考如何证明这一猜想。学生可以运用已学知识或借助学具,尝试多种方法来证明这三个分数相等,从而培养他们的探究精神和解决问题的能力。这种教学设计有助于克服学生思维的惰性,培养他们自主探索学习的习惯。
课堂中可以通过设计开放性的问题和探索性的活动,激发学生的思维和探索欲望。这样的活动可以帮助学生在数学领域更多地展现个性化的发展,激发他们的求知欲和创造力。希望老师们能够多多尝试这种教学方式,让学生在探索中体会数学的乐趣,不断地成长和进步。
分数的基本性质教学反思11
《分数的基本性质》是在学生已掌握了整数除法中商不变的规律以及学习了分数与除法的关系之后进行学习的。《分数的基本性质》在分数教学中占有重要的地位,它是约分、通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一。反思本节课,我认为以下几点做得较成功:
一、直接引入新课,并要求学生用分数表示出涂色部分,这对于学生来说并不难。然后要求学生把大小相等的分数填入等式。学生也很快回答出来了,就是==然后我就接着问,为什么它们是相等的,这个答案学生是从图中获得的,因为它们在图中所占的.面积是一样的,所以,它们是相等的。然后我又接着追问,既然这几个分数是相等的,为什么它们的分子、分母不一样呢?这个问题把学生难住了,这就是我们今天要学习的新知识,把学生学习新知的欲望一下子激发出来。
二、注重学生的动手操作能力。事先为每个学生准备一张正方形的纸,让学生对折,并涂色表示其,要求学生继续对折,每次找出一个和相等的分数,并用等式表示出来。学生通过通过折纸,对找一个和相等的分数已经有了一定的感知。很多学生通过动手操作,找到了几个和相等的分数。这为本节课学习分数的基本性质做好铺垫。
三、课堂练习力求紧扣重点,做到新颖、多样、层次分明,有坡度,加深了学生对分数的基本性质的认识,激发了学习的兴趣,活跃了课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效地拓宽了学生的思维空间,真正做到了学以致用。
如,=(a、b为非零的自然数)
(1)当a=1、2、3、4、5…时,b分别等于几?
(2)a与b的关系是怎样的?为什么?
同时,在这节课中也存在几个方面的不足:
1.在形成性质的过程中,对分数基本性质与分数除法的关系,商不变的规律进行了整合,只有部分学生了解,没有深入到全班。而且在学生表述自己的发现时,没有说0除外,我本意是想再进行追问,可有部分学生书本已打开,他们很快就说0除外。对该性质没有一个深入的理解,我想在后期的教学中,应多关注细节,培养学生良好的学习习惯,上课应学会思考,而不是依靠书本现成的答案。
2.在巩固练习阶段,如练一练的第2题,我只是指名让几个学生说说他们填某个数的依据,而没有在黑板上把过程再板演一遍,这对于学困生来说是很困难的,所以,在后来的练习中,有部分学生还不是很理解。
分数的基本性质教学反思12
《分数的基本性质》一课是人教版五年级下册第四单元的一个内容。这部分内容是学生在学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律非常的重要。对这部分内容我是这样设计教学的:
1、本节课以学生探究发现分数基本性质的过程为教学重点,我在设计这节课时,运用我校倡导“三环六步”教学模式,三环六步教学模式介绍放手让学生自主探究,经历“猜想——验证——总结”的学习过程,以“猜想”故事结论引入,引导学生大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想。让学生得到不仅是数学知识,更主要的是数学学习的`方法,从而激励学生进一步地主动学习,使学生理解并掌握分数的基本性质,学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数。
2、教学的整个过程是学生亲自验证的过程,通过“验证”学生感受了数学的严谨性。设计以“猜想--观察--验证--概括--深化--提高”的环节,把知识的形成过程展现在学生的面前,使学生在掌握分数的基本性质的同时,感知到数学知识的形成过程,在这一过程中注意渗透学生自学方法、解决问题的策略、体会数学知识与生活的紧密联系,同时教给学生学会学习,学会思考的方法。在师生共同协作的过程中,达到课堂教学方法的最优化,提高了课堂教学效益。
3、在推导规律的过程中,抓住分数的分子、分母按怎样的规律变化而分数大小不变这一点,通过动手操作、实践, 引导学生自己去发现、证实并归纳:分数的分子分母同时乘或除以一个相同的数(零除外),分数的大小不变。在这关键处,教师又进一步发动全班讨论,把问题引向纵深,这种教学模式既重视学生自主参与,相互合作的发挥,又有利于学生展现自己知识的建构过程,不仅知其结果,而且更了解自己得出结果的过程和先决条件,促进知识与能力的同步发展。
分数的基本性质教学反思13
这节课主要是学习分数的基本性质,通过学习商不变规律以及之前所掌握的知识,为后续学习约分和通分打下基础。
成功之处:
1.在引入分数的基本性质之前,我先通过展示两个整数除法的例子,让学生发现被除数和除数同时放大或缩小相同倍数时,商是不变的规律。这样,我们引入了分数的基本性质教学。学生在探索分数的基本性质时,会利用已有的知识进行迁移,从而发现分数的基本性质:分子和分母同时乘或除以一个相同的数(除数不能为0)时,分数的大小不变。通过类比,因为分数与除法有关,使得分数的基本性质与商不变规律在语言表达上具有很多相似之处,这样也有助于更好地理解分数的.基本性质。
在教学中,可以通过折纸、涂色等操作活动,帮助学生直观感知1/2、1/4、1/8这几个分数的大小关系。学生在动手操作的过程中会发现这几个分数的涂色部分大小是相同的,从而引导他们观察分子和分母的变化规律。通过操作和观察,学生可以发现在这几个相等的分数中,分子和分母同时乘2时,分数的大小不变;分子和分母同时除以2时,分数的大小也不变。通过举例验证,最终可以总结出分数的基本性质。这样的教学方法既培养了学生的实践能力,又培养了他们的归纳推理能力。
不足之处:
学生在练习中在数轴上表示相同的分数时,有些学生可能会忘记利用分数的基本性质来帮助他们正确思考和解决问题,从而可能出现错误。
改进措施:
要注重引导学生应用所学新知识解决新问题的能力,体会数学学习的思想方法。
分数的基本性质教学反思14
今天的公开课结束后,顿时觉得豁然开朗。心里甭提有多高兴了,身上的这块大石头也总算落地了。轻松啊!尽管后面还是有好多工作要做,好多任务要完成,但我总觉得了了我一桩心事了。为了这一节课,我可是准备了两个多礼拜呢。天晓得那些天我是怎么过来的!哈哈不过,课后听到老师们的好评(尽管还是有许多不足之处,但比以前进步了),心里还是蛮欣慰的,觉得那几天的苦累没有白费。
先说说其他老师对这节课的评价吧。
一、进步之处:
1、体现了“以学生为主体”的思想,具有“开放教学”的意识。
2、教学思路设计清晰有条理。
二、不足之处:
1、在例2教学的引导中,放手的太快,让学生自己动手操作之前,老师应该示范一下。
2、板书设计合理,字迹工整但不美观。
听了这样的评价之后心里还是蛮高兴的。想起我第一次走上讲台的时候,不自信、害羞、扭捏,到现在的教态自然、明朗、庄重;想起我第一次走上讲台的`时候,板书天马行空、信马游缰,到现在的板书设计科学、合理;想起我第一次走上讲台的时候,自顾自的讲讲讲,就好象讲台下坐的是一群群小鸭子,到现在的放手让学生们自己动手操作,在活动中探索知识。我想这些都是进步,虽然只是一些小小的、微不足道的进步,但是我还是蛮高兴的!毕竟,我正在慢慢的成长。今后,我仍然会继续努力学习,争取更大的进步!
现在来谈谈我自己对本节课的想法吧。
1、心态上,比以前平和多了。也许是这次准备的时间较长,准备的较充分的原因吧。上课时看到后面一排排的听课老师,不太感到紧张了。当然,刚开始还是有一点紧张的,只是比以前好多了。
2、语速还是嫌快。数学不比语文。语文讲到激情时可以加快语速、提高音调;讲到舒缓时就要放慢语速、降低音调。当然,数学课上也需要生动形象、抑扬顿挫。但是,数学语言更注重的是凝炼、简洁。
3、详略不当。每个环节都有某个知识的侧重点,应该做到详略得当。不能让详点不详,重点不重。这样老师累,学生也会生厌。
从我第一次发现这里时,就深深的喜欢上了它。在这里我遇见了好多数学老师,他们都是我的前辈,我的师傅。我从他们的博客中、评论里学到了很多,不仅仅是教学方面的知识......
今天特别高兴!
分数的基本性质教学反思15
1.教学的预设与应变
分数的基本性质这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习,不仅仅对学生提出了挑战,而且对老师也提出了更大的挑战。因为学生有了更大的思考空间,学习方式是开放的,解决问题的方式是多元的,这就要求教师备课时能站在学生的角度思考,提高教学的预设潜力。同时,学生探究的过程曲曲折折,不同的学生会遇到不同的磕磕碰碰,暴露出不同的问题,甚至许多问题教师都难以预料,这些又对教师临场应变、驾驭课堂的潜力提出了更高的要求。要求教师能以人为本,根据学生不同状况采取不同的.教学方式。譬如,这节课“提出猜想”是十分重要的一环,它确定了研究的方向。但是如前所述,如果有些学生用类比的方法提不出猜想,怎样办?教师能够从另一个角度启发学生。相反,如果学生十分活跃,出现的猜想很多,无法在一节课中一一验证,怎样办?教师可先让学生选取其中一个最重要的猜想进行验证,学会了方法后,再分组各自选取自己喜欢的猜想验证,最后全班交流,提高了时效性。教师要充分信任学生,放手让学生做思维的先行者,不怕走弯路,不怕出问题,因为学生有了问题才更有探索的价值。如果教师善于抓住学生暴露的真实问题,恰当的组织交流和讨论,将使
之成为教学的最佳资源。
2.目标的全面与侧重
也许,有教师会问:“如果学生花在探究的时间多了,练习的时间少了,知识与技能目标能否到达?”是的,知识与技能、过程与方法、情感与态度是新课标提出的三位一体的目标,都很重要,教师务必努力实现三个目标的和谐统一,但具体到每节课还是能够根据资料的个性有所侧重。譬如,本节课,我根据分数基本性质的规律性,侧重于过程性目标的落实。因为我认为在这节课学生发现探索的过程比知识本身更重要,更有利于学生潜力和方法的培养;而且,学生透过探究获得的知识是学生主动建构起来的,是学生自己经历的、真正属于他自己的知识,这远比做超多习题理解得更深刻,更有利于学生的发展
【分数的基本性质教学反思】相关文章:
分数的基本性质教学反思12-18
《分数基本性质》教学反思04-17
《分数的基本性质》教学反思范文08-21
《分数的基本性质》教学反思15篇06-23
分数的基本性质教学反思15篇02-18
分数的基本性质教学反思(15篇)04-01
《分数的基本性质》教学反思(15篇)03-15
青岛版《分数的基本性质》教学反思范文10-21
分数的性质教学反思12-15