高一数学教学计划

时间:2022-01-22 12:00:42 教学计划 我要投稿

高一数学教学计划(15篇)

  时间的脚步是无声的,它在不经意间流逝,成绩已属于过去,新一轮的工作即将来临,现在的你想必不是在做计划,就是在准备做计划吧。那么计划怎么拟定才能发挥它最大的作用呢?以下是小编为大家收集的高一数学教学计划,仅供参考,希望能够帮助到大家。

高一数学教学计划(15篇)

高一数学教学计划1

  一、教学目标

  1.知识与技能目标

  (1). 掌握集合的两种表示方法;能够按照指定的方法表示一些集合.

  (2).发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.

  2.过程与方法目标

  ①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。

  ②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力

  情感态度与价值观目标 感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯;学习从数学的角度认识世界;通过合作学习增强合作意识;培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。

  2、教材分析 本节课位于我校现行教材≤中等职业教育国家规划教材≥数学第一章第一节≤集合≥的第二课时,这节课主要学习集合的表示方法。

  集合语言是现代数学的基本语言。通过集合语言的学习,有利于学生简明准确地表达学习的数学内容。集合的初步知识是学生学习、掌握和使用数学语言的基础,是中职数学学习的出发点。

  在中职数学中,这部分知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,在后续学习的集合的相关内容和第二章≤不等式≥、

  第三章≤函数≥,在代数中用到的有数集、解集等;在几何中用到的有点集,都离不开集合。也是研究数学问题不可缺少的工具。这一课在本章的学习有很重要的意义,也是本章后续学习和后续学习的基础,起到承上启下的作用。

  3、学情分析

  学生在初中阶段的学习中,虽然已经有了对集合的初步认知,由于中职学生的现状,学生基础比较弱,学习习惯比较差,根据我校的现行教材结合学生的实际情况,为了培养学

  生良好的学习习惯,打好基础,对集合的两种表示方法:列举法和描述法通过讲练结合、不断地巩固练习、提高练习来达到标准要求,鼓励学生理解的.基础上记忆的学习方法来学习。

  二、方法与手段

  本节课采用新知识讲授课的教学模式,教学策略为先熟悉再深入,采用启发式、讲练结合等教学方法,并采用多媒体教学手段辅助教学。

  3、教学重难点

  重点:列举法、描述法。

  难点:运用集合的三种常用表示方法正确表示一些简单的集合

  4、教学方法:实例归纳、学生的自主探究、主动参与与教师的引导相结合,充分体现学生在课堂中的主体作用和教师的主导作用。

  5、教学手段:多媒体辅助教学——主要是利用多媒体展示图片来增加学生的学习兴趣和对集合知识的直观理解。

  6、教学思路:

  7、教学过程

  7.1创设情境,引入课题

  【活动】多媒体展示:1、草原一群大象在缓步走来。

  2、蓝蓝的天空中,一群鸟在飞翔

  3、一群学生在一起玩。

  引导学生举出一些类似的例子问题

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是一群大象、一群鸟、一群学生)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

  【设计意图】通过多媒体展示,极大地调动起了学生的积极性,吸引学生的注意力,设置轻松的学习气氛。

  7.2步步探索,形成概念

  【活动1】观察下列对象:

  ①1~20以内的所有质数;

  ②我国从1991—20xx年的13年内所发射的所有人造卫星

  ③金星汽车厂20xx年生产的所有汽车;

  ④20xx年1月1日之前与我国建立外交关系的所有国家;

  ⑤所有的正方形;

  ⑥到直线l的距离等于定长d的所有的点;

  ⑦方程x2+3x—2=0的所有实数根;

  ⑧新华中学20xx年9月入学的所有的高一学生。

  师生共同概括8个例子的特征,得出结论,给出集合的含义:把研究对象统称为元素,常用小写字母啊a,b,c….表示,把一些元素组成的总体叫做集合,常用大写字母A,B,C….来表示。

  【设计意图】使学生自己明确集合的含义,培养学生的概括能力。

  【活动2】要求每个学生举出一些集合的例子,选出具有代表性的几个问题,比

  如:

  1)A={1,3},3、5哪个是A的元素?

  2)B={身材较高的人},能否表示成集合?

  3)C={1,1,3}表示是否准确?

  4)D={中国的直辖市},E={北京,上海,天津,重庆}是否表示同一集合?

  5)F={a,b,c}与G={c,b,a}这两个集合是否一样?

  【分析】1)1,3是A的元素,5不是

  2)我们不能准确的规定多少高算是身材较高,即不能确定集合的元素,

  所以B不能表示集合

  3)C中有二个1,因此表达不准确

  4)我们知道E中各元素都是属于中国的直辖市,但中国的直辖市并不 只有这几个,因此不相等。

  5)F和G的元素相同,只不过顺序不同,但还是表示同一个集合

  通过上述分析引导学生自由讨论、探究概括出集合中各种元素的特点,并让学生再举出一些能够构成集合的例子以及不能构成集合的例子,要求说明理由。师生一起得出集合的特征:

  1)确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.

  2)互异性:同一集合中不应重复出现同一元素.

  3)无序性:集合中的元素没有顺序

  4)集合相等:构成两个集合的元素完全一样

  【设计意图】引导学生自主探究得出集合的特征:确定性、互异性、无序性,集合相等,培养学生的抽象概括能力,同时使学生能更好的了解集合。

  7.3集合与元素的关系

  【问题】高一(4)班里所有学生组成集合A,a是高一(4)班里的同学,b是

  高一(5)班的同学,a、b与A分别有什么关系?

  引导学生阅读教科书中的相关内容,思考上述问题,发表学生自己的看法。 得出结论:①如果a是集合A的元素,就说a属于集合A,记作a∈A。

  ②如果b不是集合A的元素,就说b不属于集合A,记作b?A。

  再让学生举一些例子说明这种关系。

  【设计意图】使学生发挥想象,明确元素与集合的关系。

  【活动】熟记数学中一些常用的数集及其记法

  引导学生回忆数集扩充过程,阅读教科书第3页表格中的内容,认识常用数集记号。

  【设计意图】使学生熟记常用数集的记号,以免日后做题时混淆。

  7.4集合的表示方法

  【问题】由以上内容我们可以知道用自然语言可以描述一个集合,那么有没有其他方式表示集合呢?

  7.4.1集合的列举法表示

  【活动】尝试用列举法第4页例1中的集合:

  1)小于10的所有自然数组成的集合;

  2)方程x2?x的所有实数根组成的集合;

  3)由1到20以内的所有素数组成的集合;

  并思考列举法的特点。

  引导学生阅读教科书,自主学习列举法,得出答案:

  1)A={0,1,2,3,4,5,6,7,8,9}

  2)A={0,1}

  3)A={2,3,5,7,11,13,17,19}

  通过上述讲解请同学说说列举法的特点:

  1)用花括号{}把元素括起来

  2)集合的元素可以具体一一列出

  【设计意图】使学生学习基本了解用列举法表示集合的方法,并了解列举法的特点。

  7.4.2集合的描述法表示

  【活动1】提出教科书中的思考题:

  1)你能用自然语言描述集合{2,4,6,8}吗?

  2)你能用列举法表示不等式x—7<3的解集吗?

  学生讨论,师生总结:

  1)从2开始到8的所有偶数组成的集合

  2)这个集合中的元素不能一一列出,因此不可以用列举法表示

  引导学生思考、讨论用列举法表示相应集合的困难,激发学生学习描述法的积极性。

  引导学生阅读教科书中描述法的相关内容,让学生讨论交流,归纳描述法的特点。

  例如2)可以用描述法表示为:A={x?R|x<10}

  【设计意图】使学生体会用描述法表示集合的必要性,会用描述法表示集合。

  【活动2】引导学生完成第5页例2

  1) 方程x2?2?0的所有实数根组成的集合

  2) 由大于10小于20的所有整数组成的集合

  讨论应当如何根据问题选择适当的集合表示法。学生回答,老师进行总结:

  1)描述法:A={ x?R|x2?2?0}

  列举法:

  2)描述法:A={ x?Z|10

  列举法:A={11,12,13,14,15,16,17,18,19}

  【设计意图】使学生掌握好两种表示法各自的特点,根据题目灵活选择。

  7.5课堂小结,学习反思

  【问题】1)集合与元素的含义?

  2)集合的特点?

  3)集合的不同表示方法

  引导学生整理概括这一节课所学的知识

  【设计意图】归纳整理知识,形成知识网络,并培养学生自主对所学知识进行总结的能力。

  8、作业布置,巩固新知

  课后作业:习题1.1A组第4题

  课后思考作业: ①结合实例,试比较用自然语言、列举法和描述法表示集合时各自的特点和适用的对象。

  ②自己举出几个集合的例子,并分别用自然语言、列举法和描述法表示出来。

  9、板书设计

  1.1.1集合的含义与表示

  1、元素的含义:把研究对象统称为元素

  2、集合的含义:一些元素组成的总体。

  3、集合元素的三个特性:确定性,互异性,无序性,集合相等

  4、元素与集合的关系:a?A,a?A

  5、常用数集与记法

  6、列举法

  7、描述法

  8、课堂小结

高一数学教学计划2

  一、指导思想

  本学期高一备课组以学校工作计划为指导,以提高教学质量为目标,以优化课堂教学为中心,团结合作,努力提高思想素质和业务素质,团结合作,互相学习,认真备好课,上好每一节课,并结合新教材的特点,开展研究性学习的活动,在教学中,抓好基础知识教学,着重学生本事的培养,打好基础,全面提高,为来年高考作好充分的准备,争取优异的成绩。

  二、教学目标、

  (一)情意目标

  (1)经过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究三角函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

  (二)本事要求

  1、培养学生记忆本事。

  (1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)经过揭示三角函数有关概念、公式和图形的对应关系,培养记忆本事。

  2、培养学生的运算本事。

  (1)经过概率的训练,培养学生的运算本事。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算本事。

  (3)经过算法初步,1算法步骤2程序框图(起始框,确定框,附值框,)3silab语言(顺序,条件语句,循环语句)。第二部分,统计,第三步分,概率,古典概型,几何概型。的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。

  (4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的`滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算本事。

  三、具体措施

  1、期中考前上好第一册(必修3),期中考后完成好必修4

  2、抓好数学补差,培优活动各班在星期1或星期4的午时

  3、立足于教材。

  4、要求学生完成课后练习及每一章课后习题

  5、我们组还继续学习了《课堂教学论》,《现代教育技术》,努力学习多媒体课件的制作。

  6、继续认真开展师徒结对活动,以老带新。师徒间经常听课交流,认真评课。集中备课,共同商讨教材等。

  7抓好竞赛辅导,时间定于周三、周四的提前时间,周六的午时1点到3点;任教教师:高一全体数学教师。

  8、段统一考试在周日或者周三的晚自修时间,每隔2周考一次;

  9、上学期必修4的学分认定考试补考及落实工作;

  10、响应学校教务处的备课计划安排,督促组员落实工作;

  11、抓好团体备课

高一数学教学计划3

  一、指导思想

  1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5、提高学习数学的`兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学。

  二、学情分析及学生情况分析

  高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新高考我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。

  三、具体措施

  (1)注意研究学生,做好初、高中学习方法的衔接工作。

  (2)集中精力打好基础,分项突破难点、所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。、

  (3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

  (4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

  (5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

  (6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

高一数学教学计划4

  一、教学分析

  1、分析教材

  本章教材整体主要分成三大部分:

  (1)、圆的标准方程与一般方程;

  (2)、直线与圆、圆与圆的位置关系;

  (3)、空间直角坐标系以及空间两点间的距离公式。

  圆的方程是在前一章直线方程基础上引入的新的曲线方程,更进一步要求“数与形”结合。所以学习有关圆的方程时,仍仍然沿用直线方程中使用的坐标法,继续运用坐标法研究直线与圆、圆与圆的位置关系等几何问题。此外还要学习空间直角坐标系的有关知识,以便为今后用坐标法研究空间几何对象奠定基础。这些知识是进一步学习圆锥曲线方程、导数和积分的基础。

  2、分析学生

  高中一年级的学生还没有建立起比较好的数形结合的思想,前面学习过直线知识,只是使学生有了用坐标法研究问题的基本思路,通过圆的概念的引入及其现实生活中圆的例子,启发学生学习的兴趣及研究问题的方法,培养学生分析探索问题的能力,熟练的掌握解决解析几何问题的方法-坐标法,渗透数形结合的思想研究问题时抓住问题的本质,研究细致思考,规范得出解答,体现运动变化,对立统一的思想

  3、教学重点与难点

  重点:圆的标准方程与一般方程;利用直线与圆的方程判断直线与圆、圆与圆的位置关系;空间直角坐标系的基本认识。

  难点:直线与圆的方程的应用;会求解简单的直线与圆的相关曲线的方程;建立空间直角坐标系。

  二、教学目标

  1、掌握圆的定义和圆标准方程、一般方程的概念;能根据圆的方程求圆心和半径,初步掌握求圆的方程的方法。

  2、掌握直线与圆的位置关系的判定。

  3、在进一步培养学生类比、数形结合、分类讨论和化归的数学思想方法的过程中,提高学生学习能力。

  4、培养学生科学探索精神、审美观和理论联系实际思想。

  三、教学策略

  1、教学模式

  本节内容是运用“问题解决”课堂教学模式的一次尝试,采用探究、讨论的

  教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学基本知识和基本能力,培养积极探索和团结协作的科学精神。

  2、教学方法与手段--充分利用信息技术,合理整合课程资源

  采用探究、讨论的教学方法,通过问题激发学生求知欲采用多媒体技术,目的在于充分利用其优良的`传播功能,大容量信息的呈现和生动形象的演示(尤其是动画效果)对提高学生学习兴趣、激活学生思维、加深概念理解有积极作用。制作中,采用交互技术,使课件的机动性得到加强。

  四、对内容安排的说明

  本章分三部分:圆的标准方程与一般方程;直线与圆、圆与圆的位置关系;空间直角坐标系。

  1、建立圆的方程是本节的主要内容之一。根据圆的几何特征(主要是动点与定点间距离恒定)建立适当的坐标系,再根据曲线上的点所满足的几何条件,求出点的坐标所满足的曲线方程。

  通过研究方程来研究曲线的性质是解析几何的另一个主要内容,这就是解析几何通过代数方法研究几何图形的特点,也就是坐标法。始终强调曲线方程与曲线图像之间的一一对应。这一思想应该贯穿于整个圆的教学。

  2.通过方程,研究直线与圆、圆与圆的位置关系是本章的主要内容之一。判断直线与圆、圆与圆的位置关系可以从两个方面着手:

  (1)。两条曲线有无公共点,等价于由它们方程联立的方程组有无实数解。方程组有几组实数解,这两条曲线就有几个公共点;方程组没有实数解,这两条曲线就没有公共点。

  (2)。运用平面几何知识,把直线与圆、圆与圆位置关系的结论转化为相应的代数结论。

  3、坐标法是研究几何问题的重要方法,在教学过程中,应该始终贯穿坐标法这一重要思想,不怕重复;通过坐标系,把点和坐标、曲线和方程联系起来,实现形和数的统一。

  用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果翻译成相应的几何结论。这就是用坐标法解决平面几何问题的“三步曲”:

  第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;

  第二步:通过代数运算,解决代数问题;

  第三步:把代数运算结果翻译成几何结论。

  五、教学评价

  ㈠过程性评价

  1、教学过程中,教师的讲解和学生的练习紧扣教学目标,内容深浅要分层次,设计的问题要照顾好、中、差。

  2、对于方程的推导运用的方法,学生理解起来难度较大,主要采用让学生理解的基础上进行检测反馈

  ㈡终结性评价

  1、课程内容全部结束后,让学生分组交流、讨论后,选代表谈收获、体会和感想。

  2、留课后作业(扣教学目标、分类型、分层次,落实学生为主体),让学生认真理解和巩固,了解圆的标准方程和一般方程,以及直线与圆位置关系,做完课后习题,做好作业。

高一数学教学计划5

  一、上学期教学回顾

  高一共四个教学班,共计160余人。杨文国带高一(一)班,高一(二)班;张忠杰带高一(三)班和高一(四)班。其中各班期末八校联考的成绩分别为:50.6分,32.8分,27.2分,34.5分,总平36.9分。学期中途因张忠杰离开学校导致频繁更换老师,(三)班、(四)班的成绩因而受到影响。期末由王山任(三)班、(四)班的数学老师。

  上学期工作在学生学习的落实环节上做得不太扎实,这将是本学期重点改进的地方。

  二、本学期的措施及打算

  1.一周学习早知道。明确目标更能确定努力的方向。为了让学生学习更有目的性,有效性和积极性,每周第一节课给出一周的教学进度,学习目标和过关要求。不仅老师要做到对所教内容清楚明了,也要让学生对所学内容做到每周学习目标清晰化。

  2.落实每周测试过关制。周测内容与一周学习目标及一周的讲授内容紧密相连。未尽力而又没有过关的学生将按事先说明的措施给予处罚。以便让学生重视课堂学习,重视平时作业,重视一周的学习过程。做到让学生每周学习过程精细化。 3.根据学生学力状况进行分层次的培优补差。

  三、教学进度安排

  周次,学习内容

  目标要求

  1. 必修4 第一章三角函数:第1至3节

  周期,角的推广及表示,弧度制及互化

  2. 军训

  3. 第4节:正弦函数

  单位圆,正弦函数定义,象限符号,诱导公式,五点法画图像,图像及性质。

  4. 第5节:余弦函数,第6节:正切函数

  余弦函数正切函数定义,象限符号,诱导公式,图像及性质

  5. 第7节:xAsiny的'图像,第8节:同角的基本关系。

  图像变换规律,同角三角函数的基本关系及其运用。章节复习,章节过关测试。

  6. 第二章:平面向量:第1节至第2节

  向量,有向线段,向量的长及相等、平行、共线、单位向量等概念,向量的加减法运算

  7. 第3节至第5节

  数乘向量,基本定理,向量运算的巩固训练,平面向量的坐标表示及运算。数量积的应用。

  8. 第5节至第7节

  数量积的应用及坐标表示,向量应用举例。习题课,章节复习,章节过关测试。

  9. 第三章:三角恒等变换:第1节至第2节

  两角和差的公式得推导,记忆及灵活运用,二倍角公式得来源及运用。期中复习。

  10. 期中考试

  期中复习,期中考试。

  11. 第三章 第3节:三角函数的简单应用

  试卷讲评改错,简单应用,三角恒等变换的综合习题课,练习,章节复习,必修4基本测试。

  12. 五一长假

  13. 必修3 第一章:统计。第1节至第5节

  统计的程序,统计图,统计方案设计,普查与抽样,抽样方法,分层抽样与系统抽样,花统计图表及读统计图表,数字特征:平均数,中位数,众数,级差,方差的意义及计算分析,

  14. 第6节至第9节

  样本对总本的估计及相应的数字特征的计算分析,统计实践活动,变量的相关性及例题分析,最小二乘估计。章节复习,章节过关测试。

  15. 第二章:算法初步:第1节至第3节

  基本思想,基本结构及设计,排序问题。

  16. 第4节:几种基本语句

  条件语句,循环语句,复习三角函数的基本内容,章节复习,三角函数与算法初步过关测试。

  17. 第三章:概率:第1节至第2节

  频率,概率,古典概率,概率计算公式。

  18. 第2节至第3节

  建概率模型,互斥事件,习题课节复习,章节过关测试。

  19. 期末复习

  20. 期末复习,期末考试

高一数学教学计划6

  一、教学内容

  本学期将完成数学必修1和数学必修4 (人教A版)两本教材的的学习,教学辅助材料有《同步金太阳导学》。

  二、教学目标与要求

  认真深入地学习《新课程标准》,研读教材。明确教学目的,把握教学目标,把准教学标高。注意到新教材的特点亲和力问题性思想性联系性,注意对基本概念的理解、基本规律的掌握、基本方法的应用上多下功夫,转变教学观念,螺旋上升地安排核心数学概念和重要数学思想,加强数学思想方法的渗透与概括。在课堂教学中要以学生为主,注重师生互动,对基本的知识点要落实到位,新教材对教学中有疑问的地方要在备课组中多加讨论和研究,特别是有关概念课的教学,一定要讲清概念的发生、发展、内涵、外延,不要模棱两可。

  1. 处理好初高中衔接问题。初中内容的不适当删减、降低要求,导致学生双基无法达到高中教学要求;高中不顾学生的基础,任意拔高教学要求,繁琐的、高难度的运算充斥课堂。对初中没学而高中又要求掌握的内容(具体内容见附录)。

  2. 准确把握教学要求,循序渐进地教学。不搞一步到位删减的内容不要随意补充;不要擅自调整内容顺序;教辅材料不能作为教学的依据;把更多的注意力放在核心概念、基本数学思想方法上;追求通性通法,不追求特技。

  3. 适当使用信息技术。新课程主张多媒体教学。在教材中很容易发现新课改对信息技术在数学教学上的应用,并在配备的光盘中提供了相当数量的课件,有利于学生更全面的吸收知识,提高课堂注意力和学习的兴趣。但我还是认为,多媒体知识教学的辅助手段,选不选用多媒体要看教学内容。尤其是数学这门学科,有些直观的`内容用多媒体还是不错的,但有的内容诸如让学生思考体会的问题不是很适合多媒体教学的。根据学习内容需要选择恰当的信息技术工具和使用科学型计算器;提倡适当使用各种数学软件。

  4. 充分发挥集体备课的作用。利用每周一次的集体备课,认真讨论本周的教学得失,研究下周所教内容的重难点,安排周练的内容。要根据实际情况,有针对性地组编训练题,做到每周一次综合训练(同步或滚雪球式的保温训练),一次微型补差训练,要搞好单元过关训练。选题要注意基础,强化通法,针对性强,避免对资料上的训练题全套照搬使用。要重视对数学尖子生的培养,力争在数学竞赛中取得好成绩。

  5. 在重视智力因素的同时必须关注非智力因素。应认识到非智力因素在学生全面发展和数学学习过程中所起的重要作用,并内化为自觉的行为,切实培养学生学习数学的兴趣和良好的个性品质。

高一数学教学计划7

  一、教材分析(结构系统、单元内容、重难点)

  必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;

  必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;

  二、学生分析(双基智能水平、学习态度、方法、纪律)

  较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。

  三、教学目的要求

  1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的`三角形度量问题和与测量及几何计算有关的实际问题。

  2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。

  3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。

  4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

  四、完成教学任务和提高教学质量的具体措施

  积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

  五、教学进度

周次

课、章、节

教 学 内 容

备 注

1

1.1,1.2

解三角形


2

1.2

解三角形


3

2.1,2.2

数列的概念与简单表示法,等差数列


4

2.3

等差数列的前n项和


5

2.4,2.5

等比数列及前n项和


6

2.5

考试


7

3.1,3.2

不等关系与不等式,一元二次不等式及其解法


8


3.3,3.4


二元一次不等式(组)与简单线性规划问题,基本不等式


9


考试,复习


10


期中考试


11

1.1,1.2

空间几何体的结构,三视图,直观图


12

1.3

空间几何体的表面积与体积


13

2.1,2.2

空间点、直线、平面的位置关系,直线、平面平行的判定及其性质


14

2.3

直线、平面的判定及其性质


15

3.1,3.2

直线的倾斜角与斜率,直线方程


16

3.3

直线的交点坐标与距离公式


17

4.1,4.2

圆的方程,直线、圆的位置关系


18

4.3

空间直角坐标系


19


复习


20


考试


高一数学教学计划8

  一、指导思想

  准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

  二、教学建议

  1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

  2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

  3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

  4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

  5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。

  三、教学内容

  第一章集合与函数概念

  1.通过实例,了解集合的含义,体会元素与集合的属于关系。

  2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

  3.理解集合之间包含与相等的含义,能识别给定集合的子集。

  4.在具体情境中,了解全集与空集的含义。

  5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

  6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

  7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

  8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

  9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

  10.通过具体实例,了解简单的分段函数,并能简单应用。

  11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

  12.学会运用函数图象理解和研究函数的性质。

  课时分配(14课时)

  第二章基本初等函数(I)

  1.通过具体实例,了解指数函数模型的实际背景。

  2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

  3.理解指数函数的`概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

  4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。

  5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。

  6.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。

  7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。

  课时分配(15课时)

  第三章函数的应用

  1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

  根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

  2.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

  3.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

  4.根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。

  课时分配(8课时)

3.1.1



方程的根与函数的零点



约1课时



10月25日



3.1.2



用二分法求方程的近似解



约2课时



10月26日27日



3.2.1



几类不同增长的函数模型



约2课时



10月30日



|



11月3日



3.2.2



函数模型的应用实例



约2课时





小结



约1课时



  考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。

高一数学教学计划9

  为圆满完成新高一的教学任务,使学生全面系统的掌握必修一到四的学习内 容,提高学生的数学素养,我们高一数学组秉承“高一决定高考,细节决定成败”的思想,从初、高中衔接起认真分析学情,积极研讨,制定本学期教学计划如下:

  一、学生基本状况:

  (1)本年级共12个行政班,学生860人。在中考数学成绩满分120分的基础上,我级100分以上的人很少,相对来说90分以上属于高分,绝大多数90分以下;学生数学底子薄弱,学习环节不完整,学习习惯不科学;另外,班级差异大,层次多。我们要加强集体备课力度,夯实基础,培养学生良好的学习习惯。

  (2)由于初高中分别实施课改教学,高中教学内容与初中所学衔接度远远不够,存在较大断层,我们需制定并学习衔接材料,并且在新授的同时适时补充一些内容,势必挤占新课的授课时间,时间紧任务重。我们要珍惜每一堂课,优化每一环节,提高学习效率,探索高效课堂。

  (3)高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,学生有的是一份执着,期望值也较大。理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,我们必须转变教学理念,并落实在课堂教学的各个环节,才能不负众望。

  (4)刚刚进入高一的学生还停留在初中时的学习习惯和学习方法以及对数学学习的散漫认识上,我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的`衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。

  二、教学内容任务:

  本学期完成数学人教A版《必修1》和《必修2》两册内容。

  三、教学措施要求:

  (1)注意研究学生,做好初、高中学习方法的衔接工作;加强自我学习,特别是两个纲领性文件——《国家普通高中数学课程标准教学要求》和《20xx年山东省高考数学科考试说明》的学习,吃透大纲,准确把握教学要求,提高教学效率,不做无用功。

  (2)加强集体备课,发动全组同志,确定阶段主讲人,集思广益,讨论优化教学方案;各班级统一进度,分层要求,分层作业,分层考试;注意运用现代化教学手段辅助数学教学;注意运用多媒体、投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

  (3)着眼于基础知识与重点内容,集中精力打好基础,分项突破难点。充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。

  (4)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解、训练数学能力和培养数学素养。

  (5)让学生通过单元考试,检测自己的实际应用能力,从而及时总结总结总结总结经验,找出不足,做好充分的准备。

  (6)精心组织教学,保护学生学习数学的积极性,重视数学学习能力培养;抓好尖子生与后进生的辅导工作,提前展开数学分层培养和数学基础辅导。

高一数学教学计划10

  一、学生状况分析

  学生整体水平一般,成绩以中等为主,中上不多,后进生也有一些。几个班中,从上课一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。

  二、教材简析

  使用人教版《普通高中课程标准实验教科书?数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修2有四章(空间几何体;点线平面间的位置关系;直线与方程;圆与方程)。

  三、教学任务

  本期授课内容为必修1和必修2,必修1在期中考试前完成(约在11月5日前完成);必修2在期末考试前完成(约在12月31日前完成)。

  四、教学质量目标

  1、获得必要的数学基础知识和基本技能,理解基本的`数学概念、数学结论的本质,体会数学思想和方法。

  2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3、提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  五、促进目标达成的重点工作及措施

  重点工作:

  认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。

  分层推进措施

  1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

  2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。

  6、重视数学应用意识及应用能力的培养。

高一数学教学计划11

  高一年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。数学网高中频道整理了高一数学下册教学计划,希望能帮助教师授课!

  本学期高一数学备课组的工作紧紧围绕学校、教科处及教研组的计划安排来开展,以教学改革为动力、以学校创建为前提、以提高课堂效率为目的、以自主教育为模式、以现代信息技术为手段、以培养学生的创新能力为目标,全面改进教育教学方法,更新教育观念,改变传统教学模式,培养学生综合素质,搞好本学期工作。

  一、指导思想

  以教研组工作计划为指导,按照均衡、优质、高效原则,精诚团结,和谐创新,加强科组建设,提高高一数学备课组的整体实力;努力完成本学期的教学目标,进一步提高作为未来公民所必要的数学素养,以满足学生发展与社会进步的需要。这学期的工作重点是继续进行新课标和新教材的研究,要着重抓好差生辅导和尖子生的培养,让绝大部分学生跟上教学进度。

  二、工作思路

  1.在学校科研处和教务处的领导下,有计划地组织好全组教师的学习与培训工作,特别是搞好新课程标准和新教材的学习、研究和交流,落实学校的办学理念。推广现代教育科研成果,定期开展多种形式的教研活动。

  2.以组风建设为主线,以新课程标准为指导,以教法探索为重点,以构建主动发展型课堂教学模式为主题,以提高队伍素质,提高课堂效率,提高教学质量为目的。深化课堂教学改革,努力改善教与学的方式。

  3.教学研究要以集体备课为基础,以作课、听课、评课活动以及出考卷活动为载体,以课题研究、论文、案例撰写为提高,在研究状态下理性的工作。培养本组教师养成教学反思的习惯,

  三、教材分析(结构系统、单元内容、重难点)

  必修5:

  第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;

  第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;

  第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与基本不等式;难点是二元一次不等式(组)及应用;

  必修2:

  第一章:立体几何初步。重点是空间几何体的三视图和直观图及表面积与体积,直线与平面平行及垂直的判定及其性质;难点是空间几何体的三视图,直线与平面平行及垂直的判定及其性质;

  第二章:直线与方程;重点是直线的`倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系。

  四、学情分析

  经过一学期的观察发现学生的基础知识水平、学习自觉性与基本学习方法比较欠缺,学生心理不稳定,空间思维、抽象思维、逻辑思维较差,而本学期所要学习的内容包含了高中数学中重要而难学的数列、不等式、立体几何部分,因而教学时尽可能以课本为本,注重基础和规范,不随意拔高难度,努力使绝大部分学生打好三基。教学时在完成市教学进度的前提下,尽可能的放慢速度,确保绝大部分学生的学习质量。平时教学中老师要注意不断鼓励和欣赏学生的优点和进步,使学生不断体验到学习数学的乐趣。平时测试要注重考查三基,严格控制难度,使绝大部分学生及格,使学生体验到进步和成功的喜悦。同时需进一步加强学法指导,多于学生进行情感交流。

  五、工作目标

  1、狠抓教学常规和学习常规的贯彻落实。在数学教学研究中努力做到三主(教学研究以学习理论为主导、大纲教材课程标准为主体、探索教学模式为主线)和三有(教学研究要对教学实践有指导、对教学质量有促进、对教师有提高)。

  2、加强现代教育教学理论的学习,积极进行课堂教学改革试验、逐步形成本学科特色,把我组建设成一个团结协作、富有开拓创新精神的先进集体。

  3、把对新课程标准的学习与对新教材的研究结合起来,力求使每一位数学老师都能较好地领会新课程标准的基本理念和目标,较好地把握数学学习内容中有关数感、符号感、空间观念、统计观念、应用意识、推理能力等核心概念的内涵和要求,初步掌握所教教材的结构特点、每章每节教材的地位、作用和目标要求。

  4、认真做好义务教育数学实验教材和高中新教材的阶段总结,加强教法的研究,注意总结和发现典型的教学案例,积极组织本组教师做好资料、信息收集工作,撰写教育教学论文、案例,争取在全国等各级论文评比中获奖。

  六、具体措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6、重视数学应用意识及应用能力的培养。

  7、积极做好集体备课工作,达到内容统一、进度统一、目标统一、例习题统一、资料统一、测试统一;上好每一节课,及时对学生的学习进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

高一数学教学计划12

  一 设计思想:

  函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。

  二 教学内容分析:

  本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3。1。1方程的根与函数的的零点。

  本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。

  总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

  三 教学目标分析:

  知识与技能:

  1。结合方程根的几何意义,理解函数零点的定义;

  2。结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

  3。结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的.方法

  情感、态度与价值观:

  1。让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

  2。培养学生锲而不舍的探索精神和严密思考的良好学习习惯;

  3。使学生感受学习、探索发现的乐趣与成功感

  教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。

  教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

  四 教学准备

  导学案,自主探究,合作学习,电子交互白板。

  五 教学过程设计:

  六、探索研究(可根据时间和学生对知识的接受程度适当调整)

  讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?

  [师生互动]

  师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。

  生:分组讨论,各抒己见。在探究学习中得到数学能力的提高

  第五阶段设计意图:

  一是为用二分法求方程的近似解做准备

  二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。

  七、课堂小结:

  零点概念

  零点存在性的判断

  零点存在性定理的应用注意点:零点个数判断以及方程根所在区间

  八、巩固练习(略)

  小编为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。

高一数学教学计划13

  教学目标:

  知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.

  过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.

  情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.

  教学重点:

  重点从五个具体幂函数中认识幂函数的一些性质.

  难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.

  教学程序与环节设计:

  材料一:幂函数定义及其图象.

  一般地,形如 的函数称为幂函数,其中 为常数.

  幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种形式定义的`函数,引导学生注意辨析.

  下面我们举例学习这类函数的一些性质.

  作出下列函数的图象:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律.

  定义域

  值域

  奇偶性

  单调性

  定点

  师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.

  师生共同分析,强调画图象易犯的错误.

  材料二:幂函数性质归纳.

  (1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);

  (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

  (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

  例1、求下列函数的定义域;

  例2、比较下列两个代数值的大小:

  [例3]讨论函数 的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.

  练习

  1.利用幂函数的性质,比较下列各题中两个幂的值的大小:

  2.作出函数 的图象,根据图象讨论这个函数有哪些性质,并给出证明.

  3.作出函数 和函数 的图象,求这两个函数的定义域和单调区间.

  4.用图象法解方程:

  1.如图所示,曲线是幂函数 在第一象限内的图象,已知 分别取 四个值,则相应图象依次为:.

  2.在同一坐标系内,作出下列函数的图象,你能发现什么规律?

高一数学教学计划14

  一、基本情况

  高一计算机1323班共有学生55人,其中男生42人,女生13人。高一新生刚进入高中,学习环境新,好奇心强.但是普遍学习习惯不好,数学基础较差,学习兴趣不浓.所以工作的重心在于提高学生对数学科的兴趣,以及在补足初中知识漏洞的前提下,进一步的夯实学生基础.

  二、指导思想

  全面提高学生的科学文化素养,围着课堂教学这个中心,更新教育观念,进一步提高教学水平,培养学生分析问题解决问题的能力,同时扎扎实实抓好基础知识,注意学生习惯的培养,为三年后高考打下坚实的基础。

  三、工作任务和措施

  任务:基础模块第一章至第四章

  第一章集合(9月份

  第二章不等式(10月份

  第三章函数(11月份

  第四章指数函数与对数函数(12月份-1月份

  措施:

  1.夯实三基

  知识、技能和能力三者关系是互相依存、互相促进的整体,能力是在知识的教学和技能的.培训中形成的,通过数学思想的形成和数学方法的掌握,能力才得到培养和发展,同时,能力的提高又会对知识的理解和掌握起促进作用。因此,在教学中应注意:

  A.教学面向全体学生。

  B.重视概念的归纳、规律的总结、技能的训练。

  C.重视知识的产生、发展过程。

  D.加强知识过关检测,做好查漏补缺工作。

  2.优化课堂教学结构

  A.精心设计课堂教学:

  B.课堂练习典型化;

  C.教学语言精练化

  D.板书规范化。

  3.加强学习方法指导:

  A.指导学生看书,培养学生主动学习的习惯。

  B.指导学生整理知识,总结解题规律,归纳典型例题解法及一题多解与多题一解。

  4.加强学风建设与学习习惯的培养。

  适当安排作业,认真检查督促,加强优生和后进生的辅导,对学生的作业尽量做到面批。

  四、各章节授课具体时间安排:

  (基础模块第一章集合(约12课时

  (1理解集合、元素及其关系,掌握集合的表示法。

  (2掌握集合之间的关系(子集、真子集、相等。

  (3理解集合的运算(交、并、补。

  (4了解充要条件。

  (基础模块第二章不等式(约12课时

  (1理解不等式的基本性质。

  (2掌握区间的概念。高一上数学教学计划高一上数学教学计划。

  (3掌握一元二次不等式的解法。

  基础模块)第三章函数(约20课时

  (1理解函数的概念和函数的三种表示法。

  (2理解函数的单调性与奇偶性。

  (3能运用函数的知识解决有关实际问题。

  (基础模块第四章指数函数与对数函数(约20课时

  (1理解有理指数幂,掌握实数指数幂及其运算法则,掌握利用计算器进行幂的计算方法。

  (2了解幂函数的概念及其简单性质。

  (3理解指数函数的概念、图像及性质。

  (4理解对数的概念(含常用对数、自然对数及积、商、幂的对数,掌握利用计算器求对数值的方法。

  (5理解对数函数的概念、图像及性质。

  (6能运用指数函数与对数函数的知识解决有关实际问题。

高一数学教学计划15

  一、教学内容

  本学期将完成“《数学①》必修”和“《数学④》必修” (人民教育出版社教A版)的学习,教学辅助材料有《三维设计》和自愿订阅学习方法报部分单元练习及学法指导阅读材料。二、教学目标与要求

  (一)前半期完成《数学①》主要涉及三章内容:

  第一章集合与函数的概念(约13学时)

  通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

  1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;

  2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

  3.理解补集的含义,会求在给定集合中某个集合的补集;

  4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

  5.渗透数形结合、分类讨论等数学思想方法;

  6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

  第二章函数的概念与基本初等函数Ⅰ(约14学时)

  教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的.。

  1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;

  2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

  3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

  4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

  第三章函数的应用(约9学时)

  结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。

  1、结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

  2、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

  3、利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

  4、收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

  (二)后半期完成《数学④》主要涉及三章内容:

  第一章三角函数(约16学时)

  通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

  1.了解任意角的概念和弧度制;

  2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

  3.了解三角函数的周期性;

  4.掌握三角函数的图像与性质。

  第二章平面向量(约12学时)

  在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

  1.理解平面向量的概念及其表示;

  2.掌握平面向量的加法、减法和向量数乘的运算;

  3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

  4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

  第三章三角恒等变换(约8学时)

  通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。

  1.掌握两角和与差的余弦、正弦、正切公式;

  2.掌握二倍角的正弦、余弦、正切公式;

  3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。

  三、教学常规要求及建议(要点)

  根据学校对教师的常规要求,结合本备课组实际,拟提出以下几点建议,望老师们自觉执行,落实教学各个环节,不拉同行的后腿,力求各班级之间平均分的差距达到学校要求。

  1、做好传、帮、带工作,达到学校教务处要求。本组新分1青年教师,中二1人、中一教师2人,高级教师4人,在学校要求参加集体听课、交流的教研活动之外,组内教师之间不定时地听随堂课并交流不少于听课总数的半。

  2、集体参加组内专题备课2—3次,每次中心发言人应有发言材料准备,其他教师补充发言记录。

  3、教师每周全收、批学生作业次数不低于上课总节数的五分之三(正常上课没周收改作业至少3次。

  3、每节课应有教学目标、重点,突出解决的问题和方法、过程。

  4、做好教学反思(每周至少有一次)

【高一数学教学计划】相关文章:

高一数学教学计划10-16

高一数学教学计划08-19

高一数学的教学计划08-26

高一数学的教学计划04-04

高一数学教学计划【荐】12-28

高一数学教学计划15篇12-09

高一数学学期教学计划06-22

高一数学教学计划15篇12-18

高一数学教学计划精选15篇12-23

高一数学教学计划(15篇)01-24