数学教学计划

时间:2024-08-26 17:13:32 教学计划 我要投稿

数学集合教学计划

  时间的脚步是无声的,它在不经意间流逝,我们的工作同时也在不断更新迭代中,为此需要好好地写一份计划了。相信大家又在为写计划犯愁了吧?下面是小编收集整理的数学集合教学计划,仅供参考,大家一起来看看吧。

数学集合教学计划

数学集合教学计划1

  一、教学内容

  本册教学内容分为五大板快:

  (一)数与运算:

  1、第二单元“分数的混合运算”;

  2、第四单元“百分数”;

  3、第六单元“比的认识”;

  4、第七单元“百分数的应用”。

  (二)图形与几何:

  1、第一单元“圆”;

  2、第三单元“观察物体”;

  3。第六单元“图形的变换”。

  (三)统计与概率:第五单元“数据处理”。

  (四)综合应用:数学好玩。

  (五)整理与复习。

  二、教学目的和要求:

  1。通过观察、操作等活动认识圆及圆的对称性,认识到同一个圆中半径、直径、半径和直径的关系,体会圆的本质特征及圆心和半径的作用,会用圆规画圆。结合具体情境,通过动手实验、拼摆操作等实践活动,探索并掌握圆的周长和面积的计算方法,体会“化曲为直”的思想。结合欣赏与绘制图案的过程,体会圆在图案设计中的应用,能用圆规设计简单的图案,感受图案的美,发展想象力和创造力。

  2、能够正确进行分数混合运算;理解整数的运算律在分数运算中同样适用;结合实际情境,能用多种方法解决简单分数混合运算的实际问题,体会分数混合运算在现实生活中的广泛应用。

  3、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。能利用百分数的有关知识或运用方程解决一些实际问题,提高解决实际问题的能力,感受百分数与日常生活的.密切联系。

  4、理解百分数的意义,会正确地读、写百分数,能运用百分数表示事物;探索小数、分数和百分数之间的关系,并能进行百分数与小数、分数之间的互化;会解决有关百分数的简单实际问题(包括运用方程解决有关的问题),感受数学在现实生活中的应用价值,体会数学学习中的乐趣。

  5、经历运用平移、旋转或作轴对称图形进行图案设计的过程,能灵活运用平移、旋转和轴对称在方格纸上设计图案;结合欣赏和设计美丽的图案,感受图形世界的神奇。

  6、经历从具体情境中抽象出比的过程,理解比的意义及其与除法、分数的关系。在实际情境中,体会化简比的必要性,会运用商不变的性质和分数的基本性质化简比。能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。

  7、了解扇形统计图的特点与作用;能根据需要,选择条形统计图、折线统计图、扇形统计图直观、有效地表示数据;认识复式条形统计图和复式折线统计图,感受复式条形统计图和折线统计图的特点。能根据需要选择复式条形统计图、复式折线统计图有效地表示数据。

  8、学生能正确辨认从不同方向(正面、侧面、上面)观察到的立体图形(5个小正方体组合)的形状,并画出草图。感受观察范围随观察点、观察角度的变化而改变,能利用所学的知识解释生活中的一些现象。

  9、能综合运用所学的知识和方法解决实际问题,感受数学在日常生活中的作用;获得一些初步的数学活动经验和方法,发展解决问题和运用数学进行思考的能力;感受数学知识间的相互联系,体会数学的作用;在与同伴合作和交流的过程中,发展数学学习的兴趣和自信心。

  三、教材编写的意图和特点

  本册教材力求体现整套教材的基本特点,重视学生的生活经验,密切数学与现实的联系;以学生的数学活动为主线呈现学习内容;创设生动有趣的情境,引导学生在解决现实问题的过程中,经历抽象数学模型并进行解释与应用的过程,从中获得对数学知识的理解和体验;注重学生的数感、空间观念、统计观念等的发展;避免程式化地叙述“算理”和死套题型地进行操练。具体表现如下:

  1、在数与代数中,重视运用百分数的意义解决实际问题,注重从具体实例中抽象出比的过程及对比的意义的理解。

  2、在空间与图形的学习中,注重在圆的特征、圆的周长和面积计算的探索中,在图形的变换过程中,在观察物体的活动中,发展空间观念。

  3、在统计的学习中,注重结合现实素材认识复式统计图,并从图中尽可能多次获取信息。

  4、学生在从事专题性的活动时,将综合运用所学的知识和方法解决实际问题,感受数学在日常生活中的作用;获得一些初步的数学活动经验和方法,发展解决问题和运用数学进行思考的能力;感受数学知识间的相互联系,体会数学的作用;在与同伴合作和交流的过程中,发展数学学习的兴趣和自信心。

数学集合教学计划2

  一、学生基本情况分析:

  本学年我继续担任三年级(4)、(5)两个班的数学教学并协助两个班主任进行班级管理.(4)班有学生48人,其中男生24人,女生24人;(5)班有学生49人,其中男生25人,女生24人.从上学年考试成绩分析,学生的基础的知识、概念掌握还算牢固,口算及乘法口诀掌握还好.但粗心大意的还比较多,灵活性不够,应用能力较差.但总的来说大部分学生对数学比较感兴趣,可接受能力不强,学习态度较端正;也有部分学生自觉性不够,不能及时完成作业等,对于学习数学有一定困难.所以在新的学期里,在端正学生学习态度的同时,还要加强学习习惯培养,如学前的预习、课后的复习等.在书写上还要继续提高要求,只有让学生在认真书写的基础上才有可能认真思考.因此要在本学期的教育教学中培养孩子的良好学习习惯,增强孩子的自信心,探寻良好的学习方法,采用各种激励机制,让孩子迎头赶上.

  二、本学期的教学内容及教学重难点

  1、"时、分、秒"这个单元主要内容是秒的认识和时间的简单计算,这些内容是在学生认识整时、半时、分的认识以及知道了1时=60分的基础上进行学习的,为以后学习二十四时计时法以及其他时间单位打下良好基础.

  2、"万以内的加法和减法(一)"这个单两位数的口算以及笔算几百几十加、减几百几十和加、减法估算.这些内容是在学生掌握了两位数加、减一位数口算,两位数加、减两位数笔算,以及学习了近似数的基础上进行学习的,为后面学习更大数的加、减法打下基础.

  3、"测量"这个单元主要内容是毫米、分米、千米、吨的认识.这些内容是在学生学习了厘米、米,千克和克的基础上进行学习的,为今后学习面积单位以及容积单位做准备.

  4、"万以内的加法和减法(二)"这个单元主要学习三位数加、减三位数中连续进位加法和连续退位减法.本单元是在前面学习了"万以内的加法和减法(一)"的基础上进行学习的,为学生今后能自主进行更大数的计算打基础.

  5、"倍的认识"这个单元你主要的内容就是倍的认识以及解决相关的简单实际问题.这些内容是在学生学习了表内乘法和表内除法,已理解乘、除法的意义的基础上进行学习的

  6、"多位数乘一位数"这个单元的主要内容是学习口算整十、整百数乘一位数和笔算乘法.这些内容是在学生以前学习表内乘、除法以及笔算加法的基础上进行学习的,为今后学习小数乘法打基础.

  7、"长方形和正方形"这个单元的主要内容是学习四边形、周长、长方形和正方形的周长等内容.这些内容是在学生学习了平面图形,并认识了长方形和正方形的基础上进行学习的,为今后学习其他平面图形的周长和面积打基础.

  8、"分数的初步认识"这个单元的主要内容是分数的'初步认识和分元主要内容是两位数加、减数的简单计算及简单应用.这些内容是在学生认识了整数以及整数的计算等的基础上进行的一次数概念的扩展,为今后学习更为复杂的分数计算及应用打基础.

  9、"数学广角——集合"这个单元主要内容就是体会集合思维方法,并用这种方法解决一些简单的实际问题.这是在学生已经掌握了一些排列、组合、推理等数学思维方法的基础上进行学习的,为今后学习其他的数学思维方法打基础.

  本册教材的重点:

  (1)万以内数的加减法.

  (2)倍的认识.

  (3)多位数乘一位数、笔算乘法.

  (4)长方形和正方形周长.

  (5)分数的认识.

  本册教材的难点:

  (1)1毫米、1千米、1吨的表象建立以及建立时、分、秒的时间观念.

  (2)万以内数加减法三位数加、减三位数中连续进位加和连续退位减,以及加、减法的估算.

  (3)"倍"与乘、除法运算的关系以及能分析数量关系解决生活中的实际问题.

  (4)提高多位数乘一位数的计算速度和正确率,进位叠加乘法.

  (5)分数的意义以及整数减几分之几的分数减法.

  三、本册教材的任务和目标

  1、能口算两位数加减两位数,会笔算三位数的加减法,会进行相应的估算和验算.

  2、会口算一位数乘整十数、整百数;会笔算一位数乘二三位数,并会进行估算.

  3、初步认识简单的分数,会读写分数并知道各部分名称,初步认识分数的大小,会计算简单的同分母的分数加减法.

  4、初步建立倍的概念,理解倍的含义,并能运用其含义解决问题.

  5、掌握长方形、正方形的特征,会在方格纸上画长方形和正方形;知道周长的含义,会计算长方形和正方形的周长.

  6、认识长度单位毫米、分米、千米;初步建立1毫米、1分米、1千米的长度观念,知道1吨=1000千克,认识时间单位秒,初步建立分、秒的时间观念,知道1分=60秒,会进行有关长度、质量和时间的简单计算.

  7、初步了解集合的思想,形成发现生活中的数学的意识和全面思考问题的意识,初步形成观察、分析及推理的能力.

  8、经历从生活实践中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力.

  9、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心.

  10、养成认真作业、书写整洁的良好习惯.

  四、采取的具体措施

  1、采用小组合作学习模式,让学生先在课前对即将学习的内容进行预习和提前思考,在课堂上充分的让学生动手、动口、动脑参与学习.

  2、在课堂上做到精讲,合理、精心地安排课堂练习和课后练习,尽量做到少而精.

  3、针对班级中学生的的不同层次,在课堂和课后多关注中等生以及思维较慢的学生.

  4、加强与家长的联系,并有针对性的为家长提供一些正确的指导孩子学习的方法.

  五、课时安排

  本学期共计二十周,国庆放假一周,正常上课19周,每周6节(每班)正课,共计114课时,安排如下:

  (一)时、分、秒……6课时左右

  (二)万以内的加法和减法(一) ……12课时左右

  (三)测量……13课时左右

  (四)万以内的加法和减法……16课时左右

  (五)倍的认识……7课时左右

  (六)多位数乘一位数……20课时左右

  (七)长方形和正方形……10课时左右

  (八)分数的初步认识……12课时左右

  (九)数学广角(集合)……5课时左右

  (十)整理和复习……13课时左右

数学集合教学计划3

  继续深化“高效课堂教学,促进教师专业化成长”课题研究,提倡高效课堂教学,学习教育教学理论和数学课程标准的精神,加强数学课堂教学的研究,培养师生主动探究的精神。以课堂教学为中心,提高教师教学质量。通过学生数学学习活动,培养学生对数学的兴趣,以及树立数学到处可见的观念。

  本册教材包括以下内容:20以内的数和最基础的加、减法口算,几何形体、简单的统计、认钟表等教学内容。

  本册教科书以基本的数学思想方法为主线安排教学内容。在认识10以内的数之前,先安排数一数、比一比、分一分、认位置等内容的教学;在10以内加、减法之前,先安排分与合的教学。通过数一数,让学生初步感受到数能表示物体的个数;通过比长短、比高矮,比大小、比轻重,让学生初步学习简单的比较;通过分一分,让学生接触简单的分类,并初步感受到同一类物体有相同的特性;通过认位置,让学生认识简单的方位,初步感受到物体的位置是相对的;通过分与合的教学,为建立加、减法概念和正确进行加减法口算作准备。这里所体现的比较思想、分类思想、分合思想,都是后面学习数与运算、空间与图形、统计等知识的重要思想方法。教科书设置小单元,把各领域的内容交叉安排。这符合一年级儿童年龄、心理的特点,有利于各知识的相互作用,便于建构合理的认识结构。

  一年级学生由于刚进校因此活泼好动,大多数人思维活跃,学习数学的兴趣较浓,有良好的学习习惯。也有少数同学能力差,注意力易分散,但是他们有强烈的求知欲,所以教师要有层次、有耐心的进行辅导,要使每个学生顺利地完成本学期的学习任务。

  1、知识与技能方面:

  经历从实际情境中抽象出数的过程,认识20以内的数,并学会读写;初步理解20以内数的组成,认识符号的含义,会用符号或语言描述20以内加减法的估算。结合具体的情境,初步了解加法和减法的含义;经历探索一位数加法和相应减法的.口算方法的过程,能熟练地口算一位数加一位数和相应的减法;初步学会20以内加减法的估算。认识钟面及钟面上的整时和大约几时。结合具体的情境认识上、下、前、后、左、右,初步具有方位观念。通过具体物体认识长方体、正方体、圆柱和球,认识这些形体相应的图形,通过实践活动体会这些形体的一些特征,能正确识别这些形体。感受并会比较一些物体的长短、大小和轻重。认识象形统计图和简易统计表,通过实践初步学会简单的分类,经历和体验数据的收集和统计的过程,并完成相应的图表。根据统计的数据回答简单的问题,能和同伴交流自己的想法。

  2、数学思想方面:

  初步学会从数学思维的角度观察事物的方法,如数出物体的个数,比较事物的多少,比较简单的长短、大小、轻重等。在数的概念形成过程中发展思维能力,如在认识20以内数时通过比较、排列发现这些数之间的联系,在学习“分与合”时发展学生的有序思考和分析、推理能力,在“认钟表”时进行比较、综合和判断等。

数学集合教学计划4

  一.教学目标

  1. 知识与技能

  (1)通过实例了解集合的含义,体会元素与集合的“属于”关系,体会用集合语言表达数学内容的简洁性、准确性,学会用集合语言表示有关的数学对象;

  (2)初步了解有限集、无限集的意义;

  (3)掌握常用数集及集合表示的符号,能用集合语言(集合的表示符号)描述一些具体的数学问题,感受集合语言的作用。

  2.过程与方法

  (1)通过学习集合的含义,从中体会集合中蕴涵的分类思想;

  (2)通过对集合表示法的学习,认识到列举法与描述法不同的适用范围。

  3.情感、态度与价值观

  通过集合的教学,激发学生学习数学的兴趣,培养学生积极的学习态度,体会数学学习的意义。

  二.教材分析

  集合语言是现代数学的基本语言,使用集合语言可以简洁、准确地表达数学的一些内容。课本从生活实际出发,通过对我国湖泊分类,让学生初步感受集合的概念,再从学生熟悉的集合(自然数集合、有理数集合等)出发,进一步理解集合的含义,符合学生的认知规律。

  三.重点和难点

  ①.本节的重点:集合的基本概念与表示方法。

  ②.本节的难点:运用集合的两种常用的表示方法--------列举法与描述法,正确表示一些简单的集合。

  四.学法指导

  由于集合的概念较难理解,因此建议采用渐进式学习。

  五.教学过程

  (一)情景导入:

  大家刚刚军训,经常听到的一句话是“x营x连集合”,显然,这里的集合是动词,含义为把某些特定对象集中起来.数学里,集合变为名词,某些特定对象的全体叫集合.

  (二)新课讲授:

  1、集合:某些特定对象的全体.通常用大写英文字母来标记,比如A、B ‥‥

  2、元素:集合中的每个对象叫做这个集合的.元素.通常用小写字母a、b ‥‥ x、y … b标记;

  3、元素与集合的关系:如果a是集合A的元素,就说a属于A,记作a∈A; 如果a不是集合A的元素,就说a不属于A,记作

  4、集合的表示:

  ①.列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.

  例如,由方程x2-1=0的所有解组成的集合,表示为{-1,1}.

  这里的大括号表示“全体”、 “都”的意思.

  再如,四大洋表示的集合:{太平洋,大西洋,印度洋,北冰洋}.

  ②.描述法:(对于某些集合用列举法就不方便了,比如:X-3>0的解集)

  { X | X >3 } ——— 分析描述法的结构

  ↓ ↓

  元素 属性

  象这种用集合所含元素的共同属性表示集合的方法.

  举例: {y|y=2 x2,x∈R} ; {x|y=2x2};{(x ,y)| y=2 x2,x∈R}.

  注:在不致混淆的情况下,可以省去竖线及左边部分,如 {x|x是直角三角形},可以表示为 {直角三角形}.

  ③.韦恩图:用一条封闭的曲线的内部来表示集合的方法.

  比较各种表示法的优、缺点:

  列举法:元素个数较少时;

  描述法:共同属性明确;

  韦恩图:形象直观.

  5、集合中元素的特性通过上述表示方法,可以发现集合中元素的特性:

  确定性、互异性、无序性.

  6、集合的分类: 有限集、无限集、空集.

  7、常见数集的记法:

  (1).自然数集,记作 N ;

  (2).正整数集,记作 N*或者N+;

  (3).整数集, 记作Z;

  (4).有理数集,记作Q;

  (5).实数集, 记作R.

  (三)知识运用:

  例1、下面表示是否正确?

  (1).Z={全体整数} (2).{(1,2)}与{1,2}是同一个集合

  (3).{0}= (4). x2-2x+3=0的解集为{1}

  例2、已知:A={x|x= n2+1,n∈Z},a= k2-4k+5,k∈Z

  试判断a的集合与A的关系.

  解: a= k2-4k+5=(k-2)2+1 ,且k-2∈Z

  ∴ a∈A

  例3、已知集合A={x∈R|mx2-2x+3=0,m∈R},若A中的元素至多只有一个,求m的取值范围.

  (四)课堂小结:

  (1).集合的表示方法有哪些?

  (2).集合中的元素有何性质?

  (五)课后作业:

  习题1—1 A组 4、5 B组 1、2

数学集合教学计划5

  整体设计

  教学分析

  课本从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.

  值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.

  三维目标

  1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.

  2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.

  重点难点

  教学重点:交集与并集、全集与补集的概念.

  教学难点:理解交集与并集的概念,以及符号之间的区别与联系.

  课时安排

  2课时

  教学过程

  第1课时

  作者:尚大志

  导入新课

  思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.

  思路2.请同学们考察下列各个集合,你能说出集合C与集合A,B之间的关系吗?

  (1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};

  (2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.

  引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.

  思路3.(1)①如图1甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?

  图1

  ②观察集合A,B与集合C={1,2,3,4}之间的关系.

  学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的基本运算.

  (2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.

  ②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.

  推进新课

  新知探究

  提出问题

  (1)通过上述问题中集合A,B与集合C之间的关系,类比实数的加法运算,你发现了什么?

  (2)用文字语言来叙述上述问题中,集合A,B与集合C之间的关系.

  (3)用数学符号来叙述上述问题中,集合A,B与集合C之间的关系.

  (4)试用Venn图表示A∪B=C.

  (5)请给出集合的并集定义.

  (6)求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?

  请同学们考察下面的问题,集合A,B与集合C之间有什么关系?

  ①A={2,4,6,8,10},B={3,5,8,12},C={8};

  ②A={x|x是国兴中学20xx年9月入学的高一年级女同学},B={x|x是国兴中学20xx年9月入学的高一年级男同学},C={x|x是国兴中学20xx年9月入学的高一年级同学}.

  (7)类比集合的`并集,请给出集合的交集定义,并分别用三种不同的语言形式来表达.

  活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来表示.

  讨论结果:(1)集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.

  (2)所有属于集合A或属于集合B的元素组成了集合C.

  (3)C={x|x∈A,或x∈B}.

  (4)如图1所示.

  (5)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1所示.

  (6)集合之间还可以求它们的公共元素组成的集合,这种运算叫求集合的交集,记作A∩B,读作A交B.①A∩B=C,②A∪B=C.

  (7)一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.

  其含义用符号表示为:

  A∩B={x|x∈A,且x∈B}.

  用Venn图表示,如图2所示.

  图2

  应用示例

  例1 集合A={x|x<5 b="{x|x">0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?

  变式训练

  1.设集合A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.

  解:对任意m∈A,则有m=2n=2?2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,即对任意m∈A有m∈B,所以A?B.

  而10∈B但10 A,即A B,那么A∩B=A,A∪B=B.

  2.求满足{1,2}∪B={1,2,3}的集合B的个数.

  解:满足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.

  3.设集合A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.

  解:∵A∩B={9},则9∈A,a-1=9或a2=9.

  ∴a=10或a=±3.

  当a=10时,a-5=5 ,1-a=-9;

  当a=3时,a-1=2不合题意;

  当a=-3时,a-1=-4不合题意.

  故a=10.此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.

  4.设集合A={x|2x+1<3},B={x|-3

  A.{x|-3

  C.{x|x>-3} D.{x|x<1}

  解析:集合A={x|2x+1<3}={x|x<1},

  观察或由数轴得A∩B={x|-3

  答案:A

  例2 设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.

  活动:明确集合A,B中的元素,教师和学生共同探讨满足A∩B=B的集合A,B的关系.集 合A是方程x2+4x=0的解组成的集合,可以发现,B?A,通过分类讨论集合B是否为空集来求a的值.利用集合的表示 法来认识集合A,B均是方程的解集,通过画Venn图发现集合A,B的关系,从数轴上分析求得a的值.

  解:由题意得A={-4,0}.

  ∵A∩B=B,∴B?A.

  ∴B= 或B≠ .

  当B= 时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解,

  则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.

  当B≠ 时,若集合B仅含有一个元素,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,

  此时,B={x|x2=0}={0}?A,即a=-1符合题意.

  若集合B含有两个元素,则这两个元素是-4,0,

  即关于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.

  则有-4+0=-2(a+1),-4×0=a2-1.

  解得a=1,则a=1符合题意.

  综上所得,a=1或a≤-1.

数学集合教学计划6

  一、情况分析

  (一)班级情况分析:

  本学期情况比较特殊,我接了全新的班级。对于我来说是学生是比较陌生的,他们的具体情况我并不是很了解,只能在班主任那里侧面了解下,看看上次期末成绩,这只让我对于学生有个大致的了解。相应的,学生对于我这个新的数学老师也是比较陌生的,他们在之前的学习中已经有了比较固定的学习模式和学习习惯,那对于我的讲课方式以及要求肯定是会有些不适应的,但是我相信这只是初期的情况,到后来学生就会慢慢熟悉的,毕竟学生的可塑性还是很高的。

  经过三年级下学期的学习,学生的思维已经开始由具体形象思维过渡到抽象思维,对周围事物的认识较以前上升了一个层次,已经会用归纳概括的方法认识事物及解决问题,学生已经具备了初步的数学知识(两位数乘两位数、除数是一位数的除法、长方形和正方形的面积计算、认识小数、年月日、不同形式的条形统计图),为学好本册教材打下了良好的基础。

  (二)教材分析

  本学期教材内容包括下面一些内容:大数的认识,三位数乘两位数,除数是两位数的除法,角的度量,平行四边形和梯形的认识,复式条形统计图,数学广角和数学实践活动等。

  (三)教学的重点、难点

  大数的`认识、三位数乘两位数,除数是两位数的除法,角的度量,平行四边形和梯形的认识是本册教材的重点教学内容。

  二、本学期提高教学质量的具体措施

  1、尽快让学生适应新的教学方式与教学习惯,培养新的学习习惯,改掉一些不好的学习习惯。

  2、尽快了解每个学生的特点以及强弱项,根据班上的学生情况随时做出战略调整。

  3、在教学中充分发挥教师的主导作用,垂视学习过程,重视思维能力的培养,增强学生将知识融会贯通的能力及综合素质的提高。

  4、认真钻研教材,了解学生提高课堂效率,调动学生学习积极性培养学生对数学的热爱。

  5、在教学中,加强理论与实际的联系,提高实际运用知识的能力。

  6、培养学生良好的学习习惯和终身学习的愿望。

  7、加强家庭教育与学校教育的联系,让家长也能及时的了解学生动态。

数学集合教学计划7

  一、教材分析

  第十一章全等三角形本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的性质与判定解决实际问题的思维方式。教学重点:全等三角形性质与判定方法及其应用;掌握综合法证明的格式。教学难点:领会证明的分析思路、学会运用综合法证明的格式。教学关键提示:突出全等三角形的判定。

  第十二章轴对称本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形和正三角形的性质。教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。教学难点:轴对称性质的应用。教学关键提示:突出分析问题的思维方式。

  第十三章实数本章通过对平方根、立方根的.探究引出无限不循环小数,进而导出无理数的概念,从而把有理数扩展到实数。教学重点:平方根、立方根、无理数和实数的有关概念与性质。教学难点:平方根及其性质;有理数、无理数的区别。教学关键提示:从生活实际入手,让学生经历无理数的发现过程,从而理解并掌握实数的有关概念与性质。

  第十四章一次函数本章主要学习函数及其三种表达方式,学习正比例函数、一次函数的概念、图象、性质和应用,并从函数的观点出发再次认识一元一次方程、一元一次不等式及二元一次方程组。教学重点:理解正比例函数、一次函数的概念、图象和性质。教学难点:培养学生初步形成数形结合的思维模式。教学关键提示:应用变化与对应的思想分析函数问题,建立运用函数的数学模型。

  第十五章整式的乘除与因式分解本章主要学习整式的乘除运算和乘法公式,学习对多项式进行因式分解。教学重点:整式的乘除运算以及因式分解。教学难点:对多项式进行因式分解及其思路。教学关键提示:引导学生运用类比的思想理解因式分解,并理解因式分解与整式乘法的互逆性。

  二、学生情况分析

  初三是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。上学年学生期末考试的成绩平均分为116分,不及格的学生仅有7人。总体来看,成绩还算不错。九年级尚未出现两极分化,绝大多数学生都在认真学习。本学期还要在学生学习习惯的养成上,在学生学习主动性上下大功夫。

  三、教学目标

  1、知识与技能目标学生通过探究实际问题,认识全等三角形、轴对称、实数、一次函数、整式乘除和因式分解,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。

  2、过程与方法目标掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;通过探究一次函数图象与性质之间的关系,初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

  3、情感与态度目标通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

数学集合教学计划8

  教学目的:

  (1)使学生初步理解集合的概念,知道常用数集的概念及记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  教学重点:集合的基本概念及表示方法

  教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

  授课类型:新授课

  课时安排:1课时

  教 具:多媒体、实物投影仪

  内容分析:

  1.集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础

  把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

  这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念

  集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明

  教学过程:

  一、复习引入:

  1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2.教材中的章头引言;

  3.集合论的创始人——康托尔(德国数学家)(见附录);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P4)

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念:

  由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

  定义:一般地,某些指定的对象集在一起就成为一个集合.

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合 记作N,

  (2)正整数集:非负整数集内排除0的集 记作N*或N+

  (3)整数集:全体整数的集合 记作Z ,

  (4)有理数集:全体有理数的集合 记作Q ,

  (5)实数集:全体实数的集合 记作R

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作

  4、集合中元素的特性

  (1)确定性:按照明确的`判断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的开口方向,不能把a∈A颠倒过来写

  三、练习题:

  1、教材P5练习1、2

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数 (不确定)

  (2)好心的人 (不确定)

  (3)1,2,2,3,4,5.(有重复)

  3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__

  4、由实数x,-x,|x|, 所组成的集合,最多含( A )

  (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

  5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

  (1) 当x∈N时, x∈G;

  (2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

  证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,

  则x= x+0* = a+b ∈G,即x∈G

  证明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =

  且 不一定都是整数,

  ∴ = 不一定属于集合G

  四、小结:本节课学习了以下内容:

  1.集合的有关概念:(集合、元素、属于、不属于)

  2.集合元素的性质:确定性,互异性,无序性

  3.常用数集的定义及记法

  五、课后作业:

  六、板书设计(略)

  七、课后记:

  八、附录:康托尔简介

  发疯了的数学家康托尔(Georg Cantor,1845-1918)是德国数学家,集合论的创始者 1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷 康托尔11岁时移居德国,在德国读中学.1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期.1867年以数论方面的论文获博士学位.1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授.由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度.在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战.他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应.这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论.

  康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂.有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”.来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院.

  真金不怕火炼,康托尔的思想终于大放光彩.1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦.1918年1月6日,康托尔在一家精神病院去世.

  集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣.康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础

  康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础. 从而解决17世纪牛顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等人进行的微积分理论严格化所建立的极限理论

  克隆尼克(L.Kronecker,1823-1891),康托尔的老师,对康托尔表现了无微不至的关怀.他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久.他甚至在柏林大学的学生面前公开攻击康托尔

  横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位.使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折.法国数学家彭加勒(H.Poi-ncare,1854-1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西.集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了.德国数学家魏尔(C.H.Her-mann Wey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾.菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想.数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交.从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去,变得很自卑,甚至怀疑自己的工作是否可靠,他请求哈勒大学当局把他的数学教授职位改为哲学教授职位,健康状况逐渐恶化,1918年,他在哈勒大学附属精神病院去世.流星埃.

  伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题.许多数学家为之耗去许多精力,但都失败了.直到1770年,法国数学家拉格朗日对上述问题的研究才算迈出重要的一步 伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题 他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上 同时创立了具有划时代意义的数学分支——群论,数学发展史上作出了重大贡献 1829年,他把关于群论研究所初步结果的第一批论文提交给法国科学院 科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人 在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会 然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作 1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了 以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书J.B.傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿 1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院 这篇论文是伽罗华关于群论的重要著作 当时的数学家S.K.泊松为了理解这篇论文绞尽了脑汁 尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它 1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类 1832年5月31日离开了人间 死因参加无意义的决斗受重伤 1846年,他死后14年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的《数学杂志》上

数学集合教学计划9

  一.教材分析

  在现实世界中,随机现象是广泛存在的,而随机现象中存在着一定的规律性,从而使我们可以运用数学方法来定量地研究随机现象;本节课正是引导学生从数量这一侧面研究随机现象的规律性。

  随机事件的概率在实际生活中有着广泛的应用,诸如自动控制、通讯技术、军事、气象、水文、地质、经济等领域的应用非常普遍;通过对这一知识点的学习运用,使学生了解偶然性寓于必然之中的辩证唯物主义思想,学习和体会数学的奇异美和应用美.

  二.学情分析

  求随机事件的概率,学生在初中已经接触到一些类似的问题,所以在教学中学生并不感到陌生,关键是引导学生对“随机事件的概率”这个重点、难点的掌握和突破,以及如何有具体问题转化为抽象的概念。

  三.教学设计思路

  对于“随机事件的概率”,采用实验探究和理论探究,通过设置问题情景、探究以及知识的迁移,侧重于学生的“思”、“探”、“究”的自主学习,促使学生多“动”,并利用powerpoint制作课件,激发学生兴趣,争取使学生有更多自主支配的时间.

  四.教学目标:

  (1)知识与技能:使学生了解随机事件的定义和随机事件的概率;

  (2)过程与方法:提高学生分析问题和解决问题的能力,培养学生的数学化归思想;

  (3)情感与价值:使学生认识到研究随机事件的概率是现实生活的需要,树立辩证唯物主义观点.

  教学过程:

  一、情境导入:

  1、(出示幻灯片1)请同学们思考下列所述各事件发生的可能性(学生观察思考、感知对象??学生活动)

  (师生共同活动)19xx年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.

  为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后得出,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.

  2、(出示幻灯片2)

  下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(应用概念判断,加强理解学生活动)

  3、请同学们再分别举出一些例子(理论联系实际学生动手写,然后投影)

  二、观察探索:由同学们自己动手做抛掷硬币的实验,观察正面朝上事件的规律性。

  历史上曾有人作过抛掷硬币的大量重复试验,结果如下(出示幻灯片3)

  抛掷次数(n)正面向上次数(m)频率(m/n)

  20xx 1061 0.5181

  4040 20xx 0.5069

  12000 6019 0.5016

  24000 12012 0.5005

  30000 14984 0.4996

  72088 36124 0.5011

  我们可以看到,当抛掷硬币的次数很多时,出现正面的频率值m/n是稳定的,接近于常数0.5,在它附近摆动.(出示幻灯片4)一般地,在大量重复进行同一试验时,事件a发生的频率m/n总接近于某个常数,在它的附近摆动,这时就把这个常数叫做事件a的概率,记作p(a).教师强调:对于概率的定义,应注意以下几点:

  (1)求一个事件的概率的.基本方法是通过大量的重复试验;

  (2)只有当频率在某个常数附近摆动时,这个常数才叫做事件a的概率;

  (3)概率是频率的稳定值,而频率是概率的近似值;

  (4)概率反映了随机事件发生的可能性的大小;

  (5)必然事件的概率为1,不可能事件的概率为0,

  因此0≤p(a)≤1;

  2、例题分析:(出示幻灯片5)对某电视机厂生产的电视机进行抽样检测的数据如下:

  抽取台数50 100 200 300 500 1000

  优等品数40 92 192 285 478 954

  优等品频率

  (1)计算表中优等品的各个频率;

  (2)该厂生产的电视机优等品的概率是多少?

  (学生自己完成,然后回答,教师通过投影再给出答案,比较后加以肯定)

  四:总结提炼:

  1、随机事件的概念,2、随机事件的概率,3、概率的性质:0≤p(a)≤1(由学生归纳总结,老师补充.)

  五、布置作业(出示幻灯片6)

  教学反思:

  这节课主要让学生能够通过抛掷硬币的实验,获得正面向上的频率,知道大量重复实验时频率可作为事件发生概率的估计值。在具体情境中了解概率的意义,从数学的角度去思考,认识概率是描述不确定现象规律的数学模型,发展随机观念。

  具体的方法应用图表以及多媒体等工具,逐步认识到随机现象的规律性;体会在解决问题的过程中与他人合作的重要性。让学生在解决问题的过程中形成实事求是的态度以及进行质疑和独立思考的习惯,并积极参与对数学问题的讨论,敢于发表自己的观点,从交流中获益。

  概率研究随机事件发生的可能性的大小。这里既有随机性,更有规律性,这是学生理解的重点与难点。根据学生的年龄特点和认知水平,本节课就从学生熟悉并感兴趣的抛掷硬币入手,让学生亲自动手操作,在相同条件下重复进行试验,在实践过程中形成对随机事件的随机性以及随机性中表现出的规律性的直接感知,从而形成对概念的正确理解。在课堂上学生们做实验十分积极,基本上完成了我的预先设想。

  比如在事件的分析中,因为比较简单,学生易于接受,回答问题积极踊跃,在做实验中,有做的,有记录的,分工合作,有条不紊,热闹而不混乱,回答实验结果时,大胆仔细,数据到位,在总结规律时,也能踊跃发言,各抒己见,思虑很敏捷,说明学生真的在认真思考问题。总之,效果明显。但是在具体的问题上还有不尽如人意的地方,比如学生们做的实验结果并没有在1/2左右徘徊,有的组差距还比较大;因为时间问题,实验做的并不很仔细,对实验的分析没有想设计中那么完美等等.

  教完之后,很多想法。我想下次如果再上这节课时,将给学生更多时间,让学生们更充分的融会到自由学习,自主思考,交流合作中提炼结果的学习氛围中。

  在课堂上也有不如意的地方。教学大量使用多媒体,教师很少板书,可能使学生对个别问题的印象不很深刻,在学生做出实验得到数据后,对数据的分析过快,对学生的分析点评不很到位,总结不多,这几点没有达到事先的教学设计。原因是多方面的,这需要以后教学中改进。

  数学网为大家推荐的苏教版高二数学随机事件及其概率教学计划,大家一定要仔细阅读哦,祝大家学习进步。

数学集合教学计划10

  教学分析

  课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.

  值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与?的区别.

  三维目标

  1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.

  2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.

  重点难点

  教学重点:理解集合间包含与相等的含义.

  教学难点:理解空集的含义.

  课时安排

  1课时

  教学过程

  导入新课

  思路1.实数有相等、大小关系,如5=5,5<7 5="">3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)

  欲知谁正确,让我们一起来观察、研探.

  思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R.

  类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)?;(3)∈)

  推进新课

  提出问题

  (1)观察下面几个例子:

  ①A={1,2,3},B={1,2,3,4,5};

  ②设A为国兴中学高一(3)班男生的全体组成的'集合,B为这个班学生的全体组成的集合;

  ③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};

  ④E={2,4,6},F={6,4,2}.

  你能发现两个集合间有什么关系吗?

  (2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?

  (3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?

  (4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?

  (5)试用Venn图表示例子①中集合A和集合B.

  (6)已知A?B,试用Venn图表示集合A和B的关系.

  (7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?

  (8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?

  (9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?

  活动:教师从以下方面引导学生:

  (1)观察两个集合间元素的特点.

  (2)从它们含有的元素间的关系来考虑.规定:如果A B,但存在x∈B,且x A,我们称集合A是集合B的真子集,记作A B(或B A).

  (3)实数中的“≤”类比集合中的 .

  (4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.

  (5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.

  (6)分类讨论:当A B时,A B或A=B.

  (7)方程x2+1=0没有实数解.

  (8)空集记为 ,并规定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).

  (9)类比子集.

  讨论结果:

  (1)①集合A中的元素都在集合B中;

  ②集合A中的元素都在集合B中;

  ③集合C中的元素都在集合D中;

  ④集合E中的元素都在集合F中.

  可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.

  (2)例子①中A B,但有一个元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.

  (3)若A B,且B A,则A=B.

  (4)可以把集合中元素写在一个封闭曲线的内部来表示集合.

  (5)如图1121所示表示集合A,如图1122所示表示集合B.

  图1-1-2-1 图1-1-2-2

  (6)如图1-1-2-3和图1-1-2-4所示.

  图1-1-2-3 图1-1-2-4

  (7)不能.因为方程x2+1=0没有实数解.

  (8)空集.

【数学教学计划】相关文章:

数学教学计划05-22

数学教学计划【热】11-25

【精】数学教学计划11-24

【荐】数学教学计划11-21

数学教学计划(热门)07-06

小学数学教学计划06-28

数学教学计划范文07-20

数学教学计划范文04-16

数学教学计划模板10-26